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Abstract— Adaptive parallel interference cancellation (PIC)
has been recently proposed for the signal detection in multiple-
input multiple-output (MIMO) systems. However, it suffers from
error propagation when operated in time-varying channels. In
this letter, an adaptive two-stage PIC with the minimum variance
(MV) criterion is proposed to solve the problem. Adaptation with
the MV criterion is realized with a decision feedback generalized
sidelobe canceller (DFGSC). In the first-stage cancellation, a spe-
cial structure involving dual DFGSCs is developed. All adaptation
operations are implemented with the least-mean-square (LMS)
algorithm. Simulations show that the proposed adaptive PIC
detection can significantly outperform the conventional adaptive
PIC detection in time-varying MIMO channel environments.

Index Terms— Multiple-input multiple-output (MIMO), par-
allel interference cancellation (PIC), least-mean-square (LMS)
algorithm, generalized sidelobe canceller (GSC).

I. INTRODUCTION

IN recent years, much attention is paid to the development
of multiple-input multiple-output (MIMO) systems. With

multiple antennas at both the transmitter and the receiver,
the spectral efficiency of a communication system can be
increased dramatically [1]. A successive interference cancel-
lation (SIC) approach, known as the vertical Bell Laboratories
layered space-time (V-BLAST) system, is commonly used
to achieve a substantial portion of the Shannon capacity
for MIMO channels [2]. However, the V-BLAST algorithm
requires high computational complexity, and the ordering
operation inherent in the SIC structure often increases the
processing delay and restricts the use of adaptive realization.
Generally, there is still no efficient way for the V-BLAST
system to work in time-varying channel environments.

Lately, parallel interference cancellation (PIC) detection
schemes were proposed for the signal detection in MIMO
systems [3]-[6]. In contrast to SIC, PIC detects different data
symbols from different transmit antennas in parallel and it
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is generally implemented with a multistage structure. It has
the advantages of low computational complexity and low
processing delay. Since PIC does not require the ordering
operation, it is more adequate for adaptive implementations.
The conventional adaptive PIC can provide satisfactory per-
formance when the channel is static or varies only slightly,
but its performance can be significantly degraded in ordinary
changing environments. This is due to the error propagation
effect inherent in the multistage PIC structure.

In this letter, we propose a new adaptive PIC scheme
to improve the MIMO detection performance, especially in
time-varying environments. Our emphasis is on the two-stage
PIC throughout the letter. The optimization is based on the
minimum variance (MV) criterion [7]. The MV detector can be
realized adaptively with the generalized sidelobe cancellation
(GSC) structure [8]. However, the conventional adaptive GSC
suffers from the problems of slow convergence and lack of
robustness. Recently, a decision feedback generalized sidelobe
canceller (DFGSC) has been proposed and the problems in-
herent in GSC are solved successfully [9]. Here, we extend the
use of the DFGSC. We employ a dual-DFGSC structure and
propose an adaptive DFGSC-based PIC for the MIMO signal
detection. This can effectively outperform the conventional
adaptive PIC under time-varying channels. All adaptations are
based on the simple yet efficient least-mean-square (LMS)
algorithm. This will keep the overall computational complexity
at a low level and make the proposed scheme feasible for
real-world applications. Convergence analysis in time-varying
environments is also provided. Simulation results confirm that
the proposed adaptive PIC detection can perform significantly
better than the conventional adaptive PIC detection in chang-
ing channel environments.

Throughout the letter, we use the superscripts (·)∗, (·)T ,
and (·)H to denote conjugation, transposition, and Hermitian
transposition, respectively. Also, the operators Dec{·}, E{·},
‖·‖, Diag{·}, and Tr{·} represent decision, statistical expecta-
tion, two-norm, diagonal matrix construction, and matrix trace
operations, respectively.

II. MIMO SIGNAL MODEL AND PARALLEL

INTERFERENCE CANCELLATION (PIC)

Consider a wireless communication system with M anten-
nas at the transmitter and N antennas at the receiver, assuming

1536-1276/08$25.00 © 2008 IEEE
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Fig. 1. General two-stage PIC detection scheme for MIMO systems.

M ≤ N . We define hnm(k) as the flat channel response from
the transmit antenna m to the receive antenna n at time instant
k, with 1 ≤ m ≤ M and 1 ≤ n ≤ N . The M transmitted
data symbols at time instant k can be collected into an M ×1
vector, denoted as d(k) = [d1(k) d2(k) · · · dM (k)]T . Let
hm(k) be a vector containing the channel response for dm(k),
i.e.,

hm(k) = [h1m(k) h2m(k) · · · hNm(k)]T . (1)

Then the complete N × M channel matrix for the transmis-
sion of d(k) can be presented as H(k) = [h1(k) h2(k)
· · · hM (k)]. The data symbols received by all the N antennas
yield an N × 1 signal vector r(k), given by

r(k) = H(k)d(k) + n(k) (2)

where n(k) is an N × 1 complex Gaussian noise vector with
zero mean and equal variance in each dimension. In addition,
all the noise components are assumed to be independent.

To detect the transmitted data symbols, the multistage
PIC is applied. As mentioned previously, we focus on the
development of a two-stage structure. The block diagram of a
general two-stage PIC detection scheme for MIMO systems is
plotted in Fig. 1. As shown, the estimate for the mth element
of d(k) in the first-stage output is expressed as d̃m(k) =
Dec{w̃H

m(k)r(k)}, where w̃m(k) is a first-stage N×1 weight
vector for the estimation of dm(k). Conventionally, to avoid
noise enhancement, w̃m(k) is optimized through the minimum
mean-squared-error (MMSE) criterion [10]. We define the
MMSE cost function (in the decision-directed mode) for the
optimization of w̃m(k) as

min
w̃m(k)

E{|e(k)|2} = min
w̃m(k)

E{|d̃m(k) − w̃H
m(k)r(k)|2}.

(3)
It is well understood that the optimum solution for (3)
involves a matrix inversion, which is not desirable in real-
world applications. This problem becomes more troublesome
when channels are time-varying. As an alternative, the LMS
algorithm is adopted to obtain the weight vector recursively.

The update equation for w̃m(k) with the LMS algorithm is
given by [11]

w̃m(k + 1) = w̃m(k) + μr(k)e∗(k) (4)

where μ is the step size controlling the convergence rate, and
e(k) is an error signal as that given in (3). Also shown in
Fig. 1, the input vector to the mth branch in the second stage,
denoted as r̂m(k), is constructed as

r̂m(k) = r(k) −
M∑

j=1,j �=m

hj(k)d̃j(k). (5)

Note that we treat those data symbols dj(k) for j �= m as
interference to dm(k). If the decisions from the first stage are
correct, interference from the other transmit antennas can be
eliminated in r̂m(k), and thus the estimation performance in
the second stage can be improved. Similarly, we write the
estimate for the mth element of d(k) in the second-stage
output as d̂m(k) = Dec{ŵH

m(k)r̂m(k)}, where ŵm(k) is a
second-stage N×1 weight vector for the estimation of dm(k).
The adaptation of ŵm(k) in the second stage can be analogous
to that given in (4). However, due to the satisfactory result
usually provided in the first-stage processing, the adaptation
in the second stage can be omitted. Here, we simply let
ŵm(k) match to the corresponding channel response in (1),
i.e., ŵm(k) = (hH

m(k)hm(k))−1hm(k), in which we assume
that hm(k) is known or can be estimated. We use this way
for the second-stage PIC weights throughout the letter. In
changing environments, the main problem of the multistage
PIC is error propagation. It seriously affects the MMSE-PIC
training. In the worst case, the receiver may lose track of the
time-varying MIMO channel. When this occurs, the training
mode has to be re-initiated.

III. DFGSC-PIC AND ITS ADAPTIVE REALIZATION

A. Review of DFGSC in [9]

In this part, we present the necessary background for the
DFGSC. The derivations given below are based on the weights
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in the first stage of the PIC. Since the structure and the
corresponding processing are identical for each data stream
in the first stage, we drop the subscript m, and use w(k) to
denote the weight vector, d(k) the transmitted data symbol,
d̃(k) the output decision, and h(k) the channel response to
simplify the notation. The MV criterion is used for optimizing
w(k) [7], i.e.,

min
w(k)

wH(k)R(k)w(k), subject to hH(k)w(k) = 1 (6)

where R(k) = E{r(k)rH(k)} is the input correlation matrix.
It is well-known that the GSC is an alternative formulation for
the MV criterion. It includes an N -tap signal matched filter
wq(k), an N×(N−1) blocking matrix B(k), and an (N−1)-
tap interference cancelling filter wa(k), with w(k) = wq(k)−
B(k)wa(k). The span of B(k) is designed to fall into the null
space of hH(k), and the signal-matching operation is simply
wq(k) = (hH(k)h(k))−1h(k). In [9], a decision feedback
operation was introduced to the conventional adaptive GSC to
overcome the problems of slow convergence and sensitivity to
constraint mismatch. A single-tap filter wb(k) was added to
the feedback process, and this was referred to as the DFGSC.
We use this DFGSC for the adaptive realization of the MV
detector. A new cost function for the optimization of both
wa(k) and wb(k) is given by

min
wa(k),wb(k)

E{|e(k)|2}
= min

wa(k),wb(k)
E{|(wq(k) − B(k)wa(k))Hr(k)

−w∗
b(k)d̃(k)|2}. (7)

Note that the difference between (7) and the original criterion
for the DFGSC is that the time-varying nature is considered
in the formulation. For simplicity, we assume that the output
decision for the desired data symbol is correct, i.e., d̃(k) =
d(k). Following the procedure in [9], we can derive

wa,opt(k) = (BH(k)R(k)B(k))−1BH(k)R(k)wq(k) (8)

wb,opt(k) = hH(k)wq(k) = 1. (9)

The performance of the DFGSC can be greatly improved
by the feedback operation when compared with that of the
conventional GSC. Detailed derivations are omitted here but
can be found in [9]. Similar to (4), the LMS update equations
for the DFGSC can be expressed as wa(k + 1) = wa(k) +
μav(k)e∗(k) and wb(k + 1) = wb(k) + μbd̃(k)e∗(k), where
μa and μb are the step sizes for wa(k) and wb(k), v(k) =
BH(k)r(k) is the input vector for wa(k), and e(k) is the error
signal as that given in (7), respectively.

B. Adaptive DFGSC-PIC with Dual-DFGSC Structure

Next, we propose an adaptive DFGSC-based PIC detection
scheme for MIMO systems, in which a special dual structure
of the DFGSC is applied for adaptive implementations in time-
varying environments. The DFGSC is quite robust whenever
the channel response changes moderately. The performance
degradation can be ignored when it is operated within a
short period of time. However, if we want to keep the good
performance over a long-term period, wq(k) and B(k) have

to be properly updated. Here, we propose a simple method to
do the job. First, define a diagonal matrix as

P(k) = Diag{(hH(k)h(k))−1h(k)}. (10)

This matrix, called the steering matrix, is used to pre-steer
the look direction of the DFGSC. In other words, the received
signal vector is preferably multiplied by the matrix. With this
operation, wq(k) will become a time-invariant vector with
components of all ones, denoted as 1, and B(k) can be a time-
invariant orthogonal matrix, denoted as B. With B chosen
carefully, the computational complexity for signal blocking
can be significantly reduced. For the case of N = 2l, where
l is any nonnegative integer, a simple choice for B is the
Hadamard matrix excluding the first column. For the case that
N �= 2l, B can still be designed to achieve low complexity as
reported in [12]. With this architecture, only P(k) has to be
updated.

Another problem is how to acquire the up-to-date channel
response. With feedback decisions, this can be easily solved
using a channel estimator. Let the coefficients of the channel
estimator be denoted as q(k), which is an N × 1 vector. It
can be tuned by a new error signal vector eq(k), and the
optimization can be written as

min
q(k)

E{‖eq(k)‖2} = min
q(k)

E{‖r(k) − q(k)d̂(k)‖2}. (11)

To have better performance, we use the output decision in
the second stage of the PIC, i.e., d̂(k), as the input to the
channel estimator. Also note that the estimation exists over all
parallel branches. With the assumption of correct decisions,
it is not difficult to show that the optimum q(k), denoted as
qopt(k), will be equal to h(k). The LMS algorithm is used
to approach qopt(k) recursively, and the update equation is
expressed as q(k + 1) = q(k) + μqd̂

∗(k)eq(k), where μq is
the step size for the adaptation. In many cases, the input to
q(k) is a white sequence, which owns the smallest eigenvalue
spread of the input correlation matrix. As the convergence
rate of the LMS algorithm is inversely proportional to the
eigenvalue spread [11], the adaptation of q(k) is expected
to be fast and stable. With the application of the steering
matrix and the channel estimator, the adaptive DFGSC can
be operated in time-varying environments. However, since
P(k) and wa(k) are connected in series, continuous update
of P(k) may yield always un-convergent wa(k). Since the
DFGSC can resist constraint mismatch, there is no need to
update the steering matrix continuously; periodic update is
more appropriate. There is also one problem associated with
periodic update. The abrupt change of the steering matrix will
make wa(k) deviate from its optimum state instantaneously.
As a result, the performance will be degraded until wa(k)
re-converges. To solve this problem, we propose to use a
dual-DFGSC structure, as illustrated in Fig. 2, for each branch
in the first stage. These two adaptive DFGSCs are operated
simultaneously and complementarily. We let P(k) and d̃(k)
in the first DFGSC be donated as P1(k) and d̃1(k), and
those in the second DFGSC as P2(k) and d̃2(k). Both P1(k)
and P2(k) are updated periodically in different time instants,
and only one of d̃1(k) and d̃2(k) is selected as the decision
passed to the second stage and used as the reference signal
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Fig. 2. The proposed dual-DFGSC structure (for the first stage of DFGSC-PIC).
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for the dual-DFGSC adaptation. Let the time origin be zero,
L be the update period and k = 2jL + l, where j is a
nonnegative integer and 0 ≤ l ≤ 2L − 1. Then, P1(k) and
P2(k) can be expressed as P1(2jL + l) = P(2jL) and
P2(2jL + L + l) = P(2jL + L), where P(k) is as that
shown in (10). Also, P2(l) = P(0) for 0 ≤ l ≤ L − 1. The
decision passed to the second stage and used for the dual-
DFGSC adaptation can be set according to the principle:

d̃(2jL+l) =
{

d̃2(2jL + l), if 2jL ≤ l ≤ 2jL + L − 1
d̃1(2jL + l), if 2jL + L ≤ l ≤ 2jL + 2L − 1

.

(12)
Fig. 3 illustrates the update and decision output relation for
the dual-DFGSC structure. In the next section, we will provide
a guideline for the determination of L. As we can see, the
dual structure will increase the computational complexity.
Fortunately, as mentioned, the structure is only applied to
the first stage. The weight vector ŵ(k) for each branch in
the second stage only performs the matching operation, i.e.,
ŵ(k) = (qH(k)q(k))−1q(k), where q(k) is the up-to-date
channel estimate for the corresponding channel.

IV. CONVERGENCE ANALYSIS

In this section, we will analyze the convergence behavior
of the proposed DFGSC operated in time-varying channel
environments. We assume that each coefficient in the MIMO
channel varies independently according to Jakes’ model and
the channel response h(k) in (1) is normalized (made pos-
sible by automatic gain control in practice). Recall that the
correlation function of h(k) in this situation can be modeled
as rhh(τ) � E{hH(k)h(k − τ)} = J0(2πfdTsτ) [13], in
which τ is the time lag, fd is the Doppler frequency and Ts

is the symbol duration, and the function J0(·) is the zeroth-
order Bessel function of the first kind. We assume that the
channel variations are small in a short period of time and so
the channel vector can be described by a random walk process
as

h(k + 1) = h(k) + η(k) (13)

where η(k) denotes a white noise vector with the variance
σ2

η calculated by Nσ2
η = E{‖ h(k) − h(k + 1) ‖2}. Thus,

σ2
η = (2 − 2rhh(1))/N . For notation simplicity, we drop

the time index for wq(k) and B(k) since they are constants
during an update period. Let B = [b1 b2 · · · bN−1] and
wa,opt(k) = [w1(k) w2(k) · · · wN−1(k)]T . Due to the
decision feedback operation and small channel variations, the
desired data symbol can be assumed to be totally eliminated
in the optimization. Also, the leakage in the output of B is
small and can be ignored. We first consider a noiseless envi-
ronment with only one interference, in which h(k) denotes the
channel vector for that interference. With perfect interference
cancellation, we have

wH
q h(k) = wH

a,opt(k)BHh(k). (14)
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At time instant k + 1, interference from h(k + 1) is also
perfectly cancelled. We will have

wH
q h(k + 1) = wH

a,opt(k + 1)BHh(k + 1). (15)

Substituting (13) and (14) into (15), we obtain

N−1∑
n=1

w∗
n(k)bH

n h(k) + wH
q η(k)

=
N−1∑
n=1

w∗
n(k + 1)bH

n (h(k) + η(k)). (16)

Now, assume that the variation term wH
q η(k) in (16) can be

evenly cancelled by each weight element in wa,opt(k). We
then have

w∗
n(k)bH

n h(k)+
1

N − 1
wH

q η(k) = w∗
n(k+1)bH

n (h(k)+η(k))
(17)

for 1 ≤ n ≤ N − 1. After some manipulation, we can obtain
the following approximation:

w∗
n(k + 1) � w∗

n(k) +
1

N − 1
wH

q η(k)
bH

n h(k)
. (18)

From (18), we can write wa,opt(k + 1) = wa,opt(k) + ω(k),
where ω(k) is the process noise vector with its elements
defined as the second term in (18). Therefore, we see that
the optimum weight vector wa,opt(k) can also be modeled
as a random walk process. Note that E{|wH

q η(k)|2} = σ2
η

and E{|bH
n h(k)|2} = 1/N . Thus, the variance of each

component in ω(k) is Nσ2
η/(N − 1)2. For the scenario of

multiple interfering streams, (14) and (15) can be modified
to include multiple channel vectors. With the derived random
walk process, we can formulate the adaptation of wa(k) as
a time-varying system identification problem. Let v(k) =
BHH́(k)i(k), where H́(k) is the channel matrix excluding
the column corresponding to the desired data symbol, and i(k)
is the vector consisting of interfering data streams. For this
interference only system, the input to the system is v(k) and
the output of the system is wH

a,opt(k)v(k)+z(k), where z(k) is
white noise with zero mean and variance σ2

z . The filter wa(k)
is then used to identify wa,opt(k). Following the analysis pro-
cedure in [11, Ch. 14], we can readily find the optimum step
size for wa(k) as μa,opt �

√
Tr{Ω}/(σ2

zTr{Rv}), where Rv

is the correlation matrix of the input vector v(k), and Ω is the
covariance matrix of ω(k) given by Ω = (Nσ2

η/(N − 1)2)I,
with I being an identity matrix. After that, we can discuss
the determination of the update period L. The period should
be long enough for wa(k) to converge, and short enough for
constraint mismatch to remain small. The settling time of the
LMS algorithm is proportional to the average time constant
[11], which is approximated as τav ≈ 1/(2μaλav), where λav

is the average eigenvalue for the underlying correlation matrix,
i.e., Rv in our scenario. As a rule of thumb, we choose two
times of τav for a good trade-off between the convergence of
wa(k) and the mismatch experienced by the DFGSC.

V. SIMULATION RESULTS AND CONCLUSIONS

Computer simulations are conducted to demonstrate the
effectiveness of the proposed adaptive two-stage DFGSC-PIC

TABLE I

PARAMETERS USED IN SIMULATIONS

Parameters Values

Normalized Doppler frequency 5 × 10−4

(fdTs)

M 2

N 4

Modulation 16 quadrature amplitude modulation

(16-QAM)

SNR 20 dB

μa,opt 6.0 × 10−3

L 2τav � 17

Frame size 1024
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Fig. 4. Learning curves of PIC output SINR with fdTs = 5 × 10−4 and
SNR = 20 dB.

detection scheme for time-varying MIMO channels. We first
show the learning curves of the output signal-to-interference
plus noise ratio (SINR). The parameters used are listed in
Table 1. Transmission is over independent time-varying flat
Rayleigh fading channels. Assume that the channel response
is perfectly known after initial training. For comparison, we
also consider a two-stage MMSE-PIC detector. The same
channel tracking mechanism is used for the MMSE-PIC, and
the step sizes in all LMS adaptations are chosen to optimize
the performance. Fig. 4 shows the learning curves of the
output SINR in the first and second stages of the DFGSC-
PIC and the MMSE-PIC. For the DFGSC-PIC in the first
stage, it is clear that the update of the steering matrix does not
affect the learning behavior. The output SINRs in both stages
remain unchanged. This shows that our DFGSC-PIC is quite
robust in the time-varying MIMO channel. In the same figure,
we observe that the MMSE-PIC cannot track this changing
environment. The SINR values for both stages of the MMSE-
PIC degrade continuously due to error propagation.

We next show the symbol-error-rate (SER) performance
for the environment described previously. We compare the
DFGSC-PIC with the MMSE-PIC and the V-BLAST system
with parameters updated blockwisely [14]. The V-BLAST sys-
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tem re-calculates the detection order and weight vectors with
the MMSE criterion in the beginning of each block. Hence,
the smaller the block length is, the better the performance
is expected, but the higher the computational complexity it
requires. Usually, the V-BLAST system can perform very
well provided that the channel is exactly known. However,
if the V-BLAST system only updates in a blockwise manner
in time-varying channel environments, its performance will be
significantly degraded, especially when the update interval is
large. In general, the computational complexity for calculating
both the detection order and weight vectors is on the order of
O(M3+M2N) [15]. While the DFGSC-PIC is more complex
than the MMSE-PIC, the computational complexity of both
adaptive PIC schemes keeps on the order of O(MN). Fig. 5
shows the resultant SER against different signal-to-noise ratio
(SNR) values. We observe that the performance of the MMSE-
PIC becomes poor, but our DFGSC-PIC still performs quite
well. For the V-BLAST system to perform similarly to the
DFGSC-PIC, the block length should be shortened to around
50.

From these results, we conclude that the proposed DFGSC-

PIC can perform very well in time-varying channel environ-
ments and provide a good trade-off between performance and
computational complexity.
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