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一、中文摘要

在這篇文章中，我們提出一般變換路
徑模型來建構長期追蹤資料。我們用修正
冪變換族和修正指數變族換當例子來闡明
我們的模型。最後，我們討論相對應的估
計方法。

關鍵詞：長期追蹤資料、一般路徑模型、
變換、不等變異數、修正冪變換、修正指
數變換、故障前時間分布。

Abstract

In this paper, the general transformed
path (GTP) model with heteroscedastic errors 
for modeling longitudinal data is proposed. 
The families of modified power 
transformations and modified exponential 
transformations are used as examples to 
illustrate our models.  The corresponding 
estimation method is also discussed.

Keywords: longitudinal data, general path 
model, transformation, heteroscedasticity,
modified power transformation, modified 
exponential transformation, time-to-failure 
distribution.

二、緣由與目的

In this paper, we are mainly concerned 
with modeling longitudinal data. In this
section, we briefly introduce the general path 
(GP) model (Lu and Meeker, 1993) and the 
transformation model (e.g., see Atkinson and 
Cox, 1988 and Taylor, 1998) with

heteroscedastic errors to proceed the
discussion.

     For modeling degradation data, Lu and 
Meeker (1993) proposed the following GP 
model: For each test unit i in a random 
sample of size n from the population of all 
units, assume that degradation measurements
are available for prespecified times t(1),
t(2), … , t(m(i)), where t(j) is the time of the 
jth measurement or inspection on test unit i
for j = 1, 2, … , m(i) and m(i) is the total 
number of inspections on test unit i. For each 
test unit i, let xi,t ≥ 0 be its actual path for t ≥
0. Then the sample path yi,t(1), yi,t(2), … , yi,t(m(i))
of test unit i for t = t(1), t(2), … , t(m(i)) is 
given by

h(yi,t(j)) = h(xi,t(j)) + εi,t(j)

= µ(t(j);β0,βi) + εi,t(j),
j = 1, 2, … , m(i); i = 1, 2, … , n, where h is a
known strictly monotone transformation, e.g., 
the log transformation, εi,t(j)'s are i.i.d. N(0,σ2) 
measurement errors with unknown variance 
σ2 > 0, µ is a known regression function 
indexed by a fixed-effects parameter vector
β0 and a random-effects parameter vector βi, 
βi's are independent of εi,t(j)'s and i.i.d. N(0,Σβ) 
with unknown covariance matrix Σβ, and 
µ(t;β0,βi) = h(xi,t) for t ≥ 0. Let h-1 be the 
inverse function of h and set (h-1)(k)(v) =
∂kh-1(v)/∂vk for k = 1, 2, … . Then, for each (i,j) 
pair, xi,t(j) = h-1(µ(t(j);β0,βi)) is the conditional 
median of yi,t(j) given βi, but in general not 
the conditional mean of yi,t(j) given βi.  Since 
all measurement errors are normally 
distributed, the range of the transformation is
R, where R = (−∞,∞).  In the literature, the 
most commonly used transformation for 
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positive data with this property is the log 
transformation. In such a situation, for each 
(i,j) pair, xi,t(j) = exp(µ(t(j);β0,βi)) is the 
conditional median of yi,t(j) given βi, but less 
than exp(σ2/2)⋅xi,t(j), the conditional mean of 
yi,t(j) given βi.

For modeling independent and 
continuous data, the transformation model 
with heteroscedastic errors is as follows:

h(yi;λ) = µ(xi;β) + g(µ(xi;β),zi;γ)⋅ε i,
i = 1, 2, … , n, where yi is the observation for 
subject i, h is a known strictly monotone 
transformation indexed by a transformation
parameter vector λ, both xi and zi are known 
covariates of subject i, µ is a known 
regression function indexed by a regression
parameter vector β, g is a known positive 
weight function indexed by a variance 
parameter vector γ, and εi's are i.i.d. N(0,1) 
standardized errors. Since all standardized 
errors are normally distributed, the range of 
the transformation is R. For each fixed λ, let
h-1(⋅;λ) be the inverse function of h(⋅;λ) and 
set (h-1)(k)(v;λ) = ∂kh-1(v;λ)/∂vk for k = 1, 2, … .  
Then, for each i, h-1(µ(xi;β);λ) is the median 
of yi, but in general not the mean of yi.

In the literature, the classical likelihood 
inference in transformation models for
continuous data is usually based on the key 
assumption that transformed data are 
normally distributed, e.g., the transformation 
model with heteroscedastic errors.  
However, this assumption would fail for the 
case where the range of the transformation is 
not R. As an example, the family of modified 
power transformations (Box and Cox, 1964),

h(u;λ)
= 1R\{0}(λ)⋅(uλ−1)/λ + 1{0}(λ)⋅log(u) ≡ u(λ),

u > 0, is most commonly used to transform 
positive data, where 1S(λ) = 1 if λ ∈ S and 0 
if λ ∈ R\S for any subset S of R. By 
applying a modified power transformation to 
positive data, the range of the transformation
is not R except for the log transformation.  
As another example, the family of modified 
exponential transformations,

h(u;λ)
= 1R\{0}(λ)⋅[exp(λ⋅u)−1]/λ + 1{0}(λ)⋅u ≡ u[λ],

u ∈ R, can be used to transform real-valued 
data. By applying a modified exponential 

transformation to real-valued data, the range 
of the transformation is not R except for the 
identity transformation.  Furthermore, when 
the range of the transformation is not R, the
standardized errors in the transformation 
model with heteroscedastic errors have 
possibly different supports and thus are not
necessarily identically distributed. One way 
to tackle this problem is only to assume that 
all standardized errors in the transformation 
model with heteroscedastic errors have mean
0 and variance 1, but not necessarily 
normally and/or identically distributed.

三、結果與討論

In this section, we propose the GTP 
model with heteroscedastic errors for 
modeling longitudinal data as follows: For 
each subject i in a random sample of size n
from the population of all possible subjects, 
assume that repeated measurements are 
available for prespecified times t(i,1),
t(i,2), … , t(i,m(i)), where t(i,j) is the time of 
the jth measurement of subject i for j = 1,
2, … , m(i) and m(i) is the total number of 
repeated measurements of subject i. For each 
subject i, let {xi,t: t ≥ 0} be its actual path for 
t ≥ 0. Then the sample path yi,t(i,1), yi,t(i,2), … , 
yi,t(i,m(i)) of subject i for t = t(i,1), t(i,2), … ,
t(i,m(i)) is given by

h(yi,t(i,j);λ0,λi)
= h(xi,t(i,j);λ0,λi) + εi,t(i,j)*
= µ(t(i,j);β0,βi)

+ g(µ(t(i,j);β0,βi),t(i,j);γ0,γi)⋅εi,t(i,j),
j = 1, 2, … , m(i); i = 1, 2, … , n, where h is a 
known strictly monotone transformation 
indexed by a fixed-effects parameter vector
λ0 and a random-effects parameter vector λi, 
λi's are i.i.d. with mean 0 and unknown 
covariance matrix Σλ, εi,t(j)*'s are independent
errors with mean 0, µ is a known positive 
regression function indexed by a fixed-effects 
parameter vector β0 and a random-effects
parameter vector βi, βi's are i.i.d. with mean 0 
and unknown covariance matrix Σβ, µ(t;β0,βi)
= h(xi,t;λ0,λi) for t ≥ 0, g is a known positive 
weight function indexed by a fixed-effects 
parameter vector γ0 and a random-effects
parameter vector γi, γi's are i.i.d. with mean 0
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and unknown covariance matrix Σγ, and
εi,t(i,j)'s are independent standardized errors 
with mean 0 and variance 1, and independent 
of βi's, λi's and γi's.

For each fixed (λ0,λi) pair, let h-1(⋅;λ0,λi) 
be the inverse function of h(⋅;λ0,λi) and set
(h-1)(k)(v;λ0,λi) = ∂kh-1(v;λ0,λi)/∂vk for k = 1,
2, … .  Note that, for each (i,j) pair, both the 
conditional mean and median of yi,t(i,j) given 
βi, λi and γi are in general unavailable.

As an example,
h(u;λ 0,λi) = u(λ_0+λ_i), u > 0,

µ(t;β0,βi) = (β01+βi1) + (β02+βi2)⋅t, t ≥ 0,
and

g(µ(t;β0,βi),t;γ0,γi)
= exp{γ01+γ02⋅log[µ(t;β0,βi)]+γi}, t ≥ 0,

i = 1, 2, … , n, can be used for modeling 
positive longitudinal data, where β0 = 
(β01,β02) and γ0 = (γ01,γ02).  As another 
example,

h(u;λ0,λi) = u[λ_0+λ_i], u ∈ R,
µ(t;β0,βi) = (β01+βi1) + (β02+βi2)⋅t, t ≥ 0,

and
g(µ(t;β0,βi),t;γ0,γi)

= exp[γ01+γ02⋅|µ(t;β0,βi)|+γi], t ≥ 0,
i = 1, 2, … , n, can be used for modeling 
real-valued longitudinal data, where β0 = 
(β01,β02) and γ0 = (γ01,γ02).

In the following, we propose an 
estimation method for all parameters and a 
time-to-failure distribution in the GTP model 
with heteroscedastic errors as follows:

To simplify the notation, for each (i,j) 
pair and k = 1, 2, … , set β = (β0

T,β1
T,… ,βn

T)T,
λ = (λ0

T,λ1
T,… ,λn

T)T, γ = (γ0
T,γ1

T,… ,γn
T)T, θ =

(βT,λT,γT)T, µij(β) = µ(t(i,j);β0,βi), hij(λ) =
h(yi,t(i,j);λ0,λi), gij(β,γ) = g(µij(β),t(i,j);γ0,γi),
Hij1(θ) = hij(λ) − µij(β,λ), Hij2(θ) = Hij1

2(θ) −
gij

2(β,γ), Hij(θ) = (Hij1(θ),Hij2(θ))T, h(k)(u;λ0,λi)
= ∂kh(u;λ0,λi)/∂uk, g(k)(u,t(i,j);γ0,γi) =
∂kg(u,t(i,j);γ0,γi)/∂uk, hλ(u;λ0,λi) =
∂h(u;λ0,λi)/∂λ, hλ

(k)(u;λ0,λi) =
∂khλ(u;λ0,λi)/∂uk, h0(v;λ0,λi) =
hλ(h-1(v;λ0,λi);λ0,λi), h0

(0)(v;λ0,λi) = h0(v;λ0,λi) 
and h0

(k)(v;λ0,λi) = ∂kh0(v;λ0,λi)/∂vk.
By the method of fixed-sample optimal 

estimating functions (Heyde, 1988), we may
wish to utilize the root θ* of the fixed-sample 
optimal estimating equation S(θ)|θ=θ* = 0 to

estimate θ, where
S(θ)

= Σi=1
nΣj=1

m(i)E(−∂Hij
T(θ)/∂θ|βi,λi,γi)

             Cov-1(Hij(θ)|βi,λi,γi)Hij(θ).
Since both E(−∂Hij

T(θ)/∂θ|βi,λi,γi) and 
Cov(Hij(θ)|βi,λi,γi) are unavailable for each 
(i,j) pair in the GTP model with
heteroscedastic errors, both S(θ) and θ* are 
unavailable.

By the method of generalized estimating 
equations (GEE) (Liang and Zeger, 1986), we
may wish to utilize the root θ** of the 
generalized estimating equation G**(θ)|θ=θ**

= 0 to estimate θ instead of the unavailable 
estimator θ*, where

G**(θ)
= Σi=1

nΣj=1
m(i)E(−∂Hij

T(θ)/∂θ|βi,λi,γi)Wij
-1(θ)

Hij(θ),
with working covariance matrices Wij(θ) =
diag{gij

2(β,γ),2⋅gij
4(β,γ)}. Note that if all 

standardized errors have the same first four 
moments as those of the standard normal 
distribution, then Wij(θ) = Cov(Hij(θ)|βi,λi,γi)
and thus both θ* and θ** are the same.  
Since E(−∂Hij

T(θ)/∂θ|βi,λi,γi) is unavailable 
for each (i,j) pair,  both G**(θ) and θ** are 
in general unavailable.

For each (i,j) pair, by deleting all of the 
terms involving unmodeled E(εi,t(i,j)

3),
E(εi,t(i,j)

4), … , we may approximate both 
E(∂hij(λ)/∂λ|βi,λi,γi) and
E(Hij1(θ)⋅∂hij(λ)/∂λ|βi,λi,γi) by the Taylor 
approximation, respectively.  Then, by the 
method of unbiased estimating functions (e.g., 
see Godambe, 1991), we may utilize the root 
θ^ of the unbiased estimating equation
G(θ)|θ=θ^ = 0 to estimate θ instead of the 
generally unavailable estimator θ**, where

G(θ) = Σi=1
nΣj=1

m(i)Dij
T(θ)Wij

-1(θ)Hij(θ),
where Dij(θ) is the Taylor approximation of 
E(−∂Hij

T(θ)/∂θ|βi,λi,γi).
One way to obtain the estimator θ^ is to 

utilize the following iteration method: We 
first choose a good initial value θ^(0) and then
iterate the following equations

θ^(k+1) = θ^(k) + J-1(θ^(k))G(θ^(k+1)),
k = 0, 1, 2, … , until θ^(k)'s converge to θ^, 
where

J-1(θ) = Σi=1
nΣj=1

m(i)Dij
T(θ)Wij

-1(θ)Dij(θ).
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Finally, the remaining parameters Σβ, Σλ

and Σγ could be estimated by Σβ^ =
(Σi=1

nβi^βi^T)/n, Σλ^ = (Σi=1
nλi^λi^T)/n, Σγ^ =

(Σi=1
nγi^γi^T)/n, respectively.
For each subject i, the failure time T[i]

is defined as the time when the actual path of 
subject i crosses the critical level D for some 
known D > 0.  Since we only observe the 
sample paths of subjects, we never observe 
the actual failure times. For each subject i, 
we may utilize the root T[i]^ of equation
h-1(µ(t;β0^,βi^);λ0^,λi^)|t=T[i]^ = D to predict 
the unobserved failure time T[i].

In some longitudinal studies, we are 
interested in estimating the time-to-failure
distribution FD for the population of all 
possible subjects. Since the failure times 
T[i]'s are i.i.d. FD, we may utilize the 
estimator FD^ to estimate the time-to-failure
distribution FD, where

FD^(t) = [Σi=1
n1(−∞,t](T[i]^)]/n, t ∈ R.

四、計畫成果自評

Sometimes, it is inappropriate to assume 
that the GP model holds for modeling
longitudinal data. For example, in practice 
the transformation h in the GP model is in 
general unknown. Moreover, different 
subjects may need different transformations 
for modeling longitudinal data. Thus, it is 
better to assume that the transformation h in 
the GP model depend on fixed-effects and/or
random-effects parameters for modeling
longitudinal data.  For some longitudinal 
data, we may need not only a transformation 
but also a weight function in order 
approximately to achieve homogeneity. This 
is particularly true when the variance 
depends on time.  Hence, a weight function 
depending on time t may be needed for 
transformed longitudinal data.  Therefore, it 
is better to utilize the GTP model with
heteroscedastic errors for modeling 
longitudinal data instead of the GP model.
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