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Abstract

The generalized stability factor of a
general resonator was obtammed from its
lterative map based on the linear stability
analysis. Since a physical system tends to
stay with lugh stability, the preferred
resonator for Kerr-lens mode-locking 1s
determined by the relatrve stability between
Kerr-lens mode-locking and cw operations.
With this cniterion the preferable Kerr-lens
mode-locking regions agree with the previous
experimental self-starting regions.
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In recent years, an approach borrowed
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from the nonlinear dynamics has been used to
study the dynamics of laser resonators [1-3].
By constructing the iterative maps from the
beam parameters, the dynamics 1s very
sensitive to nonlinear effect m some special
cavity configurations within the geometrically
stable region.

In a Kemn-lens mode-locking (KLM)
resonator, which is a well-known nonlinear
resonator for femtosecond pulse generation,
the self-focusing effect within a Kerr medium
modifies the cavity mode profile [4,5] to
introduce a self-amplitude modulation (SAM).
Although 1t was believed that the KLM
Tisapphire lasers could not start without
mitial perturbation because of too low
nonlinear SAM, several groups had reported
self-starting KLM Ti:sapphire lasers without
perturbation [6-8]. The self-starting KLM
lasers can be achieved by a carefully
analytical cavity design [9,10] to optimize
dynamic loss modulation for hard aperturing
[6] or dynamic gam modulation for soft
aperturing [7,8].

Because the Kemr parameter, the beam
power over the ciitical power of self-trapping
[11], can be used to distinguish the laser
resonators operating at KLM or cw in the
spatial domamn [9-12], we will construct
two-dimensional map cormresponding to
curvature and spot size. The eigenvalue of
the map represents the varant rate of the
dynamic system against a small perturbation.



Comparing the eigenvalues between KLM
and cw operations, we can define the relative
stabiity and obtam the preferred
configurations for KLM resonators.
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Consider a dynamic system evolving
with an n-dimensional state vector y governed
by

y=F(Q;k), yeR", (L
where k 1s the dynamical parameter. Using
the linear stability analysis, the ftiume
evolution of a small perturbation on the state
vector, u = §, at the fixed point can be
written as [13]

u=[D F(y;k)]u+ O(|u|2) N )
where D,F is the dervative of F to state
vector y and O(|u|2) denotes the order of

norm of u on R"*to the second power. As a
result, the dynamic stability at the fixed point
1s simply determined by solving Eq. (2).
This is equivalent to calculate the eigenvalues
of the Jacobian matrix at the fixed point for a
system governed by an iteratrve map. The
system is dynamically stable when all the
moduli of eigenvalues are less than unity and
1t is unstable if at least one of them 1s greater
than one. Therefore, the stability of the
system determined by the dynamic stability
of the map 1s govermed by the largest
modulus of the eigenvalues. The largest
modulus of the eigenvalues, presented as y is
defined as the stability factor of the dymnamic
system. When the dynamic system F(;k) is
subjected to a small increment of dynamical
parameter from k to k+3k, the time evolution
of small perturbation on the state vector
becomes

i=[D,F(y:¥)u~+

J[D  F(y: )] d[D , EF(y:¥)] oy,
{ ¥ +Zi: oy, Ch ] }6]’7"
+ O (||*)
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Similarly, the stability of the system with
dynamical parameter k+dk 1s determuned by
solving Eq. (3) for the field or calculating
equivalently the eigenvalues of the Jacobian
matrx for the map at the fixed point.

Moreover, it is worth to note that the y
represents the convergent (or divergent) rate
of the system agamnst a small perturbation.
The value of x is the smaller, the mode is the
more stable. Thus, the relative stability
between the systems with a small successive
increment of k can be defined by

)= L o2k SR -y (k) (4
ok ok
The dynamic system tends to stay at the
lower stability factor, so (k) < O represents
more stable with increment of k.

The iterative map for the resonator
configuration is derrved from propagating the
complex beam parameter ¢ n the cavity.
By adopting the transfer matrnx of the
¢-parameter propagating across the Kermr
medium [11], we can obtain all matrices for
Gaussian beam across all optical components.
Then the iteratrve map 1s easily derrved from

ABCD law [14]. Assuming that [21 ;]

1s the round-tnp transfer matrx and the
reference plane chosen to be just after the
beam leaving the end mirrors M;. We can
relate the q-parameter of the (nt+l)-th
round-trip to the n-th one as
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Then we obtamed the two-dimensional
1terative map, which the time mterval is equal
to round-trip time of the resonator. The
fixed point, (R,,w,), of the map is the
self-consistent solution of the geometrical
resonator, 1e., the steady-state solution
[9,10]

Solving the eigenvalues of Jacobian
matrx at the fixed point on the map, we get
the stabihity factor

4 =[[A,_ +§—;+ j—é) +[A, +%— f\/_v?] }

(N
where the subscript r and 1 represent the real
and 1maginary parts of the elements in the
round-trip transfer matrix.

When all optical components are
represented as the first-order real transfer
matrices, we have proved that the dymnamical
behavior of the map i1s equivalent to the
behavior of the simple harmonic oscillation.
The iterattve map belongs to a Hamiltonian
system.  Furthermore, the loss optical
component 1s usually represented as the
transfer matrix having the complex elements
and the dynamical behavior becomes a
damping oscillation and the mmagmary part of
the matrix element corresponds to the
damping parameter, 1t 1s still governed by its
Hamiltomian [2]. The real system always
has loss such as the mirror having finite
extend. A Gaussian function is usually used
to taper the mirror with fimte extend as a loss
component [16] and the taper constant wil
correspond to the damping parameter.
When the loss is included, the stability factor
stands for the converge rate of the system
against pertwbation.  Under the same
damping parameter, the faster converge rate
with the smaller stability factor implies the
more stable of the system between neighbor
dynamical parameter.

The system with the variation of the
Kerr effect 1s still equivalent to the smmple
harmonic oscillation and just has different
focusing strength for different K. Whether
this “oscillator” prefers to operate at the cw
operation (K=0) or KLM operation (K>0) is
determined by the relative stability
®)

If v<0, KLM operation have faster converge
rate against perturbation than cw one under
the same damping parameter. In other word,
the KLM operation i1s more stable than cw
one in such resonator structure. We will use
the criterion, yy<0, to determine the resonator
for preferable KLM operation. It is worth
to note that the map has only one fixed point
assoclated with the steady-state solution for
a fixed K. This fixed pomt stands for cw
operation as K=0 and KLM operation as
K>0. Discussing the stability neighbor K=0
1s capable to determine the tendency about
the resonator preferring toward KLM or cw
operation.

M B RETR

For comparing the theoretical results
with the experimental data [6], our studies
focused on the symmetrically hard aperturing
KLM  resonator. The resonator’s
parameters, shown in Fig.1, are the same as in
Ref [6]. The equal arms d; and d, are 850
mm, the radi of cwrvature on the curved
mirrors M, and M; are both 100 mm, and the
Brewster-cut Tisapphire rod is L=20 mm.
Considernng the astigmatism compensation of
Brewster-cut about the rod, the curved
mirrors are tilted by 6=14.5" The
separation of the curved murrors, z, and the
distance, x between the curved mirror M,
and the rod endface I are the adjustable
variables.  Moreover, we considered the
resonator as two orthogonal astigmatic
optical systems comesponding to the



tangential and sagittal planes, then we will
construct  the  iterattve maps  for
corresponding planes. In a hard aperturing
KLM laser, one normally inserts a slit near
M; to constrain the tangential spot size.
Thus, the map of tangential plane determunes
the stability of the resonator from calculating
the eigenvalues of the map’s Jacobian matrix
at the fixed pomt. The hard aperturning with
&<0 [6], ddenoting as the small signal relatrve
spot size variation, represents that the
system has the capabiity to sustamn the
KLM operation. Of course, the system also
has the capability to sustain the cw operation
due to the 1esonator satisfymg with
geometrically stable condition. Whether the
resonator prefers the KLM operation is
further determined by vy, of tangential plane.
The dynamical behavior of the system is
governed by its Hamiltonian and the loss
assoclates with the damping effect. The
preferable operation will not change as
varying the tapering constant. The
numerical verification 1s shown m Fig. 2.
Fig. 2 shows the relation between yy and the
tapering constant withz=116.5 mm. Owing
to the tapering constant just corresponding to
the damping parameter, we simplified to add
a Gaussian tapering at M;. From Fig. 2, the
tendency is classified into two cases. One 1s
that v is always greater than zero and a
monotonically decreasing function of the
tapering constant such as at x=45 mm 1n Fig.
2. The other has contrary change with v,
being always less than zero and increasing 7y,
against the tapenng constant such as at x=50
mm in Fig. 2. Although v, depends on the
tapering constant for a resonator, the sign of
Yo 1s unchanged, 1e., the preferable operation
(<0 for KLM or >0 for cw) of the
resonator is independent of the tapering
constant.  The 1result agrees with the
previous discussion. Thus the tapering

constant is set as 10 cm in the following
simulations.

For example, at z=116.5 mm and x=50
mm, the stability factor is a monotonically
decreasing function of K and the relative
stability <0. The laser system 1s more
stable by appending power to mode-locking
rather than to cw and the resonator prefers
the KLM operation. In fact, the stability
factor 1s not always a monotonically
decreasing function of K for some z and x
with the relatve stability v<0. They have
one minmum stability factor under the
reasonable range of K wvalue in experiments
(K<0.4). Owing to the K standing for the
beam power of the KLM laser, the above
cases represent that the higher power
operation 1s unstable than the lower power
one and these resonators are not easy to
obtammn higher KLM power. Thas
phenomenon had been observed i various
experiments, e.g., Ref. [18].

The contour figure of v, as a function of
z and x In the tangential plane 1s shown in Fig.
3 where the dot marks are the duplicated
self-starting results in Ref. [6] for comparison.
The resonator configuration with <0 prefers
to KLM operation when a mechanism, such
as the hard aperturing in this case, has
capability to sustamm the KLM and cw
operations. We find that the regions with
v%<0 agree with the self-starting regions of
Ref. [6] when the Kerr medium 1s placed
around the center of the resonator.
However, when the Kerr medium 1s placed
far away the center of the resonator, the beam
waist may be located far away the center of
Kerr medium or outside the material. Then
the effects of beam focalization [11] and the
efficiencies of extracting power from gain
medium must be considered in practice. We
think that this 1s main reason for unpredicted
results of ouwr method. Owing to the



strength of mechanical tapping may be
beyond that of the mtrnsic perturbation
discussed above to cause large cavity
structure change, our simple approach is not
suitable for the KLM 1nitiated by mechanical
tapping.

On the other hand, another approach
borrowed from the classical mechanics can
also be used to verfy the previous results.
We can obtain the Hamiltonian for a resonator
without considering the loss, which is the
function of K and donated as H(K).
Because the Hamiltonian represents the
energy of the harmonic oscillation system and
the system prefers to stay at the lower

eneIgy, SH (K) stands for the
oK K=0

system having lower energy with larger K and
1t preferring to operate at the K>0 (KLM
operation). From our numerical experiment,
the same regions of the preferable resonators
for Kerr-lens mode-locking are obtained from
these two approaches. This result also
verifies that the dynamical behavior about the
preferable operation 1s governed by the
Hamiltonian whatever the system is loss or
lossless.

Due to the nature of KLM resonator 1s
sensitive to geometrical configuration, the
dynamics of Gaussian beam in bare resonator
may govern the preferable condition for
self-starting KLM. As a result, even though
we do not consider the mechanism of the
self-starting m KLM resonator, the regions
with <0 agree with the self-starting regions
of experiment. Moreover, not only the 6<0
region contains %<0 but also vy 15 always
greater than zero in the region with &0.
From this result, yp<0 seems to be more strict
condition than the one with &0. In
addition, we can optimize the resonator
design by the minimizing y,. The minimum
T in the whole region is -8.06x107* at
z=116.1 mm and x=50 mm under above

<0

mentioned resonator parameters. The
optimal hard aperturing KLM laser is favor
to operate near the confocal edge of the
geometrically stable region. This result also
agrees with the previous one that the KLM
favors to operate at the borders of the
stability region [6].

FANETE

By considering a two-dimensional
lterative map derved from the propagation of
c-parameter, we have generalized the stability
factor as the modulus of eigenvalue at fixed
pomt. The system tends to operate at
lower stability factor as a successive variation
on dynamical parameter k because the
stability factor comesponds to converging
rate against pertwrbation. We find that the
variation of stability factor with respect to
the Kemr parameter provides an available
criterion for studying self-starting KLM
lasers in the bare resonator with Kerr-lens
effect only. As a result, the numercal
simulation agrees with previous self-starting
experimental data n the hard aperturing
KLM lasers. In addition, this effectmve
procedure can be used to study preferable
resonator configuration for three-mirror KLM
or the other mode competition systems.
One can obtain optimal resonator designs
based on simple mathematical calculations.
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