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Abstract

For the first time the quantum Langevmn
equation for a coherently diiven cavity with
The theoy is

consisted with the conservation of commmtators.

two-level atoms 15 derived.

The transmission spectra and squeezed state

generation In stong couplmg regime are
presented.
Since 19805, the interest and success in

measuring reduced quantum fluctuations below
shot noise limi#t in many optical systems make
necessary quantum theories in modeling and
explaming experimental siuations. The reduced
In

solving cquantum optical pmoblems in which

noise states are called squeezed states [1].

damping and fluctuations are concemed, there
exist two ecquivalent theoretical techniques: one
15 the master equation appmwach [2,3] which
describes the time evolution of the density matix
and the second is the cquantum
Langevin ecquation appmwach, which directly

operator,

describes the dynamics of quantum operators.
In this paper, we derive the quantum Langevin
equations for solving a fundamental quantum
optical system consisting of two level atoms m a
high Q optical cavity illustrated in Fig. 1. In
determming the magnitudes of Langvin forces,
we use the conservation of optical field and
atomic commutators. The mathematics involved
here 15 mmch simpler than the master equation
appmwach and the physical picture 15 also more
straightforward and intuttive.  Using these
Langevin ecquations we obtam the squeezing

spectra for both the absorptive and dispersive
normal mode coupling systems.

The resultant quantum Langevin equations
are shown as follows:
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Here 9= (B-0)ly, A= (0 Iy 8
the photon-atom coupling coefficient, a , a” are
photon ammihilation and creation operators,
respectively, and 07, o, o, are Pauli operatars,
wiiting

—cie )

and ¢,, ¢, are the armihilation operators of the
two states of the atom S, () 15 the extemal
diiving field of frequency @,. I', and ', are the
Langevin forces for the optical field, and ',
I';s,and Ly for the atoms.

When the noise terms m equation (1) are
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ignored, the equations become the well-known
Maxwell-Bloch equations. From them, one may
obtam the determmistic steady state solutions P,
P",, D, and the optical bistability state equation
shown as follows:
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Here 2C =g’Nly,y. is the cavity cooperahv:d‘y
parameter and I= |AO | ’h, and Y= |,S',n | Ingy.2,
with n=y,y,/4g" being the saturation intensity on




resonance. The optical bistability can be found in
steady state transmitted response function I/Y.
When the magnitudes of quantum
fluctuation temms are small compared to the
determmistic steady state solutions, 4, P, D,
one can solve the problem by linearizing
equation (1). Substituting a = 4+, 0 = P+,
o, = Dy+ &, mto equation (1), we obtain the
following matiix form of 5 linear equations:

doA(t)
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Here QA(f) represents the first order fluctuations
of the field and atomic operator variables, M 15 a
constant 505 mahtix, and N () 15 a
0 — function correlated noise vector with zemw
mean.

Applying the conservation of comelation
matrix <d@O0) A'Q)> =<MA®) A'()> , we

derive the noise correlation matrix
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where the bracket denotes the reservoir average.
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The equation above shows the noise comelation
matrix 15 determined directly by <d4(0) d4’(0)>
The moise correlation matrix B 15 expressed as
the follow:
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And such obtamed noise correlation matix and
Langevin equations are automatically consistent
with the field and atom commutators, 1.e.

[al(t)d(t) =0k -£),
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and | o*,0. |=F0*, [ 07,0" |=-20. ™

We have applied this approach to calculate
the squeezed spectra VM, @) of the quadature
field M, (1) of the transmitted Light §,,[4]where

M,@)=e"s, (t)+e 105 (1), ®)

and
V(M
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We note V(M,w)
and squeezing occurs for

=] for a coherent state
VMo < 1 and
peifect squeezing corresponds to VM, w) = 0.

For minmmum squeezed states, V(Myw) < 1
and MMy @) - "My ; 5o @) = 1.

In Fig. 2, we plot the transmission spectrum
and the squeezing spectrum of the absorptive
Similar spectra for the dispersive case are
shown in Fig.3. The parameters for both cases
are listed in the figuwre captions. The nommal
mode splitting (1 g\N ) is clearly shown in the
transmission spectra. The splitting 15 caused by
the stiong couplng of the field and atom, ie.
N >> Yy» Yoo The spectum depicts the
coherent exchange of excitation between the
cavity fileld and the atomic polarization. The
presence of this dynamic process suggests its

case.

possible use for the generation of squeezed states,
which 15 venfied m our sinmlation. We found
that a significant degree of squeezing 15 peaked
around the coupling frequency g N [5]. About
13 dB squeezing 15 shown in Fig. 3().
However, the states are not the minimal squeezed
states as those generated by the parametric wave
mixing processes. lhese squeezing specha
Fig4 (a) are compared with those calculated
from the master equation approach as shown in

the Fig. 4 (b). [6]. The agreement confiims the
validity of our method.
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Fig.l Scheme of the composite system with N two-level atoms coupled to a single mode
cavity with a coherent driven field S;,
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Fig. 2 (a) Plot of transmission spectra in absorptive limit. (b) Plot of squeezing spectra in
absorptive limit. A=p=0,C=100, ,=2,%,=0.5,§ /N=14.14x=0.1
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Fig. 3 (a) Plots of transmission spectra in dispersive limit. (b) Plot of squeezing spectra in
absorptive limit.¢=-0.98, A=74,C=200, =70, ,=0.5,g N=118 32.



E“' ( ‘) . ay,

g

©

o o

[0

-4

g
N N N N N —1 OLJJiJ11111;111J11j1l11111u|
-10 05 00 05 10 —1.0 0.5 0.0 0.5 1.0

AY

Fig 4 Comparison of the theoretical results using two equrvalent cuantum approaches. (a)
our results (b) Orozco et a [6]. 1987



