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Abstract—In this brief, shallow-trench-isolation (STI) stress
buffer techniques, including sidewall stress buffer and channel
surface buffer layers, are developed to reduce the impact of
compressive STI stress on the mobility of advanced n-type MOS
(NMOS) devices. Our investigation shows that a 7% driving
current gain at an NMOS device has been achieved, whereas no
degradation at a p-type MOS (PMOS) device was observed. The
same junction leakage at both the NMOS and PMOS devices
was maintained. A stress relaxation model with simulation is thus
proposed to account for the enhanced transport characteristics.

Index Terms—Channel surface buffer layer, fabrication, mea-
surement, mobility, MOS devices, shallow-trench isolation (STI),
sidewall stress buffer layer, simulation, transport characteristics.

I. INTRODUCTION

MOBILITY enhancement techniques have become perva-
sive in advanced CMOS technologies. Devices incor-

porated with either uniaxial strain or biaxial strain approaches
were widely studied and well modeled [1]–[4]. Among them,
process-induced uniaxial strain approaches are recognized to
be better than biaxial strain approaches since the uniaxial
strain causes a larger band-structure modification and results
in smaller carrier-effective mass and/or scattering rates. These
uniaxial strain approaches include applying stressors from
various regions, such as the shallow-trench isolation (STI),
the embedded silicon–germanium (SiGe) source/drain (S/D),
or the contact etch stop layer. In general, the impacts of
these 3-D stress effects on performance of CMOS devices
have different prefer channel directions and polarities (tensile
or compressive) for n-type MOS (NMOS) and p-type MOS
(PMOS) devices. Selective processes are often necessary to

Manuscript received July 17, 2007; revised November 28, 2007. This
work was supported in part by the Taiwan National Science Council (NSC)
under Contract NSC-96-2221-E-009-210 and Contract NSC-96-2752-E-009-
003-PAE and in part by the Taiwan Semiconductor Manufacturing Company,
Hsinchu, Taiwan, R.O.C., under a 2006–2008 grant. The review of this brief
was arranged by Editor H. S. Momose.

Y. Li is with the Department of Communication Engineering, National
Chiao Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail: ymli@faculty.
nctu.edu.tw).

H.-M. Chen, J.-R. Hwang, and F.-L. Yang are with the Taiwan Semiconduc-
tor Manufacturing Company, Ltd., Hsinchu 300, Taiwan, R.O.C.

S.-M. Yu is with the Department of Computer Science, National Chiao Tung
University, Hsinchu 300, Taiwan, R.O.C.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TED.2008.916708

Fig. 1. Schematics of amorphous-silicon buffer layers for STI stress reduc-
tion. (a) STI sidewall buffer layer. (b) OD surface buffer layer.

Fig. 2. Channel stress simulation with compressive STI stress. (a) Without
STI stress buffer layer. (b) With STI sidewall stress buffer layer. We notice that
the peak stresses in the two cases are −2.97 and −1.45 GPa.

address the contradictory requirements of NMOS and PMOS
stressors. For instance, compressive STI stress usually favors
PMOS mobility, but not NMOS [5]. Thus, a selective modi-
fication of STI stress effect is important for advanced NMOS
performance.

In this brief, we develop novel STI stress buffer layers to
relax the mediation of an STI stress from an STI edge to the
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Fig. 3. Vt roll-off characteristics and performance enhancement with an STI sidewall buffer layer for the 1-µm-wide MOS devices. (a) NMOS Vt roll-off.
(b) NMOS Id-sat with 3% enhancement. (c) PMOS Vt roll-off. (d) PMOS Id-sat without degradation.

channel region. Including sidewall stress buffer and channel
surface, buffer layers are fabricated to suppress the effect of
compressive STI stress on the mobility of advanced NMOS
devices. Performance gain and junction leakage for both NMOS
and PMOS devices are further reported. Our investigation
shows that a 7% driving current gain at a 1-µm-wide NMOS
device has been achieved, whereas no degradation at a PMOS
device due to SiGe stress was observed. The same junction
leakage at both the NMOS and PMOS devices was maintained.
A stress relaxation model with simulation is thus proposed to
account for the enhanced transport characteristics. We notice
that this STI stress relaxation technique will benefit perfor-
mance improvement of sub-45-nm CMOS technologies.

This brief is organized as follows. Section II introduces
the device fabrication. Section III describes the results illus-
trating the dependence of the transport characteristics on the
explored stress for different CMOS devices. Section IV draws
conclusions.

II. FABRICATION AND DEVICE STRUCTURE

The explored CMOS devices with the gate length down to
50 nm are manufactured with a regular STI process. In order
to reduce the impact of STI compressive stress, experimental
devices with two kinds of STI stress buffer layers, namely,
1) STI sidewall buffer layer and 2) outside diameter (OD)
surface buffer layer, are tested and compared with the controlled
devices. Fig. 1(a) shows the process steps of the STI sidewall
buffer layer. Nitrogen ions are implanted into the sidewall of the

STI trench and generate a layer of plastic amorphous silicon.
After STI trench refilling and chemical–mechanical polishing,
the wafer is then annealed to have this amorphous-silicon layer
regrown. Since this amorphous buffer layer is plastic during the
STI process, the mediation of STI compressive stress to the
channel region is reduced [6], [7]. Simulations of STI stress
transferred to the channel region are performed [8], [9] and
compared, as shown in Fig. 2(a), without the STI sidewall
stress buffer layer, and in Fig. 2(b), with the STI sidewall stress
buffer layer. It is clearly shown that STI stress, which extends
from STI to the channel region, as shown in Fig. 2(a), is not
transferred to the channel region, as shown in Fig. 2(b). We
notice that the peak stresses in the two cases are −2.97 and
−1.45 GPa, respectively, as shown in Fig. 2.

Fig. 1(b) shows the process steps of the OD surface buffer
layer. A standard STI process is deployed until the SiN hard
mask is removed. Silicon ions are then implanted into the top
surface of the OD region to create an amorphous-silicon layer.
Similar to the STI sidewall stress buffer, this plastic OD layer
is then annealed and regrown. Compressive STI stress is then
relaxed in this top-surface channel layer.

III. RESULTS AND DISCUSSION

Fig. 3(a) and (b) shows the threshold voltage (Vt) roll-off
characteristics of NMOS devices and the performance enhance-
ment of the ON- and OFF-state current (ION–IOFF) with an
STI sidewall buffer layer for the devices’ channel length down
to 50 nm, with a 1.05-V bias. In comparison with the control
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Fig. 4. Vt roll-off characteristics and performance enhancement with an OD surface buffer layer for the 1-µm-wide MOS devices. (a) NMOS Vt roll-off.
(b) NMOS Id-sat with 7% enhancement. (c) PMOS Vt roll-off. (d) PMOS Id-sat without degradation.

TABLE I
SUMMARY OF THE IMPACT OF THE 3-D STRAIN EFFECTS

ON CMOS PERFORMANCE

devices, NMOS devices with the STI sidewall buffer layer have
a similar Vt roll-off and create a 3% gain of saturated drain
current (Id-sat) driving current. Fig. 3(c) and (d) shows the Vt

roll-off characteristics of an PMOS device and the performance
enhancement of ION–IOFF with an STI sidewall buffer layer.
Compared with the control devices, PMOS devices with the
STI sidewall buffer layer have a similar Vt roll-off and create
no degradation on Id-sat driving current. Fig. 4(a) and (b)
shows the Vt roll-off characteristics of an NMOS device and the
performance enhancement of ION–IOFF with an OD surface
buffer layer. In comparison with the control devices, NMOS
devices with the OD surface buffer layer have a similar Vt roll-
off and create a 7% Id-sat driving current gain. Fig. 4(c) and
(d) shows the Vt roll-off characteristics of an PMOS device
and the performance enhancement of ION–IOFF with an OD
surface buffer layer. Compared with the control devices, PMOS

Fig. 5. Comparison of NMOS junction leakage. (a) No STI stress buffer layer.
(b) STI sidewall buffer layer. (c) OD surface buffer layer.

devices with the OD surface buffer layer have a similar Vt roll-
off and create no degradation on Id-sat driving current. The
PMOS devices adopt the recess silicon process for SiGe on
S/D, the SiGe on S/D can provide large compressive stress in
the PMOS channel region, and the recess process will reduce
buffer layer effect. Therefore, the approach using the stress
buffer layer does not affect PMOS device performance. It is
noticeable that the OD surface buffer layer, due to its higher
efficiency on the relaxation of STI compressive stress along
the surface channel, results in a better NMOS driving current
gain than that of the STI sidewall buffer layer. Overall, these
performance gains of the NMOS devices are consistent with
the prediction of strain effects on the enhanced performance
of NMOS devices with decreasing compressive stress along
both the x- and y-directions, as summarized in Table I. For
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the driving current of PMOS devices, the impacts of de-
creasing compressive stress along the x- and y-directions are
cancelled by each other since their responses have reversed
polarities.

The qualities of amorphous buffer layers after annealing are
evaluated by their impacts on junction leakages. As shown in
Fig. 5, the junction leakage of NMOS devices with the STI
sidewall buffer layer is increased by ∼67% over the controlled
devices without the STI stress buffer layer. On the other hand,
NMOS devices with the OD surface buffer layer have no
junction leakage degradation since this layer is not overlapped
with the junction region.

IV. CONCLUSION

In this brief, we have experimentally achieved a 7% NMOS
Id-sat driving current gain without junction leakage degradation
by using an OD surface buffer layer to relax compressive STI
stress. In addition, the performance of PMOS devices is not
degraded. This technique can be used to reduce the impact of
compressive STI process on advanced CMOS devices without
additional masks. This STI stress relaxation technique will be
useful for the performance improvement of sub-45-nm CMOS
devices.
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