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Abstract

The cell formation problem determines the decomposition of the manufacturing cells of a production system in which machines are
assigned to these cells to process one or more part families so that each cell is operated independently and the intercellular movements are
minimized or the number of parts flow processed within cells is maximized. In this study, a simple yet effective simulated annealing-based
approach, SACF, is proposed to solve the cell formation problem. Considerable efforts are devoted to the design of parts and machine
assignment procedures to direct SACF to converge to solutions with good values of grouping efficacy. A set of 25 test problems with
various sizes drawn from the literature is used to test the performance of the proposed heuristic algorithm. The corresponding results
are compared to several well-known algorithms published. The comparative study shows that the proposed SACF algorithm improves
the grouping efficacy for 72% of the test problems. The proposed algorithm should thus be useful to both practitioners and researchers.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

To make manufacturing systems more efficient and pro-
ductive, group technology (GT) has been applied within a
manufacturing environment. GT groups parts with similar
design characteristics or manufacturing characteristics into
part families. One application of GT is cellular manufac-
turing (CM). A number of benefits arise from adopting
CM, such as: reduced inventory, reduced capacity, reduced
labor and overtime costs, shorter manufacturing lead
times, faster response to internal and external changes such
as machine failures, product mix and demand changes
(Wemmerlov & Hyer, 1989). Information such as parts to
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be produced, process plans and machines to perform all
the required operations is needed when designing CM.
The entire production system is decomposed into produc-
tion cells. Machines are then assigned to these cells to pro-
cess one or more part families so that each cell is operated
independently and so that the intercellular movements are
minimized or the number of part flow processed within
cells is maximized, i.e., parts do not have to move from
one cell to the other for processing.

This cell formation process is one of the most important
steps in CM. It becomes difficult to obtain optimal solu-
tions in an acceptable amount of time, especially for prob-
lems with large sizes. Extensive research has been devoted
to cell formation (CF) problems, with many methods hav-
ing been proposed for identifying machine cells and part
families. Many of them are developed on the basis of heu-
ristic clustering techniques to obtain approximate solu-
tions, but some of them may be far from optimum. The
research of Moon and Kim (1999) takes into account the
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process plans for parts and manufacturing factors such as
production volume and cell size. Their process of forming
manufacturing cells starts by collecting the above problem
data and then converting it into a weighted graph represen-
tation in which the nodes and arcs represent machines and
their relationships defined as the value of total part flow
between machines, respectively. Similar representations
have been used by Rajagopalan and Batra (1975), Harlala-
kis, Nagi, and Proth (1990), Vohra, Chen, Chang, and
Chen (1990), and Wu and Salvendy (1993) with different
problem concerns. Some of them (Rajagopalan & Batra,
1975; Harlalakis et al., 1990) consider the situation where
the size of each cell and the number of cells to be formed
has to be restricted, while some of them (Vohra et al.,
1990; Wu & Salvendy, 1993) did not.

Due to their excellent performance in solving combinato-
rial optimization problems, meta-heuristic algorithms such
as genetic algorithms, simulated annealing, neural networks
and tabu search make up another class of search methods
that has been adopted to efficiently solve the CF problem
and its variants with good results obtained. Sun, Lin, and
Batta (1995) presented a short-term tabu search-based algo-
rithm for solving the CF problem with the objective of min-
imizing the intercellular parts flows, while Wu, Low, and
Wu (2004) maximizes the parts flow within cells using
long-term tabu search-based algorithm. Aljaber, Baek,
and Chen (1997) proposed a tabu search approach to deal
with this problem by modeling it as a shortest spanning
path problem with respect to both parts and machines.
The resulting spanning paths for parts and machines are
then decomposed into subgraphs representing machine
groups and part families, respectively. Cheng, Gupta, Lee,
and Wong (1998) formulated the CF problem as a traveling
salesman problem (TSP) and proposed a solution method-
ology based on genetic algorithm, while Dimopoulos and
Mort (2001) presented a hierarchical clustering approach
based on genetic programming. Onwubulo and Mutingi
(2001) developed a genetic algorithm, which accounts for
inter-cellular movements and the cell-load variation.
Conçalves and Resende (2004) presented a hybrid algo-
rithm combining a local search and a genetic algorithm with
very promising results reported.

The purpose of this study is to develop a procedure
that is efficient and effective for obtaining machine–part
groupings when the manufacturing system is represented
by a 0–1 machine–part incidence matrix. Since simulated
annealing (SA) has been applied to a number of combina-
torial problems with fairly good results obtained, it was,
Parts 
P1 P2 P3 P4 P5 

M1 1 0 0 1 0 
M2 0 1 1 0 1 
M3 1 0 0 1 0 
M4 0 1 1 0 1 

Machines

M5 1 0 0 1 0 

M

Fig. 1. Rearrangement of rows and columns of matrix to create
hence, selected in this research as the basis for developing
search methods for the CF problem. SA can be viewed as
a process which attempts to move from the current solu-
tion to its neighborhood solutions resulting in better
objective values. However, for solutions with worse objec-
tive values, they are accepted with a specified probability
mainly to escape from the local optima in its search for
the global optima. A set of 25 test problems with various
sizes drawn from the literature is used to test the perfor-
mance of the proposed heuristic algorithm. The corre-
sponding results are compared to several well-known
algorithms published.

The remainder of this article is organized as follows. In
Section 2, we describe the problem definition. The pro-
posed SA heuristic is presented in Section 3. Section 4
shows the computational results on problems with various
sizes, and Section 5 concludes the paper.

2. Cell formation problem

Cell formation in a given 0–1 machine–part incidence
matrix involves rearrangement of rows and columns of
the matrix to create part families and machines cells. In this
research, we attempt to determine a rearrangement so that
the inter-cellular movement can be minimized and the uti-
lization of the machines within a cell can be maximized.
Two matrices shown in Fig. 1 are used to illustrate the con-
cept. Fig. 1a is an initial matrix where no blocks can be
observed directly. After rearrangement of rows and col-
umns, two blocks can be obtained along the diagonal of
the solution matrix in Fig. 1b.

There have been several measures of goodness of
machine–part groups in cellular manufacturing in the liter-
ature. Two measures frequently used are the grouping effi-
ciency (Chandrashekharan & Rajagopalan, 1986a) and the
grouping efficacy (Kumar & Chandrasekharan, 1990) due
to they are easy to implement. Grouping efficiency g is
defined as follows:

g ¼ qg1 þ ð1� qÞg2

where g1 is the ratio of the number of 1’s in the diagonal
blocks to the total number of elements in the diagonal
blocks of the final matrix, g2 is number of 0’s in the off-
diagonal blocks to the total number of elements in the
off-diagonal blocks of the final matrix, and q is a weight
factor. For those 1’s outside the diagonal blocks, they are
called ‘‘exceptional elements’’; while those 0’s inside the
diagonal blocks are called ‘‘voids’’.
Parts 
P2 P3 P5 P1 P4 

M2 1 1 1 0 0 
M4 1 1 1 0 0 
M1 0 0 0 1 1 
M3 0 0 0 1 1 

achines

M5 0 0 0 1 1 

cells: (a) initial matrix and (b) matrix after rearrangement.
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Although grouping efficiency has been used widely, it
was argued for its low discriminating capability in some
cases affected by the size of the matrix. To overcome this
problem, Kumar and Chandrasekharan (1990) proposed
another measure, the grouping efficacy C, and can be
defined as:

C ¼ e� e0

eþ ev

where e is the total number of 1’s in the matrix; e0 is the
total number of exceptional elements; and ev is the total
number of voids. Grouping efficacy ranges from 1 to 0,
with 1 being the perfect grouping. As grouping efficacy
has been widely accepted in recent studies regarding CF
problem, it is used as the performance measure for the pro-
posed SA algorithm in this study.
P1 P2 P3 P4 P5 
M1 1 0 0 1 0 

P1 P2 P3 P4 P5 
P1 - 0 0 0.33 0 
3. Simulated annealing approach

Simulated annealing (SA) algorithm was originally pro-
posed by Metropolis, Rosenbluth, and Teller (1953) to
simulate the annealing process. SA starts with a high tem-
perature. After generating an initial solution, it attempts to
move from the current solution to one of its neighborhood
solutions. The changes in the objective function values
(DE) are computed. If the new solution results in better
objective value, it is accepted. However, if the new solution
yields worse value, it can still be accepted according to the
probability function, P(DE) = exp(�DE/kBT), where kB is
Boltzmann’s constant and T is the current temperature.
This check is performed by first selecting a random num-
ber from (0,1). If the value is less than or equal to the
probability value, the new configuration is accepted; other-
wise, it is rejected. By accepting worse solutions, SA can
avoid being trapped on local optima. SA repeats this pro-
cess L times at each temperature to reach the thermal equi-
librium, where L is a control parameter, usually called the
Markov chain length. The parameter T is gradually
decreased by a cooling function as SA proceeds until the
stopping condition is met.
M2 0 1 1 0 1 
M3 1 0 0 0 0 
M4 0 1 1 0 0 
M5 0 0 0 1 0 

P2 - 1 0 0.5 
P3 - 0 0.5 
P4 - 0 
P5 - 

Fig. 2. Sample machine–part matrix and corresponding similarity matrix
for parts: (a) machine–part matrix and (b) similarity matrix for parts.

Cell 1 Cell 2 
P2 P3 P5 P1 P4 
3.1. Initial solution

Since the CF problem considers the grouping of parts
and machines, an intuitive solution approach is to decom-
pose the entire problem into two subproblems dealing with
parts assignment and machines assignment, respectively.
When parts assignment is firstly determined, followed by
a proper assignment of machines, generation of an initial
solution is hence completed.
M1 0 0 0 1 1 
M2 1 1 1 0 0 
M3 0 0 0 1 0 
M4 1 1 0 0 0 
M5 0 0 0 0 1 

Fig. 3. Assignment of parts.
3.1.1. Parts assignment

As in McAuley’s research (McAuley, 1972), Jaccard’s
similarity measure is used to evaluate similarity between
parts as an important index for assigning parts to cells
in this subproblem. The similarity measure, denoted Sij,
is defined as: Sij ¼ aij

aijþbijþcij
, where aij represents the num-

ber of machines processing both parts i and j; while bij

is the number of machines processing part i but not part
j, and cij is the number of machines processing part j

but not part i. After calculating the similarity matrix for
each pair of parts, we are now able to generate the initial
parts assignment by using the following greedy rule: the
higher similarity measure a pair of parts has, with the
higher priority they should be placed in the same cell. This
process is repeated until all parts have been assigned to
cells.

An example is used to illustrate this process. Consider a
sample machine–part matrix in Fig. 2a, the corresponding
similarity matrix for parts is displayed in Fig. 2b. Suppose
that there are two cells to be formed. The largest coefficient
in the matrix of Fig. 2b is 1, indicating that parts 2 and 3
must be assigned to the same cell, say cell 1. We proceed
with the second largest coefficient in the matrix, 0.5,
appearing in pairs (2, 5) and (3,5). Part 5 is thus assigned
to cell 1 with parts 2 and 3. The remaining coefficient in
the matrix is 0.33 in pair (1,4). Since these two parts do
not have any relationship with any parts in cell 1, together
they should be assigned to the next cell, cell 2, as shown in
Fig. 3. In the case when three cells are to be formed,
randomly select one part from the pair with the least coef-
ficient in the matrix and assign it to cell 3; the rest arrange-
ment remains the same.
3.1.2. Machines assignment

Since the number of voids and exceptional elements are
major components comprising the formula of grouping
efficacy, procedures considering these two elements should
very possibly generate solutions with good values of group-
ing efficacy for the CF problem. This provides the motiva-
tion for our research to design the machines assignment
procedure below:
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Step 1. Read the results of parts assignment.
Step 2. For each machine, find the cell to which the

machine assignment will result in the least sum of
number of exceptional elements and voids. If a
tie happens, assign the machine to a cell with the
least number of voids.

Step 3. Repeat Step 2 until all machines have been
assigned to cells.

Results of parts assignment shown in Fig. 3 is used to
demonstrate the machines assignment procedure. Fig. 4
gives the sum of number of voids and exceptional elements
for each machine–cell combination. Machines are then
assigned to cells that result in the least sum. As a result,
machines 2 and 4 are assigned to cell 1, while machines
1, 3, and 5 are assigned to cell 2. The initial solution matrix
for the CF problem can thus be obtained and shown in
Fig. 5.

3.2. Solution improvement

As mentioned in Section 3.1, when parts assignment is
determined, machines assignment process follows. The
solution quality of parts assignment, thus, plays a very
critical factor in the success of entire solution quality. This
section introduces strategies for searching better neighbor-
hood solutions to improve the current solution and move
toward the optimal solutions.

The neighborhood of a given solution is defined as a set
of all feasible solutions that can be reached by a single
move/transition. In this study, two types of moves are
implemented interactively: (1) a single-move, and (2) an
exchange-move. The single-move is an operation that
moves a part j from its current cell i (source cell) to a
Cell 1 Cell 2 

v+e v+e 

M1 3+2 0+0

M2 0+0 2+3

M3 3+1 1+0

M4 1+0 2+2

M5 3+1 2+0

Fig. 4. Sum of voids and exceptional elements for each machine–cell
combination.

Cell 1 Cell 2 
P2 P3 P5 P1 P4 

M2 1 1 1 0 0 
M4 1 1 0 0 0 
M1 0 0 0 1 1 
M3 0 0 0 1 0 
M5 0 0 0 0 1 

Fig. 5. Initial solution matrix.
new cell i 0 (destination cell). The new move made is
denoted (i 0, j). For the single-move, a move that results in
the most improvement in the objective function value from
the current solution is selected. That is,

M1ði10;j1Þ¼maxfobjði
0;jÞ �objcurrent; 8i0 2 I ; i0 6¼ i; 8j2 Jg

where I and J are the sets for cells and parts, respectively.
The exchange-move is an operation consists of two

dependent single-moves. If a part j is moved from its source
cell i to destination cell i 0 (first single-move), then one part
j 0 ðj0 2 J i0 ¼ fparts assigned to cell i0gÞ from the destina-
tion cell i 0 of the first move has to be moved to the source
cell i of the first move (second single-move) in exchange.
Two moves, (i 0, j) and (i, j 0), are generated. For the
exchange-move, the pair of moves resulting in the most
improvement in the objective function value from the cur-
rent solution is selected. That is,

M2fði20; j2Þ; ði2; j20Þg ¼ maxfobjði
0 ;jÞ;ði;j0Þ � objcurrent;

8i0 2 I ; i0 6¼ i; 8j 2 J ; 8j0 2 J i0 g
3.3. SA algorithm for CF problem

This section describes the proposed algorithm SACF in
detail. It is evident that the number of cells to be formed
will affect the grouping solutions obtained. In our algo-
rithm, the number of cells resulting in the best grouping
efficacy is generated automatically. However, the flexibility
is preserved for users to specify the number of cells they
prefer. In addition, several counters and indicators are used
in the algorithm to speed up the solution searching process
and/or escape from the local optima. Before we proceed to
the algorithm, some notations are introduced first.

S current solution
Sc neighborhood solution
S* best solution found in current number of cells
S** best solution found so far
T0 initial temperature
Tf final temperature
a cooling rate
L Markov chain length
k iteration number
C initial number of cells
C* optimal number of cells
D length of period for evoking exchange-move

The proposed algorithm SACF can be summarized as
follows.

Algorithm SACF

Step 1. Generate an initial solution S by using parts
assignment and machines assignment procedures
in Section 3.1. Set C = 2, S** = S* = S, C* = C.



Table 1
Levels for each parameter

Parameter Level 1 Level 2 Level 3

T0 10 30 50
a 0.7 0.8 0.9
L 10 30 70
D 6 12 18
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Step 2. Initialize SA and other parameters: T0, Tf, a, L, D,
counter = 0, counter_MC = 0, counter_trapped = 0,
counter_stagnant = 0.

Step 3. If counter_MC < L and counter_trapped < L/2,
then repeat Steps 3.1 to 3.7:
Step 3.1. Generate a new parts assignment plan

through neighborhood searching by per-
forming single-move.

Step 3.2. Perform exchange-move move if counter

equals to a multiple of D.
Step 3.3. Read parts assignment from above steps

and generate corresponding machines
assignment using procedure in Section
3.1.2 and thus the neighborhood solution
Sc.

Step 3.4. If f(Sc) > f(S*), then S* = Sc, S = Sc,
counter_ stagnant = 0, counter_MC =
counter_MC + 1, go to Step 3.

Step 3.5. If f(Sc) = f(S*), then S = Sc,
counter_stagnant = counter_stagnant + 1,
counter_MC = counter_MC + 1, go to
Step 3.

Step 3.6. Compute D = f(Sc) � f(S). Select a ran-
dom variable X � U(0,1). If e

D
T > X , set

S = Sc, counter_trapped = 0; otherwise,
counter_trapped = counter_trapped + 1.
Table 2
Results of experimental analysis on all parameter combinations

T0 a L D

6

Ratio CPU time (s)

10 0.7 10 1.064 5.077
30 1.066 6.489
70 1.065 10.106

0.8 10 1.067 6.868
30 1.066 8.421
70 1.066 17.373

0.9 10 1.067 6.691
30 1.065 9.902
70 1.064 10.012

30 0.7 10 1.066 6.471
30 1.067 7.758
70 1.068 12.410

0.8 10 1.064 5.272
30 1.066 8.237
70 1.067 13.025

0.9 10 1.066 5.834
30 1.065 7.220
70 1.065 14.258

50 0.7 10 1.065 5.557
30 1.067 7.678
70 1.063 9.672

0.8 10 1.064 6.770
30 1.066 7.389
70 1.065 10.321

0.9 10 1.065 8.607
30 1.068 8.936
70 1.067 13.849
Step 3.7. counter_MC = counter_MC + 1, go to
Step 3.
Step 4. If Tk 6 Tf or counter_stagnant P check, go to Step

5; otherwise, Tk+1 = Tk · a, counter_MC = 0,
counter = counter + 1, go to Step 3.

Step 5. If f(S*) > f(S**), then f(S**) = f(S*), S** = S*,
C* = C, C = C + 1, go to Step 2; otherwise report
the current f(S**), S**, C*, and stop the algorithm.

Note that SACF consists of an SA procedure that is repeat-
edly applied until a cell size resulting in the best grouping
efficacy has been found. Initial number of cells is set at 2
in Step 1, and is gradually increasing by 1 at a time as long
as solution improvement is observed in Step 5. All algorith-
mic parameters and counters are initialized in Step 2. In
addition to the Markov chain length, normally used to
assure the thermal equilibrium is reached in each tempera-
ture, another counter recording the number of times a solu-
12 18

Ratio CPU time (s) Ratio CPU time (s)

1.065 5.206 1.061 3.945
1.066 5.476 1.065 5.250
1.064 8.253 1.066 7.894
1.066 4.726 1.066 4.650
1.063 5.748 1.066 4.767
1.066 8.711 1.066 8.166
1.065 5.136 1.063 5.386
1.067 6.244 1.067 6.382
1.065 8.635 1.065 7.728

1.066 4.523 1.065 4.528
1.065 5.693 1.066 5.052
1.066 8.000 1.065 11.124
1.066 4.641 1.060 4.377
1.067 5.478 1.062 5.438
1.068 9.169 1.064 10.446
1.065 4.873 1.066 5.384
1.067 7.215 1.067 6.939
1.067 10.446 1.064 8.817

1.068 5.442 1.059 4.118
1.067 6.782 1.067 6.756
1.068 11.191 1.065 7.553
1.060 4.189 1.063 4.614
1.066 5.974 1.068 6.182
1.066 9.325 1.067 10.428
1.065 5.038 1.061 4.830
1.065 6.284 1.062 5.385
1.065 8.651 1.063 8.933
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tion fails in the Boltzmann’s probability test is used in Step

3 to avoid being trapped in local solutions and causing too
much computational effort wasted in certain temperatures.
Two types of moves, the single and exchange-move,
namely, are utilized interactively in the proposed algorithm
to guide the solution searching. Both moves play different
roles in the process of solution improvement. From our
experience of intensive testing, it is observed that single-
move usually leads to better solutions smoothly and effi-
ciently, but only up to certain point. Frequent use of
exchange-move, however, brings too much disturbance to
solution searching with too much computational effort
spent. We hence use single-move as a primary tool for find-
ing better neighborhood solution in Step 3.1, but employ
exchange-move to add some disturbance to current solu-
tion every certain period, D, in Step 3.2 to increase the
probability of finding more ‘‘diversified’’ solutions to bring
the searching process to a new and unexplored solution
space. SACF also records the number of times when neigh-
borhood solutions become stagnant. When this number
reaches a pre-specify constant check in Step 4, a solution
check is performed by comparing the grouping efficacy of
current cell size to the best solution found so far in Step

5 to determine whether to increase the cell size by 1 and
continue the procedure or report the best solution found
and terminate SACF. After intensive testing, the value of
check is set at 4 in this study.

For users having their preferences in cell size, the pro-
posed algorithm can save lots of run time since it will skip
the process of iteratively searching for the cell size resulting
in the best grouping efficacy. The savings in run time
become even more significant as the cell size increases.

4. Computational results

In this section, 25 test problems from the literature are
used to evaluate the computational characteristics of the
proposed heuristic SACF, and the results are compared
with those of algorithms reported in the literature, i.e.,
the ZODIAC (Chandrasekharan & Rajagopalan, 1987),
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Fig. 6. Results of SACF, ZODIAC, TSP
the TSP-GA (Cheng et al., 1998), and the GA (Onwubulo
& Mutingi, 2001). The matrices of the test problems range
from 5 · 7 to 40 · 100 and comprise well-structured and
unstructured matrices. The proposed algorithm SACF
was coded in C and implemented on a Pentium III
933 MHz personal computer with 256 MB RAM.

4.1. Parameter settings

As widely known, settings of SA parameters critically
affect the solution efficiency and effectiveness. An experi-
ment regarding the setting of five parameters appeared in
SACF is firstly conducted.

The five SA parameters appeared in SACF: T0, Tf, a, L,
and D represents the starting temperature, final tempera-
ture, cooling rate, Markov chain length, and length of per-
iod for evoking exchange-move, respectively. Except Tf was
set at 0.002, three levels are chosen and given in Table 1 for
each parameter.

Six test problems (#2, #7, #10, #12, #21, #24) repre-
senting various problem sizes are selected and used in the
experimental analysis of parameters. Due to the stochastic
features of the proposed method might have, five indepen-
dent runs were performed on each parameter combination
for each test instance. The ratios of our results to the best
of ZODIAC, TSP-GA, and GA, are calculated and the
average ratios are given in Table 2. From Table 2, it can
be observed that all parameter combinations perform quite
well and do not differ much in terms of solution quality
(more than 6% improvement over the best results of
ZODIAC, TSP-GA, and GA). Since the parameter combi-
nation (T0 = 50, a = 0.7, L = 10, D = 12) produces the best
improvement in a relatively efficient manner, we decide to
use it as the suggested parameter setting for use in the next
section.

4.2. Results

The parameter setting obtained in Section 4.1 is used by
SACF to run all the test instances in this section. Fig. 6 and
13 14 15 16 17 18 19 20 21 22 23 24 25

o.

-GA, and GA on 25 test instances.



Table 3
Performance of SACF compared to ZODIAC, TSP-GA, and GA

No. Test instances Size Other approaches Best of the three
approaches

Proposed approach SACF

Source Grouping efficacy (%) Grouping efficacy (%) Cell size CPU time (s)

ZODIAC TSP-GA GA Max. Avg. Std.

1 Waghodekar and Sahu (1984) 5 · 7 56.52 68.00 62.50 68.00 69.57 69.57 0.00 2 0.002
2 Seifoddini (1989) 5 · 18 77.36 77.36 77.36 77.36 79.59 79.59 0.00 2 0.014
3 Kusiak and Cho (1992) 6 · 8 76.92 76.92 76.92 76.92 76.92 76.92 0.00 2 0.002
4 Kusiak and Chow (1987) 7 · 11 39.14 46.88 50.00 50.00 60.87 58.84 1.01 5 0.018
5 Boctor (1991) 7 · 11 70.37 70.37 70.37 70.37 70.83 69.13 1.39 4 0.012
6 Chandrashekharan and Rajagopalan (1986a) 8 · 20 85.24 85.24 85.24 85.24 85.25 85.25 0.00 3 0.026
7 Chandrashekharan and Rajagopalan (1986b) 8 · 20 58.33 58.33 55.91 58.33 58.41 58.41 0.00 2 0.024
8 Mosier and Taube (1985a) 10 · 10 70.59 70.59 72.79 72.79 75.00 71.49 2.87 5 0.016
9 Chan and Milner (1982) 10 · 15 92.00 92.00 92.00 92.00 92.00 92.00 0.00 3 0.018

10 Stanfel (1985) 14 · 24 65.55 67.44 63.48 67.44 71.21 69.38 1.59 8 0.449
11 King (1980) 16 · 43 53.76 53.89 86.25 86.25 52.44 52.44 0.00 5 1.095
12 Mosier and Taube (1985b) 20 · 20 21.63 37.12 34.16 37.12 41.04 41.02 0.04 6 0.351
13 Kumar et al. (1986) 20 · 23 38.66 46.62 39.02 46.62 50.81 47.05 1.99 7 0.597
14 Carrie (1973) 20 · 35 75.14 75.28 66.30 75.28 78.40 77.78 1.23 5 1.214
15 Boe and Cheng (1991) 20 · 35 51.13 55.14 44.44 55.14 56.04 56.04 0.00 4 0.789
16 Chandrasekharan and Rajagopalan (1989) 24 · 40 100.00 100.00 100.00 100.00 100.00 100.00 0.00 7 1.568
17 Chandrasekharan and Rajagopalan (1989) 24 · 40 85.11 85.11 85.11 85.11 85.11 85.11 0.00 7 1.819
18 Chandrasekharan and Rajagopalan (1989) 24 · 40 73.03 73.03 73.03 73.03 73.51 73.51 0.00 7 1.512
19 Chandrasekharan and Rajagopalan (1989) 24 · 40 20.42 49.37 37.62 49.37 52.44 52.44 0.00 8 3.405
20 Chandrasekharan and Rajagopalan (1989) 24 · 40 18.23 44.67 34.76 44.67 47.13 45.59 1.13 9 5.828
21 Chandrasekharan and Rajagopalan (1989) 24 · 40 17.61 42.50 34.06 42.50 44.64 43.81 0.60 9 5.005
22 Kumar and Vannelli (1987) 30 · 41 33.46 53.80 40.96 53.80 62.42 61.08 1.41 13 9.626
23 Stanfel (1985) 30 · 50 46.06 56.61 48.28 56.61 60.12 59.88 0.21 13 15.440
24 Stanfel (1985) 30 · 50 21.11 45.93 37.55 45.93 50.51 49.60 0.68 11 17.591
25 Chandrasekharan and Rajagopalan (1989) 40 · 100 83.92 84.03 83.90 84.03 84.03 84.03 0.00 10 106.934
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Table 3 show the computational results of SACF and pub-
lished results in the literature including ZODIAC, TSP-
GA, and GA for the 25 test instances. According to Table
3, results obtained by SACF are better than or equal to
those reported results except in problem #11. To be more
specific, SACF obtains for 6 (24%) problems values of
the grouping efficacy that are equal to the best results
found in ZODIAC, TSP-GA, and GA methods and
improves the values of the grouping efficacy for the rest
18 (72%) problems. In 3 (12%) problems, i.e., problem
#4, #12, and #22, the percentage improvement is higher
than 10%, with the highest being 21.74%, appeared in prob-
lem #4. Since five replicates are performed for each test
instance, the best, average and standard deviation values
of grouping efficacy are listed in Table 3 as well. The stan-
dard deviation is 0, in 13 out of 25 problems, and the larg-
est value is never greater than 2.87. The very low standard
deviation indicates that SACF is not only able to produce
good solutions but also can be considered as a robust heu-
ristic algorithm. In addition, the cell size resulting in the
best grouping efficacy for each test problem is also given
in Table 3. As to run time data, it ranges from 0.002 s to
106.934 s depending on different problem sizes.

5. Concluding remarks

A simple yet effective approach for the cell formation
problem, SACF, has been proposed in this research. Con-
siderable efforts have been devoted to the design of (1) parts
assignment procedure in which part families are formed
through the construction of similarity matrix of parts, and
(2) machine assignment procedure, in which the number
of voids and exceptional elements, major components com-
prising the formula of grouping efficacy, are explicitly con-
sidered. We believe this explicit consideration of number of
voids and exceptional elements in the machine assignment
procedure has directed SACF to converge to solutions with
good values of grouping efficacy. In the solution improve-
ment stage, two types of moves, the single and exchange-
move, namely, have been utilized interactively and collocate
properly in the proposed algorithm to guide the solution
searching. In addition, several counters and indicators have
been used in the algorithm to speed up the solution search-
ing process and/or escape from the local optima.

Computational results obtained from running a set 25
test instances from the literature have shown that SACF
improves the best values of the grouping efficacy found in
ZODIAC, TSP-GA, and GA methods for 18 (72%) prob-
lems, and obtains for 6 (24%) problems values of the
grouping efficacy that are equal to the best results found
in ZODIAC, TSP-GA, and GA. In 3 (12%) problems,
the percentage improvement is higher than 10%, with the
highest being 21.74%.

Although SACF is able to find the number of cells that
can result in the best grouping efficacy, the process of iter-
atively searching for the cell size, however, consumes too
much run time. Developing more effective methods for
finding proper cell sizes may thus be regarded as a future
research.
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