
1

��������	
������������������

A Wavelet-Based Zero Tree and Fractal Coding Approach
to Image Compression

�������NSC87-2213-E-009-043�

��	
���86� 8� 1 --- 87� 7� 31�

����������

��������������������� !"#$�%�

�� �
As an extension of the embedded

zerotree wavelet (EZW) algorithm, the
Set Partitioning In Hierarchical Trees'
(SPIHT) algorithm is an rapid and an
efficient means of compressing an
image. However, the original SPIHT
uses three ordered lists to store the
significant information during coding,
which requires a significant amount of
memory and leads to large cost on the
hardware implementation. In this study,
we present another implementation of
SPIHT. Saving as much memory as
possible is of the priority concern. In
addition to the recursive programming,
this novel implementation uses top bits
of transformed coefficients to store a
significant information. In the novel
implementation, the memory required
for the three lists can be discarded
entirely. Experimental results show that
the proposed method can save memory
at least 300KB at bit rate 1 bits per
pixel and preserve all merits of SPIHT
including the property of embedded
coding.

!"#$%&' �

To save transmission time or storage
space of an image, the image
compression technique is extensively
applied to transmit or store an image.
Among various compression techniques,
zerotree coding has received the most
interest recently owing to that it is
computationally simple and quite
effective on compression. In addition, its
embedded coding property facil itates

progressive transmission.
Shapiro(1993) proposed the original

zerotree algorithm, called embedded
zerotree wavelet (EZW). The algorithm
fully exploits the self-similarity among
the wavelet transform coefficients
located on the similar spatial orientation,
but at different scales. That same
investigation demonstrated that its
performance at the peak signal-to-noise
ratio (PSNR) markedly exceeds that of
the JPEG standard. Said and Pearlman
(1996) further enhanced the performance
of EZW by presenting a more efficient
and faster implementation called set
partitioning in hierarchical tree (SPIHT).
The SPIHT is among the best coding
algorithms available. The SPIHT
partitions a significant tree off and then
uses three ordered lists to store the
coordinates of the partitioning results.
Owing to the excellent performance of
EZW and SPIHT, many researchers have
developed algorithms based on EZW or
SPIHT, with notable examples including
Effros (1997), Hontsch et al. (1997), Li
and Jin (1997), Wang and Ghanbari
(1997), and Rogers and Cosman (1998).

However, these EZW-based coders
or SPIHT-based coders require an
enormous amount of working memory to
store the significant amount of
information during coding, subsequently
leading to high cost in terms of hardware
realization. More specifically, there are
two lists in the original EZW: dominant
and subordinate. The dominant l ist
contains the coordinates of those
coefficients that have not yet been found
to be significant. The subordinate l ist

2

contains the magnitudes of those
coefficients that have been found to be
significant. In the original SPIHT, three
lists, i.e. insignificant sets (LIS),
insignificant pixels (LIP), and significant
pixels (LSP), are utilized to store the
significant information, locations of
partitioning sets and coefficients. These
lists normally occupy at least 300K bytes
of memory at the bit rate 1 bits per pixel
(bpp). In addition, increasing the bit rate
increases the demanded memory. Thus,
the large number of required working
memory can not be neglected,
particularly when extending the EZW or
SPIHT to the three-dimensional (3-D)
video compression.

In this study, we present a novel
implementation of SPIHT. The proposed
technique used in SPIHT can also be
applied to the EZW. By doing so, we can
save as much working memory as
possible. This novel implementation
largely focuses on taking advantage of
recursive programming to the repetitive
tree structure and using three top bits of
the transformed coefficients to store a
significant amount of information instead
of the lists. In this novel implementation,
the three lists for SPIHT can be discarded
entirely, leading to a low memory cost
zerotree coding. For brevity, our method
is referred to herein as low memory
zerotree coding (LMZC). In addition,
complexity analysis of LMZC is
performed as well.

()%*+:

A typical 3-scale spatial tree

depicted in figure 1 is obtained by the
multiscale pyramidal decomposition for
an image (Mallat 1989, Antonini et al.
1992). Table 1 compares the EZW,
SPIHT and our LMZC with respect to the
required memory and computational
complexity.

The results in table 2 are obtained
by applying the proposed coder to the
three, 512× 512 and 8 bpp, test images:

Lena, Barbara and Goldhill. Herein, the
9/7 tap filter (Antonini et al. 1992).
Symmetric extension is applied to the
image edges. The total execution time of
the encoder includes both the transform
time and the encoding time. The total
execution time deemed necessary for the
decoder is the sum of the decoding time
and the inverse transform time. All the
results are obtained from an AMD K6-2
300 MHz CPU, RAM 64 MB personal
computer, and the platform Win98.

To elevate the coding results in the
PSNR, all the generated bit streams in
the coding algorithm are further encoded
by using the adaptive arithmetic codes
(Witten et at. 1987). Table 3 summarizes
the results at various bit rates of our
coder. Notably, the reported bit rates are
calculated from the actual compressed
files. In addition, the PSNRs can be
expressed as

dB,)
MSE

255
(log 10PSNR

2

10
=

where the MSE is calculated from the
original image and the reconstructed
image produced by the decoding
algorithm. For comparison, the original
image of Lena and its reconstructed one
at bit rate 0.5 bpp (compression ratio
16:1) are shown in figure 3. According to
this figure, these two images appear to
have no perceptible difference. Thus, the
performance of LMZC is very good.

Tables 2 and 3 confirm that the
algorithm proposed herein is as efficient
and rapid as other high performance
coders. In addition, the algorithm
proposed herein saves a lot of memory,
thereby making it more appropriate for
applications involving required less
memory.

!",)-.:

�������	
����

�����������������

�� !"#$%&'()*�+,

��-�./012�	
��3/4

3

567����89:;<=>?�@

ABC�"DE/�8#$FG�6�

HIJ��	
��KL�MNOP

Q!RS0?@�8�

/012:

[1] Antonini, M., Barlaud, M., Mathieu,
P., and Daubechies, I., 1992, Image
coding using wavelet transform.
IEEE Trans. Image Processing, 1,
pp. 205-220.

[2] Effros, M., 1997, Zerotree design for
image compression: toward
weighted universal zerotree coding,
Proceedings of International
Conference on Image Processing, pp.
616-619.

[3] Hontsch, I., Karam, L. J., and
Safranek, R. J., 1997, A perceptually
tuned embedded zerotree image
coder. Proceedings of International
Conference on Image Processing, pp.
41-44.

[4] Li, J. and Jin, J. S., 1997,
Structure-related perceptual
weighting: a way to improve
embedded zerotree wavelet image
coding. IEE Electronics Letters, 33,
pp. 1305-1306.

[5] Lewis, A. S. and Knowles, G., 1990,
Video compression using 3D
wavelet transforms. Electronics
Letters, 26, pp. 396-398.

[6] Lewis, A. S. and Knowles, G., 1992,
Image compression using the 2-D
wavelet transform. IEEE Trans.
Image Processing, 1, pp. 244-250.

[7] Mallat, S. G., 1989, A theory for
multiresolution signal decomposition:
the wavelet representation. IEEE
Trans. Pattern Analysis and
Machine Intell igenec, 11, pp.
674-693.

[8] Mohd-Yusof, Z. and Fischer, T. R.,
1996, An entropy-coded lattice
vector quantizer for transform and
subband image coding. IEEE Trans.
Image Processing, 5, pp. 289-298.

[9] Rogers, J. K. and Cosman, P. C.,
1998, Wavelet zerotree image
compression with packetization.
IEEE Signal Processing Letters, 5,
pp. 105-107.

[10] Said, A. and Pearlman, W. A., 1996,
A new, fast, and efficient image
codec based on set partitioning in
hierarchical trees. IEEE Trans.
Circuits and Systems for Video
Technology, 6, pp.243-250.

[11] Shapiro, J. M., 1993, Embedded
image coding using zerotrees of
wavelets coefficients. IEEE Trans.
Signal Processing, 41, pp.
3445-3462.

[12] Shapiro, J. M., 1996, A fast
technique for identifying zerotrees in
the EZW algorithm. ICASSP'96,
1996 IEEE International Conference
on Acoustics, Speech, and Signal
Processing Conference Proceedings,
pp. 1455-1458.

[13] Wang, Q. and Ghanbari, M., 1997,
Scalable coding of very high
resolution video using the virtual
zerotree. IEEE Trans. Circuits and
Systems for Video Technology, 7, pp.
719-727.

[14] Witten, I. H., Neal, R. M., and
Cleary, J. G., 1987, Arithmetic
coding for data compression.
Commun. ACM, 30, pp. 520-540.

[15] Xiong, Z., Ramchandran, K., and
Orchard, M. T., 1997,
Space-frequency quantization for
wavelet image coding. IEEE Trans.
Image Processing, 6, pp. 677-693.

4

Figure 1. Definition of a 3-scale spatial tree.

Layer
2

Layer
3

Layer
1

Layer
0

C(i,j)

O(i ,j)
T(i ,j)

5

No

NoYes

Yes

No

Yes

No

No

Yes

Yes

NoYes

START

Is F
T
(i,j) True?

Send out S
n,T

(i,j)

S
n,T

(i ,j)=1?

U
F,O

(i,j)=1 or

U
F,D

(i,j)=1?

Set F
T
(i,j) to be True

and EncodeTree(i ,j,n)

again.

Send out

2S
n,D

(i ,j)+S
n,O

(i,j)-1

S
n,O

(i,j)=1?

Send out V
n,O

(i,j)-1;

for each C(k,l) in O(i,j)

if S
n,C

(k,l)=1 then

 send out the sign of C(k,l)

 and set F
L
(k,l) to be True.

S
n,D

(i,j)=1?

Send out V
n,D

(i,j)-1;

for each T(k,l) in D(i,j)

if S
n,T

(k,l)=1 then

 set F
T
(k,l) to be True and

 EncodeTree(k,l,n).

for each C(k,l) in O(i ,j)

if F
C
(k,l) is False then

 send out S
n,C

(k,l);

 if S
n,C

(k,l)=1 then

 send out the sign of C(k,l)

 and set F
L
(k,l) to be True.

U
F,D

(i,j)=1?

Send out S
n,D

(i ,j)
for each T(k,l) in D(i,j)

 EncodeTree(k,l,n)

END

Figure 2. The flowchart of the recursive procedure EncodeTree(i,j,n).

6

(a)

(b)

Figure 3. Comparison of the original and a reconstructed Lena images. The

reconstructed image is decoded at bit rate 0.5 bpp and PSNR is 36.8 dB.

7

Table 1

Comparisons of the EZW, SPIHT and our coder LMZC on the required memory and

the computational complexity.

 EZW SPIHT LMZC

Memory required for storing

the significant information

at least 300K bytes

at bit rate 1 bpp

at least 300K bytes

at bit rate 1 bpp

None

The method to store the

significant information

Store the coordinates

of the coefficients to

the lists.

Store the coordinates

of the coefficients to

the lists.

Bit reversal

Table 2

The results of average execution time of our coder LMZC for Lena, Barbara, and

Goldhill 512 by 512 standard images.

Image Lena Barbara Goldhill

Bit rate (bpp) 0.2 0.5 1 0.2 0.5 1 0.2 0.5 1

Transform time (sec) 0.44

Inverse transform time (sec) 0.44

Encoding time (sec) 0.71 0.88 1.1 0.61 0.82 0.99 0.66 0.83 1.4

Decoding time (sec) 0.11 0.17 0.38 0.11 0.16 0.38 0.11 0.16 0.33

Table 3

The coding results in the PSNR (dB) of our coder LMZC for Lena, Barbara and

Goldhill 512 by 512 standard images.

Bit rate

Image

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lena 32.88 34.64 35.96 36.8 37.7 38.66 39.09 39.54 39.98

Barbara 26.89 28.97 30.65 31.93 33.29 34.58 35.3 36.06 37

Goldhill 29.68 30.77 31.77 32.99 33.73 34.23 34.81 35.52 36.25

