
Using String Matching
for Deep Packet
Inspection

Po-Ching Lin, Ying-Dar Lin,
and Tsern-Huei Lee
National Chiao Tung University

Yuan-Cheng Lai
National Taiwan University of Science
and Technology

String matching has sparked renewed research interest due to

its usefulness for deep packet inspection in applications such

as intrusion detection, virus scanning, and Internet content

filtering. Matching expressive pattern specifications with a

scalable and efficient design, accelerating the entire packet

flow, and string matching with high-level semantics are

promising topics for further study.

A
classical algorithm for decades, string matching has recently
proven useful for deep packet inspection (DPI) to detect intru-
sions, scan for viruses, and filter Internet content. However, the
algorithm must still overcome some hurdles, including becom-
ing efficient at multigigabit processing speeds and scaling to

handle large volumes of signatures.
Before 2001, researchers in packet processing were most interested

in longest-prefix matching in the routing table on Internet routers and
multifield packet classification in the packet header for firewalls and
quality-of-service applications.1 However, DPI for various signatures is now
of greater interest.

Intrusion detection, virus scanning, content filtering, instant-messenger
management, and peer-to-peer identification all can use string matching
for inspection. Much work has been done in both algorithm design and
hardware implementation to accelerate the inspection, reduce pattern stor-
age space, and efficiently handle regular expressions.

According to our survey of recent publications about string matching
from IEEE Xplore (http://ieeexplore.ieee.org) and the ACM digital library
(http://portal.acm.org/dl.cfm), researchers formerly were more interested
in pure algorithms for either theoretical interest or general applications,
while algorithms for DPI have attracted more attention lately. Likewise, to
meet the demand for higher processing speeds, researchers are focusing on
hardware implementation in application-specific integrated circuits and
field-programmable gate arrays, as well as parallel multiple processors.
Since 2004, ACM and IEEE publications have featured 34 articles on ASICs
and FPGAs compared to nine in the 1990s and nine again between 2000
and 2003. ACM and IEEE publications have published 10 articles on mul-
tiple processors since 2004, with 10 published during the 1990s, and three
between 2000 and 2003.

0018-9162/08/$25.00 © 2008 IEEE	 Published by the IEEE Computer Society 	 April 2008	 23

C O M P U T I N G P R A C T I C E S

	 24	 Computer

C O M P U T I N G P R A C T I C E S

DEVELOPMENT OF STRING-MATCHING
ALGORITHMS

The “Characteristics of String-Matching Algorithms”
sidebar summarizes the characterization and classifica-
tion of these algorithms. In DPI, automaton, heuristic,
or filtering approaches are common. Bit parallelism

techniques are often used in computational biology, but
rarely in networking. We assume the text length to be
n characters and the pattern length (or the shortest length
in the case of multiple patterns) to be m characters.

Automaton-based approach
An automaton-based approach tracks partially

matched patterns in the text by state transition in either
a deterministic finite automaton or a nondeterminis-
tic finite automaton implementation that accepts the
strings in the pattern set. A DFA implementation gener-
ally has lower time complexity but demands more space
for pattern storage, while an NFA implementation is the
opposite.2 The automaton-based approach is popular in
DPI for two reasons:

The deterministic execution time guarantees the
worst-case performance even when algorithmic
attacks deliberately generate text to exploit an algo-
rithm’s worst-case scenario.
Building an automaton to accept regular expressions
is systematic and well-studied.

Given the wide data bus of 32 or 64 bits in modern
computer architectures, tracking the automaton with
one input character at a time poorly utilizes the bus
width and degrades throughput. Extending the transi-
tion table to store transitions for two or more characters
is plausible, but it’s impractical without proper table
compression. Storing a large pattern set is also memory-
consuming due to the large number of states. Recent
research therefore tries to reduce data-structure space
and simultaneously inspect multiple characters. A com-
pact data structure in a software implementation also
increases performance due to the good cache locality.

Reducing sparse transition tables. A transition table
is generally sparse because most states, particularly those
away from the root state, have only a few valid next states.
We can compress the table by storing only links to valid
next states after one or more input characters and failure
links of each state. We also can store the state transition
table, the failure links, and the lists of matched patterns
in the final states separately in a software implementation
to improve the cache locality during tracking.

Snort (www.snort.org), a popular open source intru-
sion-detection package, has carefully tuned the data
structure in this way to improve cache performance.
The latest revision uses a basic NFA construction as the
default search method (src/sfutil/bnfa_search.c in the
source tree of Snort 2.6.1).

Reducing transitions. With the extended ASCII
alphabet, an automaton has a maximum of 256
transitions from a state. Splitting an automaton
into several smaller ones at the bit level can reduce
the number of transitions. For example, suppose
the automaton is split into eight, and then one

•

•

Characteristics of String-
Matching Algorithms

Researchers can evaluate string-matching algo-
rithms based on the following characteristics:

Number of searches. Some applications, such
as search engines, search the same text many
times for different querying strings. Building an
indexing data structure from the text in advance
is therefore worthwhile to perform with the time
complexity as low as O(m). In contrast, the appli-
cations in networking and biological sequences
search throughout online text only once without
the indexing structure, and the time complexity
is linear in n.
Text compression. Some algorithms can directly
search the compressed text with minimum (or
no) decompression, while others scan over the
plaintext.
Matching criteria. A match can be exact or ap-
proximate. An exact match demands that the
pattern and matched text be identical, while an
approximate match allows a limited number of
differences between them.
Time complexity. Some algorithms have deter-
ministic linear time complexity, while others can
have sublinear time complexity by skipping char-
acters not in a match. The latter might be faster
on average, but not in the worst case.
Number of patterns. An algorithm can scan one
pattern or multiple patterns simultaneously.
Expressiveness in pattern specifications. Pattern
specifications range from fixed strings to regular
expressions in various syntax options. In addition
to primitive notations of alternation, catenation,
and Kleene closure, extensions in the syntax of
regular expressions include the Unix representa-
tions, the extended forms in Posix 1003.2, and
Perl Compatible Regular Expression.1 An increas-
ing number of signatures is specified in regular
expressions for their expressiveness.

Reference
	1.	 J. Friedl, Mastering Regular Expressions, 3rd ed., O’Reilly,

2006.

•

•

•

•

•

•

	 April 2008	 25

automaton is fed with b7, one is fed with b6, and so on, where
b7b6 … b0 denotes the eight bits of the input characters.

This method is implemented in hardware to efficiently
track these automata in parallel. These automata are
compact because each state has at most two valid tran-
sitions for input bits of 0 and 1. Expanding the automata
to read multiple characters at a time is also facilitated
due to the significantly reduced fanout—in this example,
perhaps only 16 valid transitions from a state for four
input characters at once.

Because groups of states in an automaton generally
have common outgoing transitions that lead to the same
set of states for the same input characters, the delayed
input DFA (D2FA) method can effectively reduce these
common transitions. A state in a group can maintain
only its unique transitions and make a default transition
to the state in the group responsible for the common
transitions. This method claims to reduce more than 95
percent of transitions for regular expressions on practi-
cal products and tools.

Hash tables. A hash table can store the transitions
from the states in an automaton to their corresponding
valid next states (or failure links) after several input char-
acters. Tracking multiple characters at a time becomes
a table lookup. Because only a few input characters
can lead to valid next states, the hash table size is still
manageable. A filtering approach can weed out unsuc-
cessful searches in the hash table to further accelerate
this method. Ternary content addressable memory is an
alternative for a table lookup.

Rewriting and grouping. Some combinations of wild-
cards and repetitions in regular expressions will gener-
ate a complex automaton that grows exponentially.2 It’s
possible to rewrite the regular expressions to simplify the
automaton because we don’t have to find every match
in the text in some networking applications. Finding an
appearance of certain signatures suffices. For example,
every string s identified by “ab+” (+ denotes one or more)

can be identified by “ab” as s itself or a prefix of s, so
reporting a match against “ab” is sufficient to report an
appearance of “ab+”.

Furthermore, compiling all the regular expressions in
a single automaton can result in a complex automaton.
In a multiprocessing environment, we can group regular
expressions in separate automata according to the inter-
action between them. For example, grouping regular
expressions sharing the same prefix can merge common
states of the prefix and save the storage. An individual
processing unit then processes each automaton.

Hardwiring regular expressions. Some designs use
building blocks on the FPGA to match patterns from
fixed strings to regular expressions. The implementation
typically prefers an NFA to a DFA because an NFA has
fewer states, and the inherent concurrency of hardware
can easily track multiple active states.

A few techniques can reduce the area cost of building
blocks. For example, identical substrings from different
patterns can share common blocks. Specific hardware
logics can directly handle notations in regular expres-
sions such as class of characters, repetitions, wildcard
characters, and so on.

Heuristic-based approach
A heuristic-based approach can skip characters not

in a match to accelerate the search according to certain
heuristics. During the search, a search window of m
characters covers the text under inspection and slides
throughout the text. A heuristic can check a block of
characters in the window suffix for its appearance in
the patterns. It determines whether a suspicious match
occurs and moves to the next window position if not.

Shift values. Because the positions or shift values cor-
responding to possible blocks are computed and stored
in a table beforehand, a table lookup drives shifting the
search window in the search stage. Figure 1 illustrates a
simple but generic heuristic for only one pattern to visu-

ZYXWVUHGFEDCBA HGF

ZYXWVU

ZYXWVUHGFEDCBA ZYX

ZYXWVU ZYX

21ZYXWVUFEDCBA VUF

ZYXWVU VU

21ZYXWVUFEDCBA ZYX

ZYXWVU ZYX

Pattern

Text

Search window Search window

Shift

6 Characters

Pattern

Text

Search window Search window

Shift

4 Characters

Figure 1. A simple heuristic demonstrates one pattern to visualize why skipping is efficient.

alize why skipping is efficient. In the upper part, because
“FGH” is not a substring of the pattern and its suffix is
not a prefix of the pattern, shifting the search window
by m = 6 characters without examining the remaining
characters in the window won’t miss a match. After the
shift, “XYZ” becomes the suffix of both the pattern and
the window, meaning a suspicious match occurs. The
entire window is then verified, and a match is found.

However, if a suffix of the block is the prefix of some
pattern, the shift value should be less than m because
the suffix might be the prefix of that pattern after the
shift. Figure 1 illustrates this case. We can easily extend
this heuristic to handle patterns shorter than the block
size. If a short pattern is a substring of the block, look-
ing up the block can claim a match. In addition to the
heuristic for matching fixed strings, Gonzalo Navarro
and Mathieu Raffinot presented a heuristic to skip text
characters for regular-expression matching.3

Ideally, most shift values are equal or close to the pat-
tern length m, so the time complexity is sublinear: O(n/
m). However, the time complexity
could be O(nm) in the worst case,
in which the system examines each
entire search window after a shift
of one character. Although methods
exist to guarantee the linear worst-
case time complexity for a single
fixed string or regular expression,3,4
they’re rarely adopted in DPI, which
looks for multiple patterns. Finding
an inexpensive solution to achieve sublinear time while
ensuring the performance in the worst case would be an
interesting challenge to the research community.

Due to their vulnerability to algorithmic attacks, heu-
ristic-based algorithms usually are not preferable for
network-security applications because an attacker might
manipulate the text to degrade performance. Because
applications such as Snort have short patterns of only one
or two characters, the small value of m makes the advan-
tage of skipping marginal. Nevertheless, for applications
with long patterns such as the signatures of nonpolymor-
phic viruses in the ClamAV antivirus package (www.
clamav.net), skipping over the text is still helpful.

Implementation details. Block size, mapping from the
blocks to derive shift values, and other implementation
details can significantly affect practical performance.
When choosing proper parameter values, considerations
include the size of the pattern set, block distribution,
cache locality, and verification frequency. For example,
a large block has fewer chances to appear in the patterns,
resulting in less frequent verification.

However, a large block also generally implies a large
table that stores shift values mapped from a large
number of possible blocks, resulting in reduced cache
locality. Careful experimenting should properly tune
these parameters. When suspicious matches frequently

appear, implementing an efficient method to identify the
matched pattern is also important.

Because the block distribution might be nonuniform
in practice, some blocks might appear more often than
expected, shortening the shift distance and increasing
the verification frequency. Checking the matches in addi-
tional blocks within the search window can reduce the
frequency of verification.

Using a heuristic similar to that in Figure 1 to look
for the longest suffix of the search window that’s also
a substring of some pattern might result in long shift
distance even with nonuniform block distribution. How-
ever, longer shift distance doesn’t always imply better
performance. The overhead due to the extra examina-
tion must be carefully evaluated.

Filtering-based approach
A filtering-based approach searches text for neces-

sary pattern features and quickly excludes the content
not containing those features. For example, if a packet

misses any two-character sub-
strings of a pattern, the packet must
not have that pattern. Because the
efficiency relies on assuming that
the signatures rarely appear in nor-
mal packets, this approach might
suffer from algorithmic attacks if
the attacker carefully manipulates
the text.

Text filtering. A common method
of text filtering is the Bloom filter, characterized by a bit
vector and a set of k hash functions h1, h2, …, hk mapped
to that vector. When multiple patterns are present, the
patterns of a specific length are stored in a separate
Bloom filter by setting to 1 the bits the patterns’ hash val-
ues address. The search queries the set of Bloom filters
by mapping the substrings in the text under inspection
to them with the same set of hash functions. Specifically,
a substring x under inspection is mapped to the Bloom
filter storing the patterns of length |x|.

If one of the bits in h1(x), h2(x), …, hk(x) isn’t set to 1,
x certainly isn’t in the pattern set; otherwise, x might be
in the pattern set, and we must further verify the match.
The uncertainty comes from different patterns setting
checked bits. The false-positive rate is a function of the
bit-vector size, the number of patterns, and the number
of hash functions. Properly controlling these parameters
can reduce the false-positive rate.

Parallel queries. Parallel queries to the Bloom filters
generally are implemented in hardware for efficiency,
but efficient software implementation of sequential
queries is also possible. For example, the implementa-
tion can sequentially query with a set of hash functions,
from simple to complex ones, to look for pattern pre-
fixes of a certain length and verify a match if a prefix
is found. The simple hash functions are designed to be

Due to their vulnerability
to algorithmic attacks,

heuristic-based algorithms
usually are not preferable for

network-security applications.

	 26	 Computer

C O M P U T I N G P R A C T I C E S

	 April 2008	 27

rapidly computed and can filter most of the
text, so the search is still fast.

If there is a wide range of pattern lengths,
there might be many Bloom filters because
each length requires one. One solution is to
limit the maximum pattern length allowed
and break a long pattern into short ones. If
all substrings of a long pattern appear contig-
uously and in order, that pattern is present.

The filtering-based approach doesn’t
directly support some notations in regu-
lar expressions such as wildcards and rep-
etitions. An indirect solution is to extract
the necessary substrings from the regular
expressions, searching for them and verify-
ing the match if these substrings appear. For
example, ClamAV divides the signatures
of polymorphic viruses into ordered parts
(substrings of the signatures) and tracks the
orders and positions of these parts (with a
variant of the Aho-Corasick algorithm) in
the text to determine whether a signature
occurs. Table 1 summarizes the key methods
as well as the pros and cons of each.

CURRENT TRENDS IN DPI
Matching expressive pattern specifications

with a scalable and efficient design, accelerat-
ing the entire packet flow, and string match-
ing with high-level semantics are promising
topics for further study.

Matching expressive
pattern specifications

Expressive pattern specifications, such as regular
expressions, can accurately define the signatures. Effi-
cient solutions to matching regular expressions in DPI
are therefore attracting considerable interest. Joao Bispo
and his colleagues compared several designs for regular
expression matching.5 Most of these designs can per-
form regular expression matching on the order of several
gigabits per second.

Commercial products, including the Cavium
Octeon MIPS64 processor family (www.cavium.com/
OCTEON_MIPS64.html), SafeNet Xcel 4850 (http://
cn.safenet-inc.com/products/safenetchips/index.asp),
and Tarari RegEx5 content processor (www.lsi.com/
documentation/networking/tarari_content_processors/
Tarari_RegEx_Whitepaper.pdf) all claim to support
regular expression matching at gigabit rates. String
matching, a problem once believed to be a bottleneck,
has become less critical given the latest advances.

Most existing research aims at intrusion-detection
applications, especially Snort, which has thousands of sig-
natures, but antivirus applications such as ClamAV claim
a signature set of more than 180,000 patterns to date. We

believe a more scalable and efficient design for matching
a huge set of expressive patterns deserves further study.
Moreover, some patterns might belong to only a specific
protocol or file type, and some are significant only when
they appear in specified positions of the text.

Rather than assuming a simple model of searching for
the whole pattern set throughout the entire text, a design
can optimize the performance of additional information.
An efficient software implementation for these cases is
also desirable, since hardware accelerators aren’t always
affordable in practical applications.

Accelerating packet content processing
Although numerous research efforts have been dedi-

cated to string matching, packet processing in DPI
involves even more effort. Vern Paxson and colleagues
described the insufficiency of string matching in intru-
sion detection due to its stateless nature6 and envi-
sioned a framework of architecture that attempts to
exploit the parallelism in network analysis and intru-
sion detection for acceleration.

Similarly, virus-scanning applications might reas-
semble packets, unpack and decompress file archives,
and handle character encoding before scanning a trans-
ferred file. Accelerating only one stage is insufficient due
to Amdahl’s law. Meeting the high-speed demand in

Table 1. Summary of approaches to string matching for DPI.

Automaton-based

Pros: Deterministic linear execution time, direct support of regular expressions
Cons: Might consume much memory without compressing data structure
1. Rewrite and group regular expressions
2. Reduce number of transitions (D2FA)
3. Hardwire regular expressions on FPGA
4. Track a DFA that accepts the patterns (Aho-Corasick)
5. Reduce sparse transition table (Bitmap-AC, BNFA in Snort)
6. Reduce fanout from the states (split automata)
7. Track multiple characters at a time in an NFA (JACK-NFA)

Heuristic-based

Pros: Can skip characters not in a match, sublinear execution time on average
Cons: Might suffer from algorithmic attacks in the worst case
1. Get shift distance using heuristics based on the automaton that recognizes the
reverse prefixes of a regular expression (RegularBNDM)
2. Get shift distance from fixed block in suffix of search window (Wu-Manber)
3. Get shift distance from the longest suffix of search window (BG)

Filtering-based

Pros: Memory efficient in the bit vectors
Cons: Might suffer from algorithmic attacks in the worst case
1. Extract substrings from regular expressions, filter text with them (MultiFactRE)
2. Filter with a set of Bloom filters for different pattern lengths
3. Filter with a set of hash functions sequentially (Hash-AV)

	 28	 Computer

C O M P U T I N G P R A C T I C E S

networking applications requires an integrated architec-
ture with hardware-supported functions.

Commercial products are on this track. For example,
the Cavium Octeon MIPS64 processor family includes a
TCP unit, a compression/decompression engine, and 16
regular expression engines on a single chip, and claims
performance of up to 5 Gbps for regular expression
matching plus compression/decompression.

Parsing content in high-level semantics
String matching in network applications might refer to

contextual information parsed from high-level seman-
tics.7 For example, some patterns are significant only
within the uniform resource indicators. Spam and Web
filtering also demand high-level semantics to analyze the
content, as does XML processing.8 String matching with
high-level semantic extraction and analysis from the text
is therefore beneficial.

For example, because the Tarari random access XML
content processor (www.lsi.com/documentation/
networking/tarari_content_processors/Tarari_RAX_
Whitepaper.pdf)can help applications directly access
information inside XML documents without parsing,
it accelerates XML applications significantly. The accel-
eration of semantic extraction from the text (perhaps
with hardware support) and matching patterns with the
semantic contextual information is worth studying, and
will be helpful for numerous network applications.

Despite existing research, the study of string matching
for DPI still has a way to go in the near future. In
addition to the growing set of increasingly expressive

patterns that makes scalability a challenge, matching with
semantically contextual information also complicates
the traditional model of string matching that looks for
patterns in the text. Dealing with this complication is
particularly significant because many existing efforts still
use the traditional model to develop their solutions. After
all, DPI applications rely on the packet content semantics
to make an effective decision. These complexities require
expending more effort to develop a scalable, efficient, and
effective string-matching solution for DPI applications. ■

References
	1.	 P. Gupta and N. McKeown, “Algorithms for Packet Classifi-

cation,” IEEE Network, vol. 15, no. 2, Mar./Apr. 2001, pp.
529-551.

	2.	 F. Yu et al., “Fast and Memory-Efficient Regular Expression
Matching for Deep Packet Inspection,” Proc. Symp. Archi-
tectures Networking and Comm. Systems (ANCS 06), ACM
Press, 2006, pp. 93-102.

	3.	 G. Navarro and M. Raffinot, “New Techniques for Regular
Expression Searching,” Algorithmica, Springer-Verlag, vol.
41, no. 2, 2004, pp. 89-116.

	4.	 Z. Galil, “On Improving the Worst-Case Running Time of the
Boyer-Moore String Searching Algorithm,” Comm. ACM,
vol. 22, no. 9, 1979, pp. 505-508.

	5.	 J. Bispo et al., “Regular Expression Matching for Recon-
figurable Packet Inspection,” Proc. IEEE Int’l Conf. Field-
Programmable Technology (FPT 06), IEEE Press, 2006, pp.
119-126.

	6.	 V. Paxson et al., “Rethinking Hardware Support for Network
Analysis and Intrusion Prevention,” Proc. Usenix Workshop
Hot Topics in Security, Usenix, 2006, pp. 63-68; http://
imawhiner.com/csl/usenix/06hotsec/tech/paxson.html.

	 7.	 R. Sommer and V. Paxson, “Enhancing Byte-Level Network
Intrusion Detection Signatures with Context,” Proc. ACM
Computer and Comm. Security (CCS 03), ACM Press, 2003,
pp. 262-271.

	8.	 T.J. Green et al., “Processing XML Streams with Determin-
istic Automata and Stream Indexes,” ACM Trans. Database
Systems, Dec. 2004, pp. 752-788.

Po-Ching Lin is a PhD candidate in the Department of
Computer Science at the National Chiao Tung Univer-
sity in Hsinchu, Taiwan. His research interests include
network security, string-matching algorithms, hardware-
software codesign, content networking, and performance
evaluation. Lin received an MS in computer science from
the National Chiao Tung University. He is a student mem-
ber of the IEEE. Contact him at pclin@cis.nctu.edu.tw.

Ying-Dar Lin is a professor in the Department of Com-
puter Science at National Chiao Tung University. His
research interests include design, analysis, implementa-
tion, and benchmarking of network protocols and algo-
rithms; wire-speed switching and routing; and embedded
hardware-software codesign. Lin received a PhD in com-
puter science from the University of California, Los Ange-
les. He is a senior member of the IEEE and a member of
the ACM. Contact him at ydlin@cs.nctu.edu.tw.

Yuan-Cheng Lai is an associate professor in the Depart-
ment of Information Management at National Taiwan
University of Science and Technology in Taipei, Taiwan.
His research interests include high-speed networking, wire-
less network and network performance evaluation, Inter-
net applications, and content networking. Lai received a
PhD in computer science from the National Chiao Tung
University. Contact him at laiyc@cs.ntust.edu.tw.

Tsern-Huei Lee is a professor in the Department of Com-
munications Engineering at the National Chiao Tung
University. His research interests include high-speed
networking, broadband switch systems, network flow
control, data communications, and string-matching
algorithms. Lee received a PhD in electrical engineering
from the University of Southern California. Contact him
at thlee@banyan.cm.nctu.edu.tw.

