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蒙地卡羅解波茲曼方程式演算法準確性 
再提升以及平行模擬* 

計畫編號：NSC 90-2118-M-009-012 

執行期限：90 年 8月 1日至 91 年 7月 31 日 

主持人：周幼珍博士   交通大學統計所 

 

一、中文摘要

波茲曼運動方程式(Boltzman transport 
equation, BTE)描述半導體微觀的狀況已被

廣泛運用與研究。模擬電子運動過程中，

蒙地卡羅法(Monte Carlo, MC)解耦合的泊

松(Poisson)-BTE 模型不僅複雜、費時且有

統計雜訊問題。本研究運用適應性網格切

割法提升求解上的穩定性與效率性。測試

結果發現此方法兼具收斂性及準確性，同

時也可以有效實行與平行計算環境上。 

 

關鍵詞：波茲曼運動方程式、蒙地卡羅模

擬法、模擬收歛性、平行計算 

 

Abstract

We propose a parallel and adaptive 
1-irregular mesh solution method for the MC 
solution of semiconductor Poisson-BTE 
transport model. We iteratively solve the 
coupled Poisson-BTE transport equations 
using MC particle method on an unstructured 
mesh for 1D/2D n+-n-n+ device. Most of 
conventional MC approaches applied to solve 
semiconductor Poisson-BTE transport model 
rely on fine structure mesh, so it is a 
time-consuming task and has significantly 
statistical noise. MC simulation on an 
unstructured 1-irregular mesh has more 
computational efficiency than that on 
structured mesh. It can be utilized for 
large-scale and 2D/3D nanodevice simulation. 
Computational results are presented to show 
the novelty and robustness of this method. 

 
Keywords: BTE, MC method, Convergence, 

Parallelization 
 

 

 

二、緣由與目的

 

Advances in semiconductor fabrication 
technology have allowed the continual 
reduction of minimum feature sizes 
consistent with Moore's Law. Gordon Moore 
made his famous observation in 1965, just 4 
years after the first planar integrated circuit 
(IC) was discovered. The press called it 
"Moore's Law" and the name has stuck. In his 
paper [2], Moore predicted that the number 
of transistors per IC would double every 18 
months. The Semiconductor Industry 
Association has projected this trend to 
continue for at least the next 15 years, 
aggressively pushing the bit count of DRAM 
by a factor of 4 every 3 years.  

Among the grand challenges for high 
performance computing, nanoscale device 
physics, simulation, and characterization are 
of particular interest for their roles in 
developing a key industrial technology. This 
continual downscaling of device sizes has 
placed tremendous demands on predicting 
the behavior of designs [3,4]. TCAD/ECAD 
tools [5] for device simulation can 
considerably reduce the development cost 
and turnaround time for new devices. 
However, aggressive scaling of 
semiconductor technology is pushing the 
capabilities of today's simulation tools. 
Carrier transport in commercial TCAD 
packages is usually described with the drift 
diffusion or hydrodynamic models. However, 
these models may not adequate, because they 
hold only if the carriers are supposed to be in 
thermal equilibrium with the lattice (which is 
not the case in the high field and almost 
ballistic situations encountered in deep- 
submicron and nanoscale devices). The 
Monte Carlo Method (MCM) for 
semiconductor device simulation [6-12], 
which is based on a microscopic approach of 

*This report is based on our paper [1] “Adaptive Monte 
Carlo Method for the Solution of Semiconductor 
Poisson-Boltzmann Transport Equations” in WSEAS 
Transactions on Communications, Vol. 1, No. 1, July 
2002, PP. 191-196. 
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electrons in semiconductors, offers an 
alternative that is becoming increasingly 
important as device technology now focuses 
on the nanometer scale ULSI regime, where 
device sizes are less than 0.18 µm. From the 
MCM simulation, a detailed description of 
the underlying physics of the device behavior 
can be gleaned. Nevertheless, the large 
computational requirements of MCM, which 
may be on the order of hours or days of CPU 
time even for 2D treatments on high 
performance systems, prohibit its direct use 
in practical device engineering. An efficient 
application of MCM has therefore remained 
either for research or as a method of 
parameter extraction for higher-level models. 

In this work, based our previous works 
for deep- submicron semiconductor device 
simulation with adaptive and parallelization 
methods, we propose an adaptive 1-irregular 
mesh simulation technique for MCM 
solution of the Poisson-Boltzmann Transport 
Equations (P-BTE) on a Linux-cluster. This 
approach is a direct extension of the parallel 
adaptive computing method for solving 
device models in our earlier works [13-19]. 
We for the first time iteratively solve the 
coupled P-BTE model using MCM on an 
unstructured mesh for 1D/2D n+-n-n+ 
device. Conventional MCMs for solving 
P-BTE model are with fine structure mesh. 
They are time-consuming task and have 
significantly statistical noise. Our adaptive 
MCM bases on adaptive 1-irregular mesh, 
monotone iterative, and a posteriori error 
estimation methods on a Linux-cluster. Our 
simulation results for an n+-n-n+ structure 
show that perform MCM simulation on an 
unstructured 1-irregular mesh has more 
computational efficiency than the 
conventional simulation on structured mesh. 
It can be utilized for multidimensional 
nanometer scale device simulation. 
 

三、研究之波茲曼運動方程式

   

Due to the ongoing miniaturization in 
the design of devices mesoscopic models 
using kinetic transport equations for a 
distribution function describing the state of 
the electron gas become more and more 

relevant: (1) the effects of impact-ionization,  
(2) tunneling, and (3) hot-carrier transport 
play an important role in the design of 
reliable small-scale devices. Therefore it is of 
paramount importance to describe these 
phenomena with a TCAD tool [5]. 

The semiclassical BTE with the Poisson 
equation for the electric field is the starting 
point for a rigorous theory. The analytical 
solution of such a system is impossible from 
the practical point of view, and for this 
reason the MCM numerical algorithm has 
been developed. The MCM is able to 
describe the behavior of small semiconductor 
devices even far from thermal equilibrium, 
because it does not make any restrictive 
artificial assumptions on the dynamics. 
Furthermore, the full band structure of the 
semiconductor and the physical scattering 
rates can be taken into account. Simulating 
nanometer size transistors requires solving an 
integro-differential 5D BTE coupled with the 
Poisson equation for electron transport. The 
BTE can be express as follows [10,12]. 
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where f = ),,( tkrf
rr  is the particle density 

distribution function in the momentum space 
at time t and location ),,( zyx rrrr =r . The 
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r  is the particle velocity, rr  is 
the position coordinate in phase space, 
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 is the crystal momentum 
coordinates in phase space. The term )(rF rr

 
is the external force on the particle at location 
rr . The collision term on the right hand side 
is 
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where the ),'( kkS
rr

 is the particle transition 
rate due to scattering mechanism. In many 
ways, it is similar to the BTE of neutron 
transport as well as rarefied gas dynamics, 
but for electrons transport in nanoscale 
structures, there are some added 
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complexities. 
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Fig. 1. A 2D cross section view for a n+-n-n+ 
structure 

As shown in Fig. 1, the P-BTE model is 
subject to mixed type boundary conditions in 
1D or 2D a simulation domain. On the source 
and drain contacts, the Dirichlet type 
boundary condition is applied for the 
electrostatic potential. We assume the 
boundary conditions for particles obeying the 
conservation law.

Both of the micro- and macro-scopic 
quantities, such as the distribution function, 
mean velocity, and temperature can be 
evaluated by statistical methods. The 
computed distribution function f can be used 
for the macroscopic physical quantities 
calculation. We apply the following formula 
for macroscopic electron density calculation 

,),,(),( ∫= kdtkrftrn
rrrr                   (3)

use Eq. (4) to calculate the average electron 
velocity 
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and follow Eq. (5) to calculate the average 
electron energy 
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where n is solved with Eq. (3).

In the simulation we consider here the 
parabolic band structure *22 2/)( mkkE

r
h

r
=  

and velocity of the particle is evaluated with 
*/ mk

r
h . The scattering mechanisms applied 
here consist of: (1) acoustic phonon 
scattering, (2) optical phonon scattering, (3) 
ionized impurity scattering, and (4) virtual 
scattering [6]. The BTE is coupled with the 
Poisson equation for the electric field 
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where the function )( −+ −−= AD NND  is the 
specified ionized net doping profile. 

 

四、求解演算法

 

The conventional MCM consists of a 
simulation of the motion of electrons (and 
holes) inside the crystal, subject to the 
external and self-consistent electric field and 
of given scattering mechanisms [12]. The 
simulation starts with electrons in a given 
initial conditions for momentum and 
positions. During the free flight, the external 
forces are made to act according to the usual 
Newton's law. Then the scattering 
mechanism is chosen as responsible for the 
end of the free flight, according to the 
relative probabilities of all possible scattering 
mechanisms. From the differential cross 
section of this mechanism a new state after 
scattering is randomly chosen as initial state 
of the new free flight. The Poisson equation 
is solved to obtain the new electric field and 
the entire process is iteratively repeated. In 
this way a stochastic solution to the BTE is 
obtained. By running this procedure, the 
carrier history of each particle is recorded 
and one obtains information on some 
quantity, such as the distribution function, 
drift velocity, mean energy, and temperature 
stress tensor by taking the average of that 
quantity during the carrier histories in a time 
interval. 

Various P-BTE device modeling and 
simulation have been developed for the 
approximation solution on a structured mesh 
and have their advantages [6-12]. However, 
the extensive computation required makes it 
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impractical for a device design on a regular 
basis. Concerning the computational 
efficiency, we present our adaptive MCM for 
the P-BTE model simulation. We state the 
adaptive computing algorithm and the 
parallelization procedure for the P-BTE 
Monte Carlo simulation. It relies on the 
estimations of the solution gradient and 
variation of carrier lateral current density 
along the device channel surface. We outline 
the simulation procedure for the MCM 
simulation on 1-irregular mesh. 
 

 
The adaptive computing algorithm 

applied in Step 9 above is followed our 
earlier works [13-19] and is summarized in 
Alg. 2. We utilize this algorithm to solve the 
Poisson equation in 1D/2D structure. 
 

If the estimator is less than a preset error 
tolerance, the process will be terminated and 
the approximated solution can be 
post-processed for next iterations. Otherwise, 
our refinement scheme will refine the mesh 
using the maximum gradient of electrostatic 
potential φ and the variation of current 
density Jn as error estimation. The proposed 
parallel computing procedure for accelerating 
the MCM execution speed is outlined in the 
following algorithm. Alg. 3 is based on the 
partition of total particles numbers. 
 

 
五、結果與討論

 

We present simulated results; the 
simulation example is a 1D 0.4µm n+-n-n+ 
semiconductor structure with 0.2 µm source 
and drain contacts [3]. The applied voltage 
VD is fixed at 2 V. The simulation consists of 
50000 particles more than 100000 iteration 
loops to reach the self-consistent solution. 

Fig. 2 shows the simulated electron 
density, where the solid line is the specified 
doping profile and the dot one is the 
corresponding electron density in log scale. 
Fig. 3 shows the electron density variation 
between the junctions. Our adaptive scheme 
successfully locates the solution variation. 
We plot the potential distribution and electric 
field in Figs. 4 and 5, respectively. Compared 

Algorithm 1. (Adaptive single-particle Monte 
Carlo simulation method for P-BTE 
model) 

Step 1. Compute the maximum of total scattering 
rate. 

Step 2. Initialize the physical quantities for all 
particles. 

Step 3. Determine the free flight time of the 
particle.  

Step 4. Determine each particle location and its 
electric field with unstructured mesh data. 

Step 5.Calculate each particle’s momentum and 
energy before the collision. 

Step 6. Determine the scattering process. 
Step 7. Compute motion angles θ and φ after the 

collision. 
Step 8. Calculate their momentum and energy after 

the collision. 
Step 9. After performed the simulation for all 

particles, we solve the Poisson equation 
with the adaptive computing algorithm. 
Otherwise return to Step 3. 

Step 10. Update the electric field for all 
unstructured mesh. 

Step 11. Stop the iteration loops and perform the 
post- processing, if the number of 
iterations is grater than a specified 
stopping iteration counts. 

Algorithm 2. (Adaptive computing algorithm for
the Poisson equation.) 

Step 1. Poisson Model formulation  
Step 2. Domain discretization. 
Step 3. Finite volume approximation. 
Step 4. System of the corresponding nonlinear

algebraic equations: Ax = -F(x). 
Step 5. The MI nonlinear solver. 
Step 6. A posteriori error estimation. 
Step 7. Mesh refinement. 

Algorithm 3. (Parallel computational procedure) 
Step 1. Initialize the MPI and configurations. 
Step 2. Setup unstructured mesh dynamical array

structure. 
Step 3. Count number of particles and apply a

dynamic MCM partition algorithm to
determinate number of processors in the
simulation. 

Algorithm 3.1. (dynamic MCM partition
algorithm)  

Step 1. Count the number of total particles. 
Step 2. Find out the optimal number of

processors.  
Step 3. Determine how many particles should

be assigned to each processor. 
Step 4. Along x- or y-direction in device

domain, search (from left to right
and bottom to top) and assign
particles to these processors
sequentially.  

Step 4. All assigned CPUs perform the MCM
simulation with Alg. 1. 
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with the Fig. 10, the computed electric field 
provides a very good error control scheme 
and mesh refinement indicator. 
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Fig. 2. The device doping profile and its 

electron density at VD = 2.0 V. 
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Fig. 3. The corresponding gradient of the 

electron density. 
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Fig. 4. The simulated electrostatic potential 
for the n+-n-n+ structure at applied voltage 

2.0 V. 

Distance (m)

0 1e-7 2e-7 3e-7 4e-7 5e-7 6e-7 7e-7 8e-7

El
ec

tri
c 

fie
ld

 (V
/m

)

-1e+7

-5e+6

0

5e+6

1e+7

 
Fig. 5. The computed electric field for the 

n+-n-n+ at 2.0 V. 
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Fig. 6. A plot of the simulated average 

electron velocity. 
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Fig. 7. A plot of the simulated average 

electron energy. 
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Fig. 8. The simulated average electron 

temperature. 
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Fig. 9. The I-V curve for the n+-n-n+ 

structure at 2.0 V. 
 

We plot the calculated average electron 
velocity, energy, and temperature in Figs. 6, 
7, and 8, respectively. The results 
demonstrate the device has higher electron 
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temperature near the drain side. The electron 
attains the maximum velocity and energy in 
the drain junction neighborhood. 

Furthermore, Fig. 9 is a comparison of 
the device I-V curve between the analytical 
formula [1] and simulation result, and shows 
its accuracy of the modeling and simulation. 
We report the adaptive and parallel 
performance for the parallel adaptive 
simulation approach in Figs. 10, 11, and 12, 
respectively. As shown in Fig. 10, the 1D 
refinement is with a refinement criterion on 
the potential. Figs. 11 and 12 are the 
achieved parallel speedup and efficiency on 
a 16-PCs Linux-cluster. 
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Fig. 10. Refinement levels for the 1D model 

problem. 

Number of processors

2 4 6 8 10 12 14 16

Pa
ra

lle
l s

pe
ed

up

2

4

6

8

10

12

14

16
Parallel speedup 

Ideal speedup curve

 
Fig. 11. The achieved parallel speedup for 

the problem. 
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Fig. 12. The parallel execution time and 

parallel efficiency for the n+-n-n+ structure 
simulation. 

Besides good parallel efficiency and 
speedup are reported, Figs. 13 and 14 
present the adaptive refinement efficiency 
for a 2D n+-n-n+ model problem. As shown 
in Fig. 14, we use the electron density 
gradient as the refinement mechanism. It is 
different from our 1D refinement approach, 
but the refinement behavior has good 
agreement with the 1D simulation result as 
shown in Fig. 3. 
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Fig. 13. Initial mesh for the 2D n+-n-n+ 

structure simulation. 
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Fig. 14. A refined mesh for the 2D n+-n-n+ 

structure at applied voltage: 2.0 V.  
 
六、結論與建議 
 

We have presented an adaptive 
1-irregular mesh simulation technique for the 
Monte Carlo solution of semiconductor 
Poisson-Boltzmann transport equations on a 
Linux-cluster. Our MCM approach was 
based on adaptive 1-irregular mesh, 
monotone iterative method, and a posteriori 
error estimation method. The coupled 
Poisson Eq. and BTE were solved with 
Monte Carlo method on an unstructured 
mesh for 1D/2D n+-n-n+ device. It had more 
computational efficiency than the 
conventional simulation on structured mesh. 
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Furthermore, our simulation not only showed 
the novelty and robustness of the method but 
also demonstrated it can be utilized for 
multi-dimensional nanometer scale device 
simulation. 
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