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��Abstract 

 

    We present asymptotic distributions of 

the Mallow's type bounded-influence 

regression quantile for the linear regression 

model and also the simultaneous equations 

model. Monte Carlo simulation comparing 

means squared errors shows that the 

bounded-influence one is more efficient than 

the unbounded-influence one (Koenker and 

Bassett (1978)) when gross errors occur in 

the independent-variables-space. 
"

	�Introduction�

�

Consider the following linear regression 

model, 
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where xi is the observation of p independent 

variables including term of intercept, β is 

vector of regression parameters and ε '

i
s are 

i.i.d. disturbance variables with distribution 

function F. The conditional quantile of 

variable y is ( )αβ Fx 1' −+ , 0<α <1 which can 

be expressed as ( )αβx '  with 
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1 αβαβ F  and where 0 is 

( )1−p -vector of zeros. As an extension of the 

sample quantile to the linear model, Koenker 

and Bassett (1978) introduced the regression 

quantile, as an estimator of ( )αβ , as the 

solution for the following minimization 

problem 
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where ( ) ( )uuu ψρ αα = , ( ) ( )0<−= uIu αψ α  

with I(A) the indicator function of the event A. 

This has since been widely applied to 

construct robust estimators; see, for example, 

Ruppert, and Carroll (1980), 
'

akovcJure
∨

 

(1984), Koenker and Portnoy (1987) and 

Chen and Portnoy (1996). As obtained from 

Koenker and Bassett (1978) and Ruppert and 

Carroll (1980), the regression quantile ( )αβ
∧

 

has asymptotic representation with the 

following influence function, 

 

( )( ) ( )εα ψαxFfQ 111 −−−  

 

where Q is a positive definite matrix which 

will be defined later and f and F 1−  represent 

the p.d.f. and inverse distribution function of 

the error random variable. Note that the 

function ψ  limits the effect of the residual 
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and thus the influence function is bounded in 

the dependent-variable-space; however, it is 

not bounded in the 

independent-variable-space. Therefore, one 

can conjecture that in small samples the 

regression quantile will be able to handle 

outliers in the y space but not in the X space. 

For general discussion of influence analysis, 

see Cook and Wesley (1982). 

In literature, considerarion has been 

given to the development of estimators of 

regression parameters β  that limit the 

effects of the error variable and the 

independent variables. In light of the fact that 

bounded-influence type regression quantile 

has not been studied, our aim is to study the 

Mallows type regression quantile for the 

linear regression model and the simultaneous 

equations model. 

 

��Result and discussion 

 

Let wi
, i=1, …, n, be real numbers. For 

0< α <1, the Mallow's type 

bounded-inference regression quantile, 

denoted by ( )αβ
BI

∧
, is defined as the solution 

for the minimization problem 
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Theorem 1. 
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 are pp ×  positive definite matrices. 

Consider the simultaneous equations 

model 

 

λββ ++=
2111 ZYy . 

 

Let the reduced from of the 

simultaneous equations model be 

 

VZY +∏=  

 

where ( )YyY
1

,= , and ( )ZZZ
21

,=  and rows 

of V are i.i.d. random vectors. The first stage 

is to estimate ∏2
 by an initial estimator 

∏
∧

2

 for the reduced model (3.2). Define 
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21
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Let wi , i = 1, …, n, be real numbers. For 

0<α <1, we define the bounded-influence two 

stage regression quantile as an alternative 

estimator of ( )αβ  as 
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where d i
'  is i-th row of matrix D

n
. 

The following assumptions are needed 
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( )1
1
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−  where Q, Qw

 and 

Qww
 are all positive definite matrices.  

Denote v ji  as ( )ij -th element of matrix V 

where i = 1, …, n and j = 1, …, p
0
. 

 

Theorem 2. 

 

( ) ( ) ( )( )
( )( )

( ) ( ))1

(

0
0

122

211

'

1

1

1

1 211121

2

12

1

1

~

11

pww

i

n

i
i

i

w
BI

nQ
I

Fvdw

nFfn

pp

p

I

+−

−<−

=





 −

∧∧

×

∧

∏∏∑ 







∏

∑

∑

−

−

=

− −−−

β

β

αα

ααβα

 

 

where we denote by 











= ∏








∏∑

××
2

'

00 12

1

2

12

1

pp

p

pp

p I
Q

I
ww

. 

 

��Selected References 

�

Amemyia, T. (1982), Two Stage Least 

Deviations Estimators, Econometrica, 50, 

689-711. 

 

Chen, L.-A. and Portnoy, S. (1996), 

Regression Quantiles and Trimmed Least 

Squares estimators for Structural Equations 

Models, Communications in Statistics - 

Theory and Methods, 25, 1005-1032. 

 

Koenker, R. W. and Portnoy, S. (1987), L 

Estimation for Linear Model, Journal of 

American Statistical Association 82, 851-857.�


