
 1

��������	
��
��������

��������	
��
��

Design and Implementation of a Video Server (
) �

��������	
��

����������
�	

�����
��
� ���
�� �� ���	

���� !"				#$%&'()*+((,�

�

1. Chinese Abstract
�

�����������	
��
����

����
�����������
�

����	� !"#$�%&'()

*�
+,-��!./01&�23

45623	�����	789:;�

<�����=>?@AB+,-���

CD�����	BE!<�����F

GH��IJK�
)* STREAMS �L

��MNH)*OBPQ#;HRSTU

V	�����WX�BECD6 57%!�

�

���Y�����Z[\���

�

Abstract

 Many researches on VOD servers focus

only on the storage subsystems, since it is

believed that the disk bandwidth is the

bottleneck of a VOD server. In fact, one of

the bottlenecks of a VOD server is in the

memory bandwidth. In this report, we

describe the implementation of a VOD server

called Nova, which improves the performance

of the VOD server by improving the effective

memory bandwidth. Nova runs within the

kernel as a STREAMS multiplexor. The

performance improvement, compared to an

equivalent user level implementation, is 57%.

Keywords: Video Server, VOD
�

2. Motivation and Goal
�

Multimedia applications are becoming

more and more popular as the progress of

computing power, the increasing capacity of

storage devices, the advances of compression

technology for digitized audio/ video data and

still images, and the popularity of Internet.

This report focuses on the research of

video-on-demand (VOD) storage servers.

Since media data are usually huge and

continuous in nature, traditional network file

servers are not very suitable for storing media

data. So many researches on VOD servers

[1] , [5] , [6] , [8] , [12] design from the

scratch for the requirements of media data.

Some of them focus only on the storage

subsystems, which use various techniques to

squeeze the available bandwidth out of raw

disks. In fact, in addition to the disk

bandwidth, the bottleneck of a VOD server

might also be the network bandwidth and the

memory bandwidth. Many researches on I/O

intensive applications also showed that the

memory bandwidth is a scarce resource in the

current generation of workstations [4] , [6] ,

[7] , [10] . So how to effectively utilize the

memory bandwidth is our goal.

Our goal is to design and implement a

VOD server, which utilizes memory

bandwidth and disk bandwidth efficiently. In

order to improve the effective memory

bandwidth, the number of memory touches

 2

occurring in the VOD applications must be

reduced. Since the primary task of a VOD

server is to pump data from disk to network,

data read are not modified along the

data-transferring path. Our idea is to pump

data directly from disk to network, hoping

that no memory copying is needed at all.

3. Results and Discussions
�

We have implemented a prototype of

VOD server, called Nova. In order to reduce

the redundant memory copy, Nova was

implemented within the kernel to get rid of

data copying needed for crossing protection

boundary. The additional benefits of this

in-kernel implementation are the avoidance of

overheads incurred from context switches,

system calls, and synchronization between

threads, etc.

In order to pump data directly from

disks to network, we make use of the

STREAMS mechanism as the memory

shortcut; that is, data are read directly from

disks into network buffer as shown with the

dotted line in Figure 1. The advantage of

using STREMAS mechanism is that we don’t

have to modify the network subsystem.

By the kernel-level implementation and

the STREAMS mechanism, no redundant

memory copying is needed in Nova. To

measure the performance gain of improving

effective memory bandwidth by reducing the

memory coping, an equivalent user level

VOD server has also been implemented for

comparison. Performance evaluations showed

that the streaming capacity is 33 streams for

Nova and is only 21 streams for the user level

VOD server. The performance improvement

is 57%.

3.1 Nova Architecture

Nova consists of four components:

request manager, scheduler, disk manager,

and connection manager as shown in Figure 2.

The request manager waits for any request

from clients. When connection request arrives,

the request manager determines whether

resources are available for this request. If it

passes the admission control, the request

manager then registers this client to the

scheduler and creates a connection manager

for this new connection. The connection

manager is destroyed when the connection is

closed.

Nova uses the server push model [11] ,

so it automatically reads data needed in the

next cycle and sends the data read from the

previous cycle to the clients periodically.

This periodically is activated by the

scheduler. The scheduler is awakened once

per second. On awakened, it calculates the

Netw ork

Buff er

U ser Sp ace

B uffer

Us er Lev el

Kern el Level

U ser-level VOD S erver

�
�

Traditio nal P ath

New Path

Figure 1: Data Transferring Path of a

User-level VOD Server

S c h e d u l e r

D is k

M a n a g e r

C o n n e c tio n

M a n a g e r

R e q u e s t

M an a g e r

TC P T CP

Co n n ec ti o n

M a n a g e r

D is k

M a n a g e r

D i s k

M a n a g er

Figure 2: Architecture of Nova

 3

data blocks needed in the next cycle for all the

registered clients and passes the blocks

requests to the corresponding disk managers.

The disk scheduling algorithm used in Nova is

SCAN.

After data has been read from disk, the

disk manager then passes the requests to the

connection manager that uses the TCP

protocol to send the media data to client.

3.2 Implementation

Nova is implemented as a STREAMS

multiplexor on UnixWare™ 2.0, a descendant

of SVR4/MP. A STREAMS multiplexor is a

kind of STREAMS driver. Applications can

link or unlink a stream under the multiplexor

by using the ioctl() system call. As shown in

Figure 3, all the components of Nova are

implemented in the multiplexor except the

request manager. When a new connection is

established, a stream is constructed by the

TCP protocol and is linked by Request

manager under the Nova. The stream is

unlinked from the multiplexor after a session

is over.

In STREAMS mechanism, message

passing is used in communication between

STREAMS modules or drivers. A message

contains three parts: message block

descriptor, data block descriptor, and data

buffer. So Nova must convert the data read

from disks into messages and then send them

down to the TCP/IP streams linked beneath it.

Data are directly read from disk into the data

buffer part of a message. Nova manages its

own pool of free buffers. The data buffer

used in a message is allocated from this pool

and is freed to the pool when a message is

sent and acknowledged by the client.

Data striping is used when storing media

data in disks. Media data is chopped into

fixed-sized blocks that are stored in data

disks in round-robin order. Metadata is

stored on a separate disk that uses UNIX file

system.
�

4. Evaluations
�

This research has completely met the

goals of this project. The research results

have been published on [2][3]. The following

describes the performance evaluation of our

server.

We measure the performance of Nova in

two different environments. In the first

environment, there is only one client machine

that is connected directly to the server. The

client machine forks many processes and each

process emulates a real world client. These

processes do not decode and display the

MPEG-I stream sent from the server. It

simply reads the data and then drops it. In

the second environment, we use six client

machines that are connected to the server via

fast ethernet switch. Three of the client

machines run a software decoder to display

MPEG-I stream in real-time. This decoder

exploits the MMX instructions of Pentium

to speed up the decoding and displaying

process. The other client machines run the

same program as in the first environment.

Six kinds of MPEG I media data are

used in the experiments. Their bit rates range

from 0.983*106 to 2.20*106 bits/sec. For the

purpose of comparison, we also implement

Reques t
Manager

Nova

TCP
s tream

TCP
st ream

. . .

User level

Kernel l evel

STREAMS
mul ti pl exor

TCP
st ream

Figure 3: Implementation of Nova.

 4

an equivalent user-level server. The server

components are implemented as threads

within a single process.

The streaming capacity of the server is

defined as the number of clients that can be

serviced simultaneously without violating the

continuous requirement, and is measured by

having the client simultaneously issue n

connection requests to the server and check if

the server can successfully support that

number of clients.

In the first environment, the server runs

on top of UnixWare™ 2.0 on Pentium 133

with 32-Mbyte RAM, one AHA-3940 (a

PCI SCSI adaptor which has two SCSI buses

on it), and one Intel EtherExpress™

PRO/100 (a PCI FastEthernet adaptor). All

the experiments are measured by connecting a

dedicated Ethernet line between the client and

the server.

Figure 4 shows the results of

measurements in the first experiment. The

number of disks in the system varies from 1

to 6. Both systems have the same streaming

capacity when one disk is used. This is

because the system bottleneck lies in the disk

bandwidth. As the number of disk increases,

the aggregate bandwidth of disks also

increases, which improves streaming capacity.

However, after the aggregate bandwidth of

disks exceeds the memory bandwidth,

memory bandwidth becomes the bottleneck

of the system. Because the effective memory

bandwidth of Nova is higher than the

user-level implementation, the bottleneck

shifts from disk to memory bandwidth when

the number of disks is 4 in Nova whereas 3 in

the user-level implementation. When the

number of disks is 6, the streaming capacity

is 33 streams for Nova and 21 streams for

user-level implementation. Performance gap

is 57%.

In the second environment, except the

CPU and mainboard, the server runs with the

same hardware equipment. The CPU is Cyrix

PR166+ for the server. Three of client

machines are Pentium MMX 200. The other

client machines are Cyrix PR166+. The fast

ethernet switch used is Cisco system’s

workgroup catalyst 3200. The streaming

capacity is showed in Figure 5. When the

number of disks is 6, the streaming capacity

is 28 streams for Nova and 23 streams for

user-level implementation.

5. References
�

�����C. Y. Cheng, C. H. Wen, M. H. Lee, F. C.

Wang, and Y. J. Oyang, “Effective Utilization of

Disk Bandwidth for Supporting Interactive

Video-on-Demand,” IEEE Transactions on

Consumer Electronics, Feb. 1996.

�����W. Y. Chung and R. C. Chang, “An

Implementation of the CMSS VOD Server,” In

1997 Workshop on Consumer Electronics:

Digital Video and Multimedia and NSC Annual

Seminar on HDTV Research and Development,

Oct. 1997.

�����W. Y. Chung, M. L. Chiang, and R. C. Chang,

“Reducing the Redundant Memory Copying in

0

10

20

30

40

50

0 1 2 3 4 5 6

Number of Di sk s

St
re
am

in
g
C
a
pa
ci
ty User level Nova

Figure 4: The Streaming Capacity in First

Environment

0

10

20

30

40

50

0 1 2 3 4 5 6

Number of Disk s

S
tr
e
a
m
in
g
 C
a
p
a
c
it
y

user level Nova

Figure 5: The Streaming Capacity in Second

Environment

 5

VOD Server,” In 1998 IEEE International

Symposium on Consumer Electronics (ISCE’98),

Oct. 1998.

�����C. Dalton, G. Watson, D. Banks, C.

Calamvokis, A. Edwards, and J. Lumley,

“Afterburner,” IEEE Network, July 1993.

�����R. L. Haskin and F. B. Schmuck, “The Tiger

Shark File System,” Proc. COMPCON’96, Feb

1996, pp. 226-231.

�	���A. Heybey, M. Sullivan, and P. England,

“Calliope: A Distributed, Scalable Multimedia

Server,” USENIX Conference, Jan. 1996, pp.

75-86.

�
���BJ Murphy, S Zeadally, CJ Adams, “An

Analysis of Process and Memory Models to

Support High-Speed Networking in a UNIX

Environment,” Proc. USENIX Winter Conference,

Jan. 1996, pp. 239-251.

�����G. Neufeld, D. Makaroff, and N. Hutchinson,

“Design of a Variable Bit Rate Continuous

Media File Server for an ATM Network,”

IS&T/SPIE Multimedia Computing and

Networking, Jan 1996.

�����Oracle Corp., “Oracle Video Server™ System

Tour for the LAN Environment,” 1996.

��
���J. Pasquale, “I/O System Design for Intensive

Multimedia I/O,” IEEE Workshop on

Workstation Operating Systems, April 1992,

pp.29-33.

������S. S. Rao, H. M. Vin, and A. Tarafdar,

“Comparative Evaluation of Sever-push and

Client-pull Architectures for Multimedia

Servers,” 6th Networks and Operating Systems

Support for Digital Video and Audio, April

1996.

������H. Tezuka, and T. Nakajima, “Simple

Continuous Media Storage Server on Real-Time

Mach,” USENIX Conference, Jan. 1996, pp.

87-98.

������M. Vernick, C. Venkatramani, and T. C. Chiueh,

“Adventures in Building the Stony Brook Video

Server”, The 4
th
 ACM International Multimedia

Conference, Nov. 1996, pp. 287-295.

