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Abstract 

 

Recently there has been considerable interest 

in the design of optimum orthonormal filter 

banks for a given class of inputs.  It has 

been shown that the ideal solution of the 

optimum orthonormal filter banks can be 

obtained by constructing M compaction 

filters.  However these filters are ideal and 

can not be obtained with finite cost.  In this 

project we have considered optimal 

orthonormal filter banks with practical tree 

structure implementations. Also an optimal 

tree structure building algorithm in the sense 

of coding gain maximization will be 

developed. 
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Subband coding has now been one of the 

most effective data compression techniques. 

It has been used in various popular standards, 

e.g., MPEG (motion picture expert group) 

and NTSC (National Television Standard 

Committee). 
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Fig. 1. The M-channel uniform filter bank. 

 

The essential instrument in the 

implementation of subband coding is the 

M-channel filter bank as shown in Fig. 1.    

In the context of filter bank designs, it is of 

great interest to maximize the coding gain of 

the filter bank for a given class of input 

signals.  For the case of orthonormal filter 

banks, it is well known that the coding gain is 

the ratio of the arithmetic and geometric 

means of the subband variances [1].  It has 

recently been shown that this ratio is 
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maximized if the analysis filters are such that 

the decimated subbands satisfy the so called 

majorization and decorrelation properties [2].  

It has further been shown that these two 

properties can be satisfied by designing each 

analysis filter to be an optimum energy 

compaction filter [3]-[5] for an appropriate 

partial power spectrum defined from the 

input [2].  However the filters of the 

optimal compaction solution are ideal filters 

that can be realized in practice.    In this 

project we studied the practical tree structure 

implementations of M-channel optimal 

orthonormal filter banks.  We will also 

develop a very simple formula for the coding 

gain computation of tree structured filter 

banks.   
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Consider the M-channel filter bank in Fig. 

1.  We assume that the filter bank is 

orthonormal.  With σx
2 denoting the input 

variance and with σk
2 denoting the subband 

variances, the coding gain G is given by 
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In the above coding gain formula, optimal bit 

allocation is implicit.  For a given input 

power spectral density (p.s.d) )( ωj
xx eS , 

the variances σk
2 depend only on the analysis 

filters.  If the filters are optimized such that 

the coding gain is maximized, the filter bank is 

called optimal. 

 

It has been shown that an M-channel PU 

filter bank is optimal for a given input if and 

only if the decimated subbands satisfy the 

following two properties.  

 

1.  The subband processes xk(n) are  

   uncorrelated. 

2.  Suppose the subbands have been   

   numbered such that  
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        In this case, the set of power   

        spectra )}({ ωj
xx eS
kk

 is said to    

        satisfy the majorization property. 

 

For a fixed input power spectral density, 

a filter bank satisfies these two properties 

has been successfully constructed.   

 

The coding gain of a tree structured filter 

bank can be expressed in terms of the coding 

gains of the member filter banks.  For 

example, the coding gain G of the two-level 

tree structure (Fig. 2) is related to the coding 

gain, G0, of the first level FB and the coding 

gains, G1 and G2, of the second level FB by 
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Equivalently, we can express the coding gain 

Gk in dB and obtain 
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This result can be generalized to tree 

structured filter bank of more than two levels 

with member filter banks of more than two 

channels.  For example, suppose FB1 in the 
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second level has M channels and a further 

split is introduced to each subband. Let these 

M filter banks have coding gain G3,0, G3,1, … 

and G3,M-1. Then following a similar 

procedure we can show that the coding gain 

of the three-level tree structured filter bank is 

given by 

 

( ) (dB)
2

1
 

2

1 1

0
,3210   G

M
GGGG

M-

k
k∑

=

+++=

 

The generalization to the more general L 

levels can be carried out in a similar way. 

 

  

    

With the above result, we can build the tree 

structure by considering one level at a time 

until we reach the given complexity budget, 

similar to the greedy algorithm.  Using such 

a procedure the member filter bank in the tree 

structure is optimal for its input power 

spectral density.  However this, in general, 

does not give us the maximum coding gain for 

the given tree.  It is a sub-optimal design.   

But it is guaranteed that further splits always 

provide additional gain as each member filter 

bank is orthonormal and has coding gain 

greater or equal to one.  Although the overall 

tree structure may not be optimal, we can 

observe the following property for the 

terminal filter banks (member filter banks that 

do not have further split in their subbands): 

A terminal filter bank does not affect the 

coding gains of other filter banks in the 

previous levels.  So to maximize the coding 

gain of the tree structured filter bank, it is 

necessary that each terminal filter bank be 

optimal for its input power spectral density. 

 

However the class of tree structured 

orthonormal filter banks is only a subset of 

orthonormal filters even when M is a power 

of 2. Not every orthonormal filter bank has a 

tree structure implementation.    The use of   

tree structured orthonormal filter banks does  

 

 

 

not in general yield the maximum coding gain 

achievable by orthonormal filter banks.    
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Fig. 2. A two-level tree-structured fi lter bank.
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