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Abstract

In this paper, the general transformed
path (GTP) model with heteroscedastic errors
for modeling longitudinal data is proposed.
The families of modified power
transformations and modified exponential
transformations are used as examples to
illustrate our models. The corresponding
estimation method is also discussed.

Keywords. longitudinal data, genera path
model, transformation, heteroscedadticity,
modified power transformation, modified
exponential transformation, time-to-failure
distribution.
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In this paper, we are mainly concerned
with modeling longitudinal data. In this
section, we briefly introduce the genera path
(GP) model (Lu and Meeker, 1993) and the
transformation model (e.g., see Atkinson and
Cox, 1988 and Taylor, 1998) with

heteroscedastic  errors the

discussion.

to proceed

For modeling degradation data, Lu and
Meeker (1993) proposed the following GP
model: For each test unit / in a random
sample of size n from the population of all
units, assume that degradation measurements
are available for prespecified times f(1),
1(2), ..., {{m()), where ) is the time of the
Jth measurement or inspection on test unit /
for j =1, 2, ..., mi) and m(J) is the tota
number of inspections on test unit /. For each
test unit /, let x;; 3 O beits actua path for ¢ 3
0. Then the sample path yi 1), Vi), ---» Yitm)
of test unit / for t = 1), 12), ..., {n))) is
given by

Wyip) = MXip) + €.
= n{t(j); bo,by) + €.
j=12 ....,mMi;i=1,2, ..., n,where hisa
known strictly monotone transformation, e.g.,
the log transformation, ,4;'s are i.i.d. M(0,s°)
measurement errors with unknown variance
s? > 0, mis a known regression function
indexed by a fixed-effects parameter vector
by and a random-effects parameter vector b,
bi's are independent of g,4,'s and i.i.d. M0O,Sp)
with unknown covariance matrix S, and
nt.bo,b) = hx,) for t3 0. Let A' be the
inverse function of h and set (HY)®() =
THY W/ for k=1, 2, .... Then, for each (i,f)
pair, X1 = h l(n(t‘(j);bo,b,-)) is the conditional
median of i« given b;, but in general not
the conditional mean of y;«; given b;.  Since
al measurement erors are normally
distributed, the range of the transformation is
R, where R= (- ¥ ¥). In the literature, the
most commonly used transformation for



positive data with this property is the log
transformation. In such a situation, for each
(1)) par, Xq) = exp(n(t());bo,b)) is the
conditional median of y;4; given b;, but less
than exp(s/2)% ¢, the conditional mean of
Yiqp given b;.

For  modeling  independent  and
continuous data, the transformation model
with heteroscedastic errorsis as follows:

;1) = nix; b) + o(n(x; b),z; g>e;,
i1=1,2, ..., n where y; is the observation for
subject /, h is a known strictly monotone
transformation indexed by a transformation
parameter vector /, both x; and z are known
covariates of subject /, m is a known
regression function indexed by a regression
parameter vector b, g is a known positive
weight function indexed by a variance
parameter vector g and g's are /.i.d. MO,1)
standardized errors. Since al standardized
errors are normally distributed, the range of
the transformation is R. For each fixed /, let
H*(%/) be the inverse function of A%/) and

set (FH)Rv 1) = T*FY (v I for k=1, 2, ...

Then, for each i, i*(nfx;b);!) is the median
of y;, but in general not the mean of y;.

In the literature, the classical likelihood
inference in transformation models for
continuous data is usualy based on the key
assumption that transformed data are
normally distributed, e.g., the transformation
model with  heteroscedastic  errors.
However, this assumption would fail for the
case where the range of the transformation is
not R. As an example, the family of modified
power transformations (Box and Cox, 1964),

Nul)

= gy (1)U - DI + Lo( )hog(u) © of,

u > 0, is most commonly used to transform
positive data, where 14/) = 1if / T Sand O
if / T RSfor any subset Sof R. By
applying a modified power transformation to
positive data, the range of the transformation
Is not R except for the log transformation.
As another example, the family of modified
exponential transformations,

Hul)

= 1rgoy (! VEexp(/ 1)- 1111 + L (/ )ou® o),
ul R, can be used to transform real-valued
data. By applying a modified exponential

transformation to real-valued data, the range
of the transformation is not R except for the
identity transformation. Furthermore, when
the range of the transformation is not R, the
standardized errors in the transformation
model with heteroscedastic errors have
possibly different supports and thus are not
necessarily identically distributed. One way
to tackle this problem is only to assume that
all standardized errors in the transformation
model with heteroscedastic errors have mean
0 and variance 1, but not necessarily
normally and/or identically distributed.
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In this section, we propose the GTP
model with heteroscedastic errors  for
modeling longitudinal data as follows. For
each subject / in a random sample of size n
from the population of al possible subjects,
assume that repeated measurements are
available for prespecified times (/,1),
11,2), ..., {i,n(i)), where (i) is the time of
the jth measurement of subject / for j = 1,
2, ..., M) and n(Ji) is the total number of
repeated measurements of subject /. For each
subject /, let { x; t3 O} beits actual path for
t3 0. Then the sample path Vi qi1), Viti2), ---
Yitti,m(iy) of SUbjeCt i for t = l(/,l), l(/,Z), ceey
1(/,m(i)) is given by

MYidipil o i)

= WX qipil o] ) + €40 )*

= n{t(/.f); bo,bi)

+ 9(m(t(i.f); bo, b)), 1i.j); &.9) 8, i)
j=12, ....,mMi;i=1,2, ..., n,where hisa
known strictly monotone transformation
indexed by a fixed-effects parameter vector
/o and a random-effects parameter vector /|,
I/s are ii.d with mean 0 and unknown
covariance matrix S, €,4,*'s are independent
errors with mean 0, mis a known positive
regression function indexed by a fixed-effects
parameter vector by and a random-effects
parameter vector b;, bi's are i.i.d. with mean O
and unknown covariance matrix S, ntt, bo,b;)
= WXl o, ;) for t3 0, gis aknown positive
weight function indexed by a fixed-effects
parameter vector g and a random-effects
parameter vector g, g's are /.i.d. with mean O



and unknown covariance matrix S, and
€.4i)'S are independent standardized errors
with mean 0 and variance 1, and independent
of b/s, //sand g's.

For each fixed (/ o,/ ) pair, let H*(%/ o,/ )
be the inverse function of A(%/o,/;) and set
(HYBWil o1 ) = THY I o )TV for k = 1,
2, .... Notethat, for each (/,j) pair, both the
conditional mean and median of y;«;, given
b;, I jand g arein general unavailable.

As an example,

Hul ol )= ', u>0,
n{t,bo, b)) = (bor+bin) + (boz+bi)%, t3 0O,

and
g(n(l;bolb/)lryg)lg)

= exp{ g+ gre*og[ 1t bo, )] +a} , 12 O,
=1, 2, ..., n can be used for modeling
positive longitudinal data, where by =
(bor,b02) and @ = (G1,32)- As another
example,

Hulol)=d"-°"1 ul R
n{t, bo,b;) = (bor+biz) + (boz+bi2)%t, 2 0,

and
g(n(l;bolb/)lryg)lg)

= exp[ g1+ gAML bo, b))+ g], t3 O,
i =1 2, ..., n can be used for modeling

real-valued longitudinal data, where by =
(Bo1,b02) and gy = (Gh1,G2)-

In the following, we propose an
estimation method for al parameters and a
time-to-failure distribution in the GTP model
with heteroscedastic errors as follows:

To smplify the notation, for each (/,))
pairand k=1, 2, ..., set b= (bo",b1",....b.")",
I =1 d) 9= (@' a”..g) g=
"IN mb) = ntei )bo.b), h(l) =
hYigipid ol i), 9,9 = om(b),t(i.));3.9),
Hin(g) = hy(l) - my(b.l), Hix(q) = Hip(q) -
9/ (0.9, Hi(@) = (Hin(a).Hi@)", H(ul 0,1 )
= TNulol ) §uLi)p.g)

Tou i f); .9)1 1L h(ul ol ) =
Tl o )T, h® Wl ol ) =
Th (il o )N, (vl 0,1 1) =

A (vl o )il ol ), WOVl 00 ) = (vl o] )
and (vl o,/ ) = Tho(v/ o,/ )TV

By the method of fixed-sample optimal
estimating functions (Heyde, 1988), we may
wish to utilize the root g* of the fixed-sample
optimal estimating equation §@)|s=¢+ = O t0

estimate g, where

9

= St "Si. " H- TH; () g/ 1.g)
Co‘il(H/j(qNbi./ G Hi(Q).

Since both  H-H;'(9)Mglbi! ,g) and
CoHii(q)|bi,! i,g) are unavailable for each
(i) par in the GTP mode with
heteroscedastic errors, both §q) and ¢+ are
unavailable.

By the method of generalized estimating
equations (GEE) (Liang and Zeger, 1986), we
may wish to utilize the root g** of the
generalized estimating equation G**(q)|g=¢
= 0 to estimate g instead of the unavailable
estimator ¢*, where

G*(q)

= Si=t"S™ B TH; (@) Maibil » @)W (@)
H/j(q)l
with working covariance matrices Wj(q) =
diag{ g;”(b,9.,2g;"(b,9}. Note that if all
standardized errors have the same first four
moments as those of the standard normal
distribution, then W(q) = CoH;{(q)|b:! i,g)
and thus both ¢¢ and g** are the same.
Since K- ﬂH,-,-T(q)/ﬂmb,-,/,-,g) is unavailable
for each (7)) pair, both G**(q) and ¢** are
in general unavailable.

For each (/,j) pair, by deleting all of the
terms involving unmodeled  Heq,)°),
E(e;,t(,-,,)“), ..., we may approximate both
ETh (1)1 |bi,] 7,9) and
E(Hyu(@Ahi(! )91 16l @) by the Taylor
approximation, respectively. Then, by the
method of unbiased estimating functions (e.g.,
see Godambe, 1991), we may utilize the root
q* of the unbiased estimating equation
G(Q)l=r = O to estimate q instead of the
generaly unavailable estimator ¢**, where

G(G) = Si=1"S=1™" Dy () Wi (@) Hia),
where Dj(q) is the Taylor approximation of
H- TH; (9)/Mdlbi! 1,g).

One way to obtain the estimator g™ is to
utilize the following iteration method: We
first choose agood initial value ¢ and then
iterate the following equations

q'\(k+1) - q/\(k) + Jl((f\(lo)G(q'\(kﬂ)),
k=0,1, 2, ..., until ¢*®s converge to ¢",
where

JNQ) = Si-1"S=1"" Dy (q) Wi (q) Di( ).



Finally, the remaining parameters S,, S
and S, could be estimated by S =
(Sa"bAbAIn, S™ = (Sl M A, S =
(S=1"g"g"")In, respectively.

For each subject /, the failure time T[/]
is defined as the time when the actual path of
subject / crosses the critical level D for some
known D > 0. Since we only observe the
sample paths of subjects, we never observe
the actua failure times. For each subject /,
we may utilize the root T7[/]* of equation
HY(ntt bo™ b/);! M Plemas = D to predict
the unobserved failure time 7] 1].

In some longitudinal studies, we are
interested in estimating the time-to-failure
distribution Fp for the population of al
possible subjects. Since the failure times
T/]'s ae iid Fp, we may utlize the
estimator Fy™ to estimate the time-to-failure
distribution Fp, where

FoN() = [Sist v g(TIANIN, ET R,

NS s

Sometimes, it is inappropriate to assume
that the GP model holds for modeling
longitudinal data. For example, in practice
the transformation A in the GP modé is in
general  unknown. Moreover, different
subjects may need different transformations
for modeling longitudinal data. Thus, it is
better to assume that the transformation A in
the GP model depend on fixed-effects and/or
random-effects parameters for modeling
longitudinal data. For some longitudinal
data, we may need not only a transformation
but also a weight function in order
approximately to achieve homogeneity. This
iIs particularly true when the variance
depends on time. Hence, a weight function
depending on time t may be needed for
transformed longitudinal data. Therefore, it
is better to utilize the GTP modd with
heteroscedastic  errors  for ~ modeling
longitudinal datainstead of the GP model.
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