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Abstract 

 

    Many researches on VOD servers focus 

only on the storage subsystems, since it is 

believed that the disk bandwidth is the 

bottleneck of a VOD server. In fact, one of 

the bottlenecks of a VOD server is in the 

memory bandwidth. In this report, we 

describe the implementation of a VOD server 

called Nova, which improves the performance 

of the VOD server by improving the effective 

memory bandwidth. Nova runs within the 

kernel as a STREAMS multiplexor. The 

performance improvement, compared to an 

equivalent user level implementation, is 57%. 
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2. Motivation and Goal 
�

Multimedia applications are becoming 

more and more popular as the progress of 

computing power, the increasing capacity of 

storage devices, the advances of compression 

technology for digitized audio/ video data and 

still images, and the popularity of Internet. 

This report focuses on the research of 

video-on-demand (VOD) storage servers. 

Since media data are usually huge and 

continuous in nature, traditional network file 

servers are not very suitable for storing media 

data. So many researches on VOD servers 

[1] , [5] , [6] , [8] , [12] design from the 

scratch for the requirements of media data. 

Some of them focus only on the storage 

subsystems, which use various techniques to 

squeeze the available bandwidth out of raw 

disks. In fact, in addition to the disk 

bandwidth, the bottleneck of a VOD server 

might also be the network bandwidth and the 

memory bandwidth. Many researches on I/O 

intensive applications also showed that the 

memory bandwidth is a scarce resource in the 

current generation of workstations [4] , [6] , 

[7] , [10] . So how to effectively utilize the 

memory bandwidth is our goal. 

Our goal is to design and implement a 

VOD server, which utilizes memory 

bandwidth and disk bandwidth efficiently. In 

order to improve the effective memory 

bandwidth, the number of memory touches 
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occurring in the VOD applications must be 

reduced. Since the primary task of a VOD 

server is to pump data from disk to network, 

data read are not modified along the 

data-transferring path. Our idea is to pump 

data directly from disk to network, hoping 

that no memory copying is needed at all. 

 

3. Results and Discussions 
�

We have implemented a prototype of 

VOD server, called Nova. In order to reduce 

the redundant memory copy, Nova was 

implemented within the kernel to get rid of 

data copying needed for crossing protection 

boundary. The additional benefits of this 

in-kernel implementation are the avoidance of 

overheads incurred from context switches, 

system calls, and synchronization between 

threads, etc.  

In order to pump data directly from 

disks to network, we make use of the 

STREAMS mechanism as the memory 

shortcut; that is, data are read directly from 

disks into network buffer as shown with the 

dotted line in Figure 1. The advantage of 

using STREMAS mechanism is that we don’t 

have to modify the network subsystem. 

By the kernel-level implementation and 

the STREAMS mechanism, no redundant 

memory copying is needed in Nova. To 

measure the performance gain of improving 

effective memory bandwidth by reducing the 

memory coping, an equivalent user level 

VOD server has also been implemented for 

comparison. Performance evaluations showed 

that the streaming capacity is 33 streams for 

Nova and is only 21 streams for the user level 

VOD server. The performance improvement 

is 57%. 

3.1 Nova Architecture 

Nova consists of four components: 

request manager, scheduler, disk manager, 

and connection manager as shown in Figure 2. 

The request manager waits for any request 

from clients. When connection request arrives, 

the request manager determines whether 

resources are available for this request. If it 

passes the admission control, the request 

manager then registers this client to the 

scheduler and creates a connection manager 

for this new connection. The connection 

manager is destroyed when the connection is 

closed. 

Nova uses the server push model [11] , 

so it automatically reads data needed in the 

next cycle and sends the data read from the 

previous cycle to the clients periodically. 

This periodically is activated by the 

scheduler. The scheduler is awakened once 

per second. On awakened, it calculates the 
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Figure 2: Architecture of Nova 
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data blocks needed in the next cycle for all the 

registered clients and passes the blocks 

requests to the corresponding disk managers. 

The disk scheduling algorithm used in Nova is 

SCAN. 

After data has been read from disk, the 

disk manager then passes the requests to the 

connection manager that uses the TCP 

protocol to send the media data to client. 

3.2 Implementation 

Nova is implemented as a STREAMS 

multiplexor on UnixWare™ 2.0, a descendant 

of SVR4/MP. A STREAMS multiplexor is a 

kind of STREAMS driver. Applications can 

link or unlink a stream under the multiplexor 

by using the ioctl() system call. As shown in 

Figure 3, all the components of Nova are 

implemented in the multiplexor except the 

request manager. When a new connection is 

established, a stream is constructed by the 

TCP protocol and is linked by Request 

manager under the Nova. The stream is 

unlinked from the multiplexor after a session 

is over.  

In STREAMS mechanism, message 

passing is used in communication between 

STREAMS modules or drivers. A message 

contains three parts: message block 

descriptor, data block descriptor, and data 

buffer. So Nova must convert the data read 

from disks into messages and then send them 

down to the TCP/IP streams linked beneath it. 

Data are directly read from disk into the data 

buffer part of a message. Nova manages its 

own pool of free buffers. The data buffer 

used in a message is allocated from this pool 

and is freed to the pool when a message is 

sent and acknowledged by the client. 

Data striping is used when storing media 

data in disks. Media data is chopped into 

fixed-sized blocks that are stored in data 

disks in round-robin order. Metadata is 

stored on a separate disk that uses UNIX file 

system. 
�

4. Evaluations 
�

This research has completely met the 

goals of this project. The research results 

have been published on [2][3]. The following 

describes the performance evaluation of our 

server. 

We measure the performance of Nova in 

two different environments. In the first 

environment, there is only one client machine 

that is connected directly to the server. The 

client machine forks many processes and each 

process emulates a real world client. These 

processes do not decode and display the 

MPEG-I stream sent from the server. It 

simply reads the data and then drops it. In 

the second environment, we use six client 

machines that are connected to the server via 

fast ethernet switch. Three of the client 

machines run a software decoder to display 

MPEG-I stream in real-time. This decoder 

exploits the MMX instructions of Pentium 

to speed up the decoding and displaying 

process. The other client machines run the 

same program as in the first environment. 

Six kinds of MPEG I media data are 

used in the experiments. Their bit rates range 

from 0.983*106 to 2.20*106 bits/sec. For the 

purpose of comparison, we also implement 
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Figure 3: Implementation of Nova.  
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an equivalent user-level server. The server 

components are implemented as threads 

within a single process. 

The streaming capacity of the server is 

defined as the number of clients that can be 

serviced simultaneously without violating the 

continuous requirement, and is measured by 

having the client simultaneously issue n 

connection requests to the server and check if 

the server can successfully support that 

number of clients.  

In the first environment, the server runs 

on top of UnixWare™ 2.0 on Pentium 133 

with 32-Mbyte RAM, one AHA-3940 (a 

PCI SCSI adaptor which has two SCSI buses 

on it), and one Intel EtherExpress™ 

PRO/100 (a PCI FastEthernet adaptor). All 

the experiments are measured by connecting a 

dedicated Ethernet line between the client and 

the server. 

Figure 4 shows the results of 

measurements in the first experiment. The 

number of disks in the system varies from 1 

to 6. Both systems have the same streaming 

capacity when one disk is used. This is 

because the system bottleneck lies in the disk 

bandwidth. As the number of disk increases, 

the aggregate bandwidth of disks also 

increases, which improves streaming capacity. 

However, after the aggregate bandwidth of 

disks exceeds the memory bandwidth, 

memory bandwidth becomes the bottleneck 

of the system. Because the effective memory 

bandwidth of Nova is higher than the 

user-level implementation, the bottleneck 

shifts from disk to memory bandwidth when 

the number of disks is 4 in Nova whereas 3 in 

the user-level implementation. When the 

number of disks is 6, the streaming capacity 

is 33 streams for Nova and 21 streams for 

user-level implementation. Performance gap 

is 57%. 

In the second environment, except the 

CPU and mainboard, the server runs with the 

same hardware equipment. The CPU is Cyrix 

PR166+ for the server. Three of client 

machines are Pentium MMX 200. The other 

client machines are Cyrix PR166+. The fast 

ethernet switch used is Cisco system’s 

workgroup catalyst 3200. The streaming 

capacity is showed in Figure 5. When the 

number of disks is 6, the streaming capacity 

is 28 streams for Nova and 23 streams for 

user-level implementation. 
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