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What is Noninformative Statistics and How to Eliminate the 

Nuisiance Parameter�
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Abstract 

 

As we know, how to eliminate the effect 

of nuisance parameters in a statistical model 

is a difficult problem. For the single 

parameter case, we have many good results in 

our early work. But for the many nuisance 

parameter cases, this problem is not clear yet. 

����The purpose of this project is trying to 

solve this problem in several steps. It is well 

known that the Jeffrey's prior is a good prior 

and have many good properties when the 

parameter is single. However, if the 

parameter is multi dimensional, then the 

Jeffrey's prior is no longer good. So the first 

step in this project is to find a good prior on 

the high dimensional parameter space. In the 

second step, we will study the orthogonality 

of parameters. Up to now, people define the 

orthogonality of parameters only through 

mathematics formula, but we think that we 

should look at the orthogonality form the 

statistical point of view such that the 

orthogonality can be applied to the irregular 

or discrete situation. The last thing we want 

to do in this project is to discuss the 

situations in which the data does not contain 

any information about one parameter. We 
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believe that if we can solve the above 

problems, then we know how to eliminate the 

effect of the nuisance parameter. 

Keywords: nuisance parameters, likelihood            

          function, group transformation   
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    Let a statistical model be parameterized 

as (� ,� ) where � is the parameter of 

interest and �is the nuisance parameter. It is 

quite possible that a single observation does 

not contain any information about� . For 

example, if X is a random variable 

with normal distribution with mean �and 

variance� then it is reasonable to say that X 

does not contain any information about�.  

If the data contain no information about�, 

then we will hope that the likelihood function 

for �is a constant function. 

    To give a definition of "no information" 

is a difficult problem. Here, we give a 

sufficient condition for a random variable to 

contain no information about �as follows 

(This idea can also be found in 

Barndorff-Nielsen (1976) and Dawid (1975)): 

If X satisfies the condition (N) Hung and 

Wong (1996), then we can say that X 

contains no information about�. 

This definition can be justified by the 

idea of invariant test (Cox and Hinkley 1974), 

see Hung and Wong (1996). 

From experience we know that if we can 

get the "right" likelihood function when we 

have only a single observation, then we will 

get the right likelihood function for all sample 

sizes. Therefore, we believe that one should 

pay more attention on the case when the 

sample size is unity. In this research, we will 

discuss the relationship between the average 

likelihood and the noninformative statistic in 

the group transformation models. 

 

(1) 

In a group transformation model, if the group 

G can be embedded into the real line such that 

the composition and inverse operators are 

both continuous functions, then there  exists 

h(�) such that h(�)� =g-1 and ���, 

i.e., �is orthogonal to g� h(�). 

(2) 

Let X1 and X2 have densities p(x), q(x) 

respectively. Suppose h is a one-to-one 

transformation of X, and let p'(x), q'(x) 

denote the densities of h(X1) and h(X2) 

respectively, then 

(3) 

Let ��(dg) denote �(g|�)dg, then ��(dg) 

is a left invariant measure on G. Since all the 

left invariant measures on G are up to some 

constant and the choice of weighting function 

in average likelihood is also up to some 

constant, we can choose � � (dg) to be 

independent of �, say �(dg). 

(4) 

Let G be a unimodular group and Y� f(y;

�,g) satisfies condition (N), and conditions 

in Lemma 2.1, then the average likelihood 

function of�is a constant function. 

(5) 

Let X1, X2, ... , Xn are i.i.d. f(x|�, g), such 

that for each�the family f(x|�, g) satisfies 

the condition (N). Then the marginal 

distribution of (X1
-1 �X2, X1

-1 
	X_3, ... , 

X1
-1 �Xn ) depends only on�. And the 

conditional distribution of X1 given (X1
-1 �
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X2, X1
-1  	X3,..., X1

-1 �Xn)  satisfies the 

condition (N).  

(6) 

Assume X1 X2, ..., Xn satisfies the conditions 

in 5. Then the average likelihood function of 

� is proportion to the marginal density of 

(X1
-1 �X2, X1

-1  	X3,..., X1
-1 �Xn). 

(7) 

In the group transformation model, we 

require that the group is unimodular. This is a 

reasonable assumption. In fact, the compact 

groups (e.g. rotation group), finite groups (e.g. 

finite permutation group), denumerable 

discrete groups (e.g. integer) and abelian 

groups (e.g. scale and location groups) are all 

unimodular. 

 

�������

Barndorff-Nielsen, O.(1973), "On 

Mancillary", Journal of Biometrika(1973), 60, 

3, p.447-455. 

 

Barndorff-Nielsen, O.(1976), 

"Nonformation",  Journal of 

Biometrika(1976), 63, 3, p.567-571. 

 

Fisher, R. A.(1935) "The logic of inductive 

inference", Journal of the Royal Statistic 

Society(1935), 98, p.39-54. 

 

Hung, H.N. and Wong W.H. (1996) "Average 

Likelihood". Technical report, University of 

Chicago. 

 

Sprott, D. A.(1975), "Marginal and 

conditional sufficiency", Journal of 

Biometrika, 62, 3, p.599-605. 


