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Abstract 

 

The generalized stability factor of a 

general resonator was obtained from its 

iterative map based on the linear stability 

analysis.  Since a physical system tends to 

stay with high stability, the preferred 

resonator for Kerr-lens mode-locking is 

determined by the relative stability between 

Kerr-lens mode-locking and cw operations.  

With this criterion the preferable Kerr-lens 

mode-locking regions agree with the previous 

experimental self-starting regions. 
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In recent years, an approach borrowed 

from the nonlinear dynamics has been used to 

study the dynamics of laser resonators [1-3].  

By constructing the iterative maps from the 

beam parameters, the dynamics is very 

sensitive to nonlinear effect in some special 

cavity configurations within the geometrically 

stable region. 

In a Kerr-lens mode-locking (KLM) 

resonator, which is a well-known nonlinear 

resonator for femtosecond pulse generation, 

the self-focusing effect within a Kerr medium 

modifies the cavity mode profile [4,5] to 

introduce a self-amplitude modulation (SAM).  

Although it was believed that the KLM 

Ti:sapphire lasers could not start without 

initial perturbation because of too low 

nonlinear SAM, several groups had reported 

self-starting KLM Ti:sapphire lasers without 

perturbation [6-8].  The self-starting KLM 

lasers can be achieved by a carefully 

analytical cavity design [9,10] to optimize 

dynamic loss modulation for hard aperturing 

[6] or dynamic gain modulation for soft 

aperturing [7,8].  

Because the Kerr parameter, the beam 

power over the critical power of self-trapping 

[11], can be used to distinguish the laser 

resonators operating at KLM or cw in the 

spatial domain [9-12], we will construct 

two-dimensional map corresponding to 

curvature and spot size.  The eigenvalue of 

the map represents the variant rate of the 

dynamic system against a small perturbation.  
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Comparing the eigenvalues between KLM 

and cw operations, we can define the relative 

stability and obtain the preferred 

configurations for KLM resonators. 
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� � Consider a dynamic system evolving 

with an n-dimensional state vector y governed 

by 

  n

k RyyFy ∈=    ),;(& ,       (1) 

where k is the dynamical parameter.  Using 

the linear stability analysis, the time 

evolution of a small perturbation on the state 

vector, u = δy, at the fixed point can be 
written as [13] 
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where DyF is the derivative of F to state 

vector y and )(
2

uO  denotes the order of 

norm of u on Rn to the second power.  As a 

result, the dynamic stability at the fixed point 

is simply determined by solving Eq. (2).  

This is equivalent to calculate the eigenvalues 

of the Jacobian matrix at the fixed point for a 

system governed by an iterative map.  The 

system is dynamically stable when all the 

moduli of eigenvalues are less than unity and 

it is unstable if at least one of them is greater 

than one.  Therefore, the stability of the 

system determined by the dynamic stability 

of the map is governed by the largest 

modulus of the eigenvalues.  The largest 

modulus of the eigenvalues, presented as χ is 
defined as the stability factor of the dynamic 

system. When the dynamic system F(y;k) is 

subjected to a small increment of dynamical 

parameter from k to k+δk, the time evolution 
of small perturbation on the state vector 

becomes 
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Similarly, the stability of the system with 

dynamical parameter k+δk is determined by 
solving Eq. (3) for the field or calculating 

equivalently the eigenvalues of the Jacobian 

matrix for the map at the fixed point.  

Moreover, it is worth to note that the χ 
represents the convergent (or divergent) rate 

of the system against a small perturbation.  

The value of χ is the smaller, the mode is the 
more stable.  Thus, the relative stability 

between the systems with a small successive 

increment of k can be defined by  

  ( ) ( ) ( )
k

kkk
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χδχ
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The dynamic system tends to stay at the 

lower stability factor, so γ(k) < 0 represents 
more stable with increment of k. 

 The iterative map for the resonator 

configuration is derived from propagating the 

complex beam parameter q in the cavity.  

By adopting the transfer matrix of the 

q-parameter propagating across the Kerr 

medium [11], we can obtain all matrices for 

Gaussian beam across all optical components.  

Then the iterative map is easily derived from 

ABCD law [14].  Assuming that 

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is the round-trip transfer matrix and the 

reference plane chosen to be just after the 

beam leaving the end mirrors M1.  We can 

relate the q-parameter of the (n+1)-th 

round-trip to the n-th one as 
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     (6) 

Then we obtained the two-dimensional 

iterative map, which the time interval is equal 

to round-trip time of the resonator.  The 

fixed point, ( )
00

,wR , of the map is the 

self-consistent solution of the geometrical 

resonator, i.e., the steady-state solution 

[9,10] 

 Solving the eigenvalues of Jacobian 

matrix at the fixed point on the map, we get 

the stability factor 
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where the subscript r and i represent the real 

and imaginary parts of the elements in the 

round-trip transfer matrix. 

   When all optical components are 

represented as the first-order real transfer 

matrices, we have proved that the dynamical 

behavior of the map is equivalent to the 

behavior of the simple harmonic oscillation.  

The iterative map belongs to a Hamiltonian 

system.  Furthermore, the loss optical 

component is usually represented as the 

transfer matrix having the complex elements 

and the dynamical behavior becomes a 

damping oscillation and the imaginary part of 

the matrix element corresponds to the 

damping parameter, it is still governed by its 

Hamiltonian [2].  The real system always 

has loss such as the mirror having finite 

extend.  A Gaussian function is usually used 

to taper the mirror with finite extend as a loss 

component [16] and the taper constant will 

correspond to the damping parameter.  

When the loss is included, the stability factor 

stands for the converge rate of the system 

against perturbation.  Under the same 

damping parameter, the faster converge rate 

with the smaller stability factor implies the 

more stable of the system between neighbor 

dynamical parameter.  

The system with the variation of the 

Kerr effect is still equivalent to the simple 

harmonic oscillation and just has different 

focusing strength for different K.  Whether 

this “oscillator” prefers to operate at the cw 

operation (K=0) or KLM operation (K>0) is 

determined by the relative stability 
 

0

0

=

=
K

Kδ
δχγ .         (8) 

If γ0<0, KLM operation have faster converge 

rate against perturbation than cw one under 

the same damping parameter.  In other word, 

the KLM operation is more stable than cw 

one in such resonator structure.  We will use 

the criterion, γ0<0, to determine the resonator 
for preferable KLM operation.  It is worth 

to note that the map has only one fixed point 

associated with the steady-state solution for 

a fixed K.  This fixed point stands for cw 

operation as K=0 and KLM operation as 

K>0.  Discussing the stability neighbor K=0 

is capable to determine the tendency about 

the resonator preferring toward KLM or cw 

operation. 
��������
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For comparing the theoretical results 

with the experimental data [6], our studies 

focused on the symmetrically hard aperturing 

KLM resonator.  The resonator’s 

parameters, shown in Fig.1, are the same as in 

Ref. [6].  The equal arms d1 and d2 are 850 

mm, the radii of curvature on the curved 

mirrors M2 and M3 are both 100 mm, and the 

Brewster-cut Ti:sapphire rod is L=20 mm.  

Considering the astigmatism compensation of 

Brewster-cut about the rod, the curved 

mirrors are tilted by θ=14.50.  The 

separation of the curved mirrors, z, and the 

distance, x, between the curved mirror M2 

and the rod endface I are the adjustable 

variables.  Moreover, we considered the 

resonator as two orthogonal astigmatic 

optical systems corresponding to the 
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tangential and sagittal planes, then we will 
construct the iterative maps for 

corresponding planes.  In a hard aperturing 

KLM laser, one normally inserts a slit near 

M1 to constrain the tangential spot size.  

Thus, the map of tangential plane determines 

the stability of the resonator from calculating 

the eigenvalues of the map’s Jacobian matrix 

at the fixed point.  The hard aperturing with 

δ<0 [6], δ denoting as the small signal relative 
spot size variation, represents that the 

system has the capability to sustain the 

KLM operation.  Of course, the system also 

has the capability to sustain the cw operation 

due to the resonator satisfying with 

geometrically stable condition.  Whether the 

resonator prefers the KLM operation is 

further determined by γ0 of tangential plane.   
 The dynamical behavior of the system is 

governed by its Hamiltonian and the loss 

associates with the damping effect.  The 

preferable operation will not change as 

varying the tapering constant.  The 

numerical verification is shown in Fig. 2.  

Fig. 2 shows the relation between γ0 and the 
tapering constant with z=116.5 mm.  Owing 

to the tapering constant just corresponding to 

the damping parameter, we simplified to add 

a Gaussian tapering at M4.  From Fig. 2, the 

tendency is classified into two cases.  One is 

that γ0 is always greater than zero and a 
monotonically decreasing function of the 

tapering constant such as at x=45 mm in Fig. 

2.  The other has contrary change with γ0 
being always less than zero and increasing γ0 
against the tapering constant such as at x=50 

mm in Fig. 2.  Although γ0 depends on the 
tapering constant for a resonator, the sign of 

γ0 is unchanged, i.e., the preferable operation 
(γ0<0 for KLM or γ0>0 for cw) of the 
resonator is independent of the tapering 

constant.  The result agrees with the 

previous discussion.  Thus the tapering 

constant is set as 10 cm in the following 

simulations. 

For example, at z=116.5 mm and x=50 

mm, the stability factor is a monotonically 

decreasing function of K and the relative 

stability γ0<0.  The laser system is more 
stable by appending power to mode-locking 

rather than to cw and the resonator prefers 

the KLM operation.  In fact, the stability 

factor is not always a monotonically 

decreasing function of K for some z and x 

with the relative stability γ0<0.  They have 
one minimum stability factor under the 

reasonable range of K value in experiments 

(K<0.4).  Owing to the K standing for the 

beam power of the KLM laser, the above 

cases represent that the higher power 

operation is unstable than the lower power 

one and these resonators are not easy to 

obtain higher KLM power.  This 

phenomenon had been observed in various 

experiments, e.g., Ref. [18]. 

The contour figure of γ0 as a function of 
z and x in the tangential plane is shown in Fig. 

3 where the dot marks are the duplicated 

self-starting results in Ref. [6] for comparison.  

The resonator configuration with γ0<0 prefers 
to KLM operation when a mechanism, such 

as the hard aperturing in this case, has 

capability to sustain the KLM and cw 

operations.  We find that the regions with 

γ0<0 agree with the self-starting regions of 
Ref. [6] when the Kerr medium is placed 

around the center of the resonator.  

However, when the Kerr medium is placed 

far away the center of the resonator, the beam 

waist may be located far away the center of 

Kerr medium or outside the material.  Then 

the effects of beam focalization [11] and the 

efficiencies of extracting power from gain 

medium must be considered in practice.  We 

think that this is main reason for unpredicted 

results of our method.  Owing to the 
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strength of mechanical tapping may be 

beyond that of the intrinsic perturbation 

discussed above to cause large cavity 

structure change, our simple approach is not 

suitable for the KLM initiated by mechanical 

tapping.   
On the other hand, another approach 

borrowed from the classical mechanics can 

also be used to verify the previous results.  

We can obtain the Hamiltonian for a resonator 

without considering the loss, which is the 

function of K and donated as H(K).  

Because the Hamiltonian represents the 

energy of the harmonic oscillation system and 

the system prefers to stay at the lower 

energy, 
0

)(

0

<
=K

K

KH

δ
δ  stands for the 

system having lower energy with larger K and 

it preferring to operate at the K>0 (KLM 

operation).  From our numerical experiment, 

the same regions of the preferable resonators 

for Kerr-lens mode-locking are obtained from 

these two approaches.  This result also 

verifies that the dynamical behavior about the 

preferable operation is governed by the 

Hamiltonian whatever the system is loss or 

lossless. 

Due to the nature of KLM resonator is 

sensitive to geometrical configuration, the 

dynamics of Gaussian beam in bare resonator 

may govern the preferable condition for 

self-starting KLM.  As a result, even though 

we do not consider the mechanism of the 

self-starting in KLM resonator, the regions 

with γ0<0 agree with the self-starting regions 
of experiment.  Moreover, not only the δ<0 
region contains γ0<0 but also γ0 is always 
greater than zero in the region with δ>0.  
From this result, γ0<0 seems to be more strict 
condition than the one with δ<0.   In 
addition, we can optimize the resonator 

design by the minimizing γ0.  The minimum 
γ0 in the whole region is –8.06x10-4 at 
z=116.1 mm and x=50 mm under above 

mentioned resonator parameters.  The 

optimal hard aperturing KLM laser is favor 

to operate near the confocal edge of the 

geometrically stable region.  This result also 

agrees with the previous one that the KLM 

favors to operate at the borders of the 

stability region [6]. 
�
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	 By considering a two-dimensional 

iterative map derived from the propagation of 

q-parameter, we have generalized the stability 

factor as the modulus of eigenvalue at fixed 

point.  The system tends to operate at 

lower stability factor as a successive variation 

on dynamical parameter k because the 

stability factor corresponds to converging 

rate against perturbation.  We find that the 

variation of stability factor with respect to 

the Kerr parameter provides an available 

criterion for studying self-starting KLM 

lasers in the bare resonator with Kerr-lens 

effect only.  As a result, the numerical 

simulation agrees with previous self-starting 

experimental data in the hard aperturing 

KLM lasers.  In addition, this effective 

procedure can be used to study preferable 

resonator configuration for three-mirror KLM 

or the other mode competition systems.  

One can obtain optimal resonator designs 

based on simple mathematical calculations. 
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