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String matching has sparked renewed research interest due to 

its usefulness for deep packet inspection in applications such 

as intrusion detection, virus scanning, and Internet content 

filtering.  Matching expressive pattern specifications with a 

scalable and efficient design, accelerating the entire packet 

flow, and string matching with high-level semantics are 

promising topics for further study.

A 
classical algorithm for decades, string matching has recently 
proven useful for deep packet inspection (DPI) to detect intru-
sions, scan for viruses, and filter Internet content. However, the 
algorithm must still overcome some hurdles, including becom-
ing efficient at multigigabit processing speeds and scaling to 

handle large volumes of signatures.
Before 2001, researchers in packet processing were most interested 

in longest-prefix matching in the routing table on Internet routers and 
multifield packet classification in the packet header for firewalls and  
quality-of-service applications.1 However, DPI for various signatures is now 
of greater interest.

Intrusion detection, virus scanning, content filtering, instant-messenger 
management, and peer-to-peer identification all can use string matching 
for inspection. Much work has been done in both algorithm design and 
hardware implementation to accelerate the inspection, reduce pattern stor-
age space, and efficiently handle regular expressions.

According to our survey of recent publications about string matching 
from IEEE Xplore (http://ieeexplore.ieee.org) and the ACM digital library 
(http://portal.acm.org/dl.cfm), researchers formerly were more interested 
in pure algorithms for either theoretical interest or general applications, 
while algorithms for DPI have attracted more attention lately. Likewise, to 
meet the demand for higher processing speeds, researchers are focusing on 
hardware implementation in application-specific integrated circuits and 
field-programmable gate arrays, as well as parallel multiple processors. 
Since 2004, ACM and IEEE publications have featured 34 articles on ASICs 
and FPGAs compared to nine in the 1990s and nine again between 2000 
and 2003. ACM and IEEE publications have published 10 articles on mul-
tiple processors since 2004, with 10 published during the 1990s, and three 
between 2000 and 2003. 
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DEVELOPMENT OF STRING-MATCHING 
ALGORITHMS

The “Characteristics of String-Matching Algorithms” 
sidebar summarizes the characterization and classifica-
tion of these algorithms. In DPI, automaton, heuristic, 
or filtering approaches are common. Bit parallelism 

techniques are often used in computational biology, but 
rarely in networking. We assume the text length to be  
n characters and the pattern length (or the shortest length 
in the case of multiple patterns) to be m characters.

Automaton-based approach
An automaton-based approach tracks partially 

matched patterns in the text by state transition in either 
a deterministic finite automaton or a nondeterminis-
tic finite automaton implementation that accepts the 
strings in the pattern set. A DFA implementation gener-
ally has lower time complexity but demands more space 
for pattern storage, while an NFA implementation is the 
opposite.2 The automaton-based approach is popular in 
DPI for two reasons:

The deterministic execution time guarantees the 
worst-case performance even when algorithmic 
attacks deliberately generate text to exploit an algo-
rithm’s worst-case scenario. 
Building an automaton to accept regular expressions 
is systematic and well-studied.

Given the wide data bus of 32 or 64 bits in modern 
computer architectures, tracking the automaton with 
one input character at a time poorly utilizes the bus 
width and degrades throughput. Extending the transi-
tion table to store transitions for two or more characters 
is plausible, but it’s impractical without proper table 
compression. Storing a large pattern set is also memory-
consuming due to the large number of states. Recent 
research therefore tries to reduce data-structure space 
and simultaneously inspect multiple characters. A com-
pact data structure in a software implementation also 
increases performance due to the good cache locality. 

Reducing sparse transition tables. A transition table 
is generally sparse because most states, particularly those 
away from the root state, have only a few valid next states. 
We can compress the table by storing only links to valid 
next states after one or more input characters and failure 
links of each state. We also can store the state transition 
table, the failure links, and the lists of matched patterns 
in the final states separately in a software implementation 
to improve the cache locality during tracking.

Snort (www.snort.org), a popular open source intru-
sion-detection package, has carefully tuned the data 
structure in this way to improve cache performance. 
The latest revision uses a basic NFA construction as the 
default search method (src/sfutil/bnfa_search.c in the 
source tree of Snort 2.6.1).

Reducing transitions. With the extended ASCII 
alphabet, an automaton has a maximum of 256 
transitions from a state. Splitting an automaton 
into several smaller ones at the bit level can reduce  
the number of transitions. For example, suppose  
the automaton is split into eight, and then one  
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Characteristics of String-
Matching Algorithms

Researchers can evaluate string-matching algo-
rithms based on the following characteristics:

Number of searches. Some applications, such 
as search engines, search the same text many 
times for different querying strings. Building an 
indexing data structure from the text in advance 
is therefore worthwhile to perform with the time 
complexity as low as O(m). In contrast, the appli-
cations in networking and biological sequences 
search throughout online text only once without 
the indexing structure, and the time complexity 
is linear in n.
Text compression. Some algorithms can directly 
search the compressed text with minimum (or 
no) decompression, while others scan over the 
plaintext.
Matching criteria. A match can be exact or ap-
proximate. An exact match demands that the 
pattern and matched text be identical, while an 
approximate match allows a limited number of 
differences between them.
Time complexity. Some algorithms have deter-
ministic linear time complexity, while others can 
have sublinear time complexity by skipping char-
acters not in a match. The latter might be faster 
on average, but not in the worst case.
Number of patterns. An algorithm can scan one 
pattern or multiple patterns simultaneously.
Expressiveness in pattern specifications. Pattern 
specifications range from fixed strings to regular 
expressions in various syntax options. In addition 
to primitive notations of alternation, catenation, 
and Kleene closure, extensions in the syntax of 
regular expressions include the Unix representa-
tions, the extended forms in Posix 1003.2, and 
Perl Compatible Regular Expression.1 An increas-
ing number of signatures is specified in regular 
expressions for their expressiveness.

Reference
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automaton is fed with b7, one is fed with b6, and so on, where  
b7b6 … b0 denotes the eight bits of the input characters.

This method is implemented in hardware to efficiently 
track these automata in parallel. These automata are 
compact because each state has at most two valid tran-
sitions for input bits of 0 and 1. Expanding the automata 
to read multiple characters at a time is also facilitated 
due to the significantly reduced fanout—in this example, 
perhaps only 16 valid transitions from a state for four 
input characters at once.

Because groups of states in an automaton generally 
have common outgoing transitions that lead to the same 
set of states for the same input characters, the delayed 
input DFA (D2FA) method can effectively reduce these 
common transitions. A state in a group can maintain 
only its unique transitions and make a default transition 
to the state in the group responsible for the common 
transitions. This method claims to reduce more than 95 
percent of transitions for regular expressions on practi-
cal products and tools.

Hash tables. A hash table can store the transitions 
from the states in an automaton to their corresponding 
valid next states (or failure links) after several input char-
acters. Tracking multiple characters at a time becomes 
a table lookup. Because only a few input characters 
can lead to valid next states, the hash table size is still 
manageable. A filtering approach can weed out unsuc-
cessful searches in the hash table to further accelerate 
this method. Ternary content addressable memory is an 
alternative for a table lookup.

Rewriting and grouping. Some combinations of wild-
cards and repetitions in regular expressions will gener-
ate a complex automaton that grows exponentially.2 It’s 
possible to rewrite the regular expressions to simplify the 
automaton because we don’t have to find every match 
in the text in some networking applications. Finding an 
appearance of certain signatures suffices. For example, 
every string s identified by “ab+” (+ denotes one or more) 

can be identified by “ab” as s itself or a prefix of s, so 
reporting a match against “ab” is sufficient to report an 
appearance of “ab+”.

Furthermore, compiling all the regular expressions in 
a single automaton can result in a complex automaton. 
In a multiprocessing environment, we can group regular 
expressions in separate automata according to the inter-
action between them. For example, grouping regular 
expressions sharing the same prefix can merge common 
states of the prefix and save the storage. An individual 
processing unit then processes each automaton.

Hardwiring regular expressions. Some designs use 
building blocks on the FPGA to match patterns from 
fixed strings to regular expressions. The implementation 
typically prefers an NFA to a DFA because an NFA has 
fewer states, and the inherent concurrency of hardware 
can easily track multiple active states.

A few techniques can reduce the area cost of building 
blocks. For example, identical substrings from different 
patterns can share common blocks. Specific hardware 
logics can directly handle notations in regular expres-
sions such as class of characters, repetitions, wildcard 
characters, and so on.

Heuristic-based approach
A heuristic-based approach can skip characters not 

in a match to accelerate the search according to certain 
heuristics. During the search, a search window of m 
characters covers the text under inspection and slides 
throughout the text. A heuristic can check a block of 
characters in the window suffix for its appearance in 
the patterns. It determines whether a suspicious match 
occurs and moves to  the next window position if not.

Shift values. Because the positions or shift values cor-
responding to possible blocks are computed and stored 
in a table beforehand, a table lookup drives shifting the 
search window in the search stage. Figure 1 illustrates a 
simple but generic heuristic for only one pattern to visu-

ZYXWVUHGFEDCBA HGF
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ZYXWVUHGFEDCBA ZYX

ZYXWVU ZYX

21ZYXWVUFEDCBA VUF
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ZYXWVU ZYX
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Figure 1. A simple heuristic demonstrates one pattern to visualize why skipping is efficient.



alize why skipping is efficient. In the upper part, because 
“FGH” is not a substring of the pattern and its suffix is 
not a prefix of the pattern, shifting the search window 
by m = 6 characters without examining the remaining 
characters in the window won’t miss a match. After the 
shift, “XYZ” becomes the suffix of both the pattern and 
the window, meaning a suspicious match occurs. The 
entire window is then verified, and a match is found.

However, if a suffix of the block is the prefix of some 
pattern, the shift value should be less than m because 
the suffix might be the prefix of that pattern after the 
shift. Figure 1 illustrates this case. We can easily extend 
this heuristic to handle patterns shorter than the block 
size. If a short pattern is a substring of the block, look-
ing up the block can claim a match. In addition to the 
heuristic for matching fixed strings, Gonzalo Navarro 
and Mathieu Raffinot presented a heuristic to skip text 
characters for regular-expression matching.3

Ideally, most shift values are equal or close to the pat-
tern length m, so the time complexity is sublinear: O(n/
m). However, the time complexity 
could be O(nm) in the worst case, 
in which the system examines each 
entire search window after a shift 
of one character. Although methods 
exist to guarantee the linear worst-
case time complexity for a single 
fixed string or regular expression,3,4 
they’re rarely adopted in DPI, which 
looks for multiple patterns. Finding 
an inexpensive solution to achieve sublinear time while 
ensuring the performance in the worst case would be an 
interesting challenge to the research community.

Due to their vulnerability to algorithmic attacks, heu-
ristic-based algorithms usually are not preferable for 
network-security applications because an attacker might 
manipulate the text to degrade performance. Because 
applications such as Snort have short patterns of only one 
or two characters, the small value of m makes the advan-
tage of skipping marginal. Nevertheless, for applications 
with long patterns such as the signatures of nonpolymor-
phic viruses in the ClamAV antivirus package (www.
clamav.net), skipping over the text is still helpful.

Implementation details. Block size, mapping from the 
blocks to derive shift values, and other implementation 
details can significantly affect practical performance. 
When choosing proper parameter values, considerations 
include the size of the pattern set, block distribution, 
cache locality, and verification frequency. For example, 
a large block has fewer chances to appear in the patterns, 
resulting in less frequent verification.

However, a large block also generally implies a large 
table that stores shift values mapped from a large 
number of possible blocks, resulting in reduced cache 
locality. Careful experimenting should properly tune 
these parameters. When suspicious matches frequently 

appear, implementing an efficient method to identify the 
matched pattern is also important.

Because the block distribution might be nonuniform 
in practice, some blocks might appear more often than 
expected, shortening the shift distance and increasing 
the verification frequency. Checking the matches in addi-
tional blocks within the search window can reduce the 
frequency of verification.

Using a heuristic similar to that in Figure 1 to look 
for the longest suffix of the search window that’s also 
a substring of some pattern might result in long shift 
distance even with nonuniform block distribution. How-
ever, longer shift distance doesn’t always imply better 
performance. The overhead due to the extra examina-
tion must be carefully evaluated.

Filtering-based approach
A filtering-based approach searches text for neces-

sary pattern features and quickly excludes the content 
not containing those features. For example, if a packet 

misses any two-character sub-
strings of a pattern, the packet must 
not have that pattern. Because the 
efficiency relies on assuming that 
the signatures rarely appear in nor-
mal packets, this approach might 
suffer from algorithmic attacks if 
the attacker carefully manipulates 
the text.

Text filtering. A common method 
of text filtering is the Bloom filter, characterized by a bit 
vector and a set of k hash functions h1, h2, …, hk mapped 
to that vector. When multiple patterns are present, the 
patterns of a specific length are stored in a separate 
Bloom filter by setting to 1 the bits the patterns’ hash val-
ues address. The search queries the set of Bloom filters 
by mapping the substrings in the text under inspection 
to them with the same set of hash functions. Specifically, 
a substring x under inspection is mapped to the Bloom 
filter storing the patterns of length |x|.

If one of the bits in h1(x), h2(x), …, hk(x) isn’t set to 1, 
x certainly isn’t in the pattern set; otherwise, x might be 
in the pattern set, and we must further verify the match. 
The uncertainty comes from different patterns setting 
checked bits. The false-positive rate is a function of the 
bit-vector size, the number of patterns, and the number 
of hash functions. Properly controlling these parameters 
can reduce the false-positive rate.

Parallel queries. Parallel queries to the Bloom filters 
generally are implemented in hardware for efficiency, 
but efficient software implementation of sequential 
queries is also possible. For example, the implementa-
tion can sequentially query with a set of hash functions, 
from simple to complex ones, to look for pattern pre-
fixes of a certain length and verify a match if a prefix 
is found. The simple hash functions are designed to be 

Due to their vulnerability  
to algorithmic attacks,  

heuristic-based algorithms 
usually are not preferable for 

network-security applications.
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rapidly computed and can filter most of the 
text, so the search is still fast.

If there is a wide range of pattern lengths, 
there might be many Bloom filters because 
each length requires one. One solution is to 
limit the maximum pattern length allowed 
and break a long pattern into short ones. If 
all substrings of a long pattern appear contig-
uously and in order, that pattern is present.

The filtering-based approach doesn’t 
directly support some notations in regu-
lar expressions such as wildcards and rep-
etitions. An indirect solution is to extract 
the necessary substrings from the regular 
expressions, searching for them and verify-
ing the match if these substrings appear. For 
example, ClamAV divides the signatures 
of polymorphic viruses into ordered parts 
(substrings of the signatures) and tracks the 
orders and positions of these parts (with a 
variant of the Aho-Corasick algorithm) in 
the text to determine whether a signature 
occurs. Table 1 summarizes the key methods 
as well as the pros and cons of each.

CURRENT TRENDS IN DPI
Matching expressive pattern specifications 

with a scalable and efficient design, accelerat-
ing the entire packet flow, and string match-
ing with high-level semantics are promising 
topics for further study.

Matching expressive  
pattern specifications

Expressive pattern specifications, such as regular 
expressions, can accurately define the signatures. Effi-
cient solutions to matching regular expressions in DPI 
are therefore attracting considerable interest. Joao Bispo 
and his colleagues compared several designs for regular 
expression matching.5 Most of these designs can per-
form regular expression matching on the order of several 
gigabits per second.

Commercial products, including the Cavium 
Octeon MIPS64 processor family (www.cavium.com/
OCTEON_MIPS64.html), SafeNet Xcel 4850 (http://
cn.safenet-inc.com/products/safenetchips/index.asp),  
and Tarari RegEx5 content processor (www.lsi.com/
documentation/networking/tarari_content_processors/ 
Tarari_RegEx_Whitepaper.pdf) all claim to support 
regular expression matching at gigabit rates. String 
matching, a problem once believed to be a bottleneck, 
has become less critical given the latest advances.

Most existing research aims at intrusion-detection 
applications, especially Snort, which has thousands of sig-
natures, but antivirus applications such as ClamAV claim 
a signature set of more than 180,000 patterns to date. We 

believe a more scalable and efficient design for matching 
a huge set of expressive patterns deserves further study. 
Moreover, some patterns might belong to only a specific 
protocol or file type, and some are significant only when 
they appear in specified positions of the text.

Rather than assuming a simple model of searching for 
the whole pattern set throughout the entire text, a design 
can optimize the performance of additional information. 
An efficient software implementation for these cases is 
also desirable, since hardware accelerators aren’t always 
affordable in practical applications.

Accelerating packet content processing
Although numerous research efforts have been dedi-

cated to string matching, packet processing in DPI 
involves even more effort. Vern Paxson and colleagues 
described the insufficiency of string matching in intru-
sion detection due to its stateless nature6 and envi-
sioned a framework of architecture that attempts to 
exploit the parallelism in network analysis and intru-
sion detection for acceleration.

Similarly, virus-scanning applications might reas-
semble packets, unpack and decompress file archives, 
and handle character encoding before scanning a trans-
ferred file. Accelerating only one stage is insufficient due 
to Amdahl’s law. Meeting the high-speed demand in  

Table 1. Summary of approaches to string matching for DPI.

Automaton-based

Pros: Deterministic linear execution time, direct support of regular expressions
Cons: Might consume much memory without compressing data structure
1. Rewrite and group regular expressions
2. Reduce number of transitions (D2FA)
3. Hardwire regular expressions on FPGA
4. Track a DFA that accepts the patterns (Aho-Corasick)
5. Reduce sparse transition table (Bitmap-AC, BNFA in Snort)
6. Reduce fanout from the states (split automata)
7. Track multiple characters at a time in an NFA (JACK-NFA)

Heuristic-based

Pros: Can skip characters not in a match, sublinear execution time on average
Cons: Might suffer from algorithmic attacks in the worst case
1. Get shift distance using heuristics based on the automaton that recognizes the 
reverse prefixes of a regular expression (RegularBNDM)
2. Get shift distance from fixed block in suffix of search window (Wu-Manber)
3. Get shift distance from the longest suffix of search window (BG)

Filtering-based

Pros: Memory efficient in the bit vectors
Cons: Might suffer from algorithmic attacks in the worst case
1. Extract substrings from regular expressions, filter text with them (MultiFactRE)
2. Filter with a set of Bloom filters for different pattern lengths
3. Filter with a set of hash functions sequentially (Hash-AV)
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networking applications requires an integrated architec-
ture with hardware-supported functions.

Commercial products are on this track. For example, 
the Cavium Octeon MIPS64 processor family includes a 
TCP unit, a compression/decompression engine, and 16 
regular expression engines on a single chip, and claims 
performance of up to 5 Gbps for regular expression 
matching plus compression/decompression.

Parsing content in high-level semantics
String matching in network applications might refer to 

contextual information parsed from high-level seman-
tics.7 For example, some patterns are significant only 
within the uniform resource indicators. Spam and Web 
filtering also demand high-level semantics to analyze the 
content, as does XML processing.8 String matching with 
high-level semantic extraction and analysis from the text 
is therefore beneficial.

For example, because the Tarari random access XML 
content processor (www.lsi.com/documentation/ 
networking/tarari_content_processors/Tarari_RAX_ 
Whitepaper.pdf)can help applications directly access 
information inside XML documents without parsing, 
it accelerates XML applications significantly. The accel-
eration of semantic extraction from the text (perhaps 
with hardware support) and matching patterns with the 
semantic contextual information is worth studying, and 
will be helpful for numerous network applications.

Despite existing research, the study of string matching 
for DPI still has a way to go in the near future. In 
addition to the growing set of increasingly expressive 

patterns that makes scalability a challenge, matching with 
semantically contextual information also complicates 
the traditional model of string matching that looks for 
patterns in the text. Dealing with this complication is 
particularly significant because many existing efforts still 
use the traditional model to develop their solutions. After 
all, DPI applications rely on the packet content semantics 
to make an effective decision. These complexities require 
expending more effort to develop a scalable, efficient, and 
effective string-matching solution for DPI applications. ■
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