O 0o g

M O
NSC 90 2213 E 009 150
90 8 1 91

91 10

v

31

28

Resour ce Allocation in Distributed Systemswith Locality and
M obility
NSC 90-2213-E-009-150

90 8

1 91 7 31

E-mail: tthuang@csie.nctu.edu.tw

E-mail: chenss@csie.nctu.edu.tw

— wave
wave

wave

always connected
consistently connected
process

Wave

Abstract

Resource adlocation problem is a
fundamental problem in shared memory
systems and distributed systems. With the
advances in wireless networking technology,
resource sharing via air became available. In
order to resolve this problem in mobile
networks, a more basic problem, called wave
agorithms, has been studied in this project.
Based on a wave agorithm, we are able to
construct a mutual exclusion algorithm which
can be used to resolve conflicting accesses to
shared resources. This project presents a

wave agorithm for mobile ad hoc networks
in which links may fail or reform. Without
assuming that the network topology is always
connected, the algorithm only requires the
network to be consistently connected, a very
mild condition imposed on the network
ensuring that each message flooded by a
process will be recelved by all processes
eventualy.

Keywords: Resource Allocation, Wave
Algorithm, Mobile Computing,
Distributed Algorithm

Resource dlocation problem is a
fundamental problem in distributed systems.
With the advances in wireless networking
technology, resource sharing via air became
avalable. This project aims to provide an
algorithm to resolve the resource alocation
problem in mobile networks.

A mobile network is defined as a
collection of mobile platforms or nodes
where each node is free to move about
arbitrarily [3]. A pair of nodes communicates
by sending messages either over a direct
wireless link, or over a sequence of wireless
links including one or more intermediate
nodes. A pair of nodes can communicate
directly only if they lie within one another’s
transmission radius. A link forms between a
pair of nodes when nodes move into one
another’s transmission radius; in contrast, a

link fails when nodes move out of one
another’s transmission radius.

Dueto link failures and link formations,
designing distributed algorithms for mobile
networks is a challenging task. In order to
resolve resource alocation problem, this
project studies a more fundamental problem,
called wave algorithms, for mobile networks.
A wave agorithm ensures the participation of
all processes and has been known as a useful
building block in distributed systems. For
example, it can be used for some
fundamental tasks, e.g. broadcasting [4], €tc.
In addition, wave algorithms can be used in
more complicated problems such as leader
election, termination detection, and mutual
exclusion [5]. A mutual exclusion agorithm
can be used to resolve conflicting accesses to
shared resources.

In every wave process, there is a special
type of internal event called adecide event. A
wave algorithm exchanges messages and then
the algorithm makes at least one decision,
which depends causally on some event in
each process. A process is an initiator if it
starts the execution of its loca agorithm
spontaneously; in contrast, a non-initiator
becomesinvolved in the algorithm only when
a message of the algorithm arrives and
triggers the execution of the process
algorithm.

A wave agorithm is called centralized
(eg., [14]) if there must be exactly one
initiator in each execution, and decentralized
(eg., [2,6]) if the algorithm can be started
spontaneously by an arbitrary subset of the
processes. A decentralized algorithm is more
general. However, more messages are
needed.

Previous wave agorithms work
correctly only if the network is aways
connected and each link is permanent. In this
project, we present a decentralized wave
algorithm tolerating link failures and link
formations.

We consider a distributed system

consisting of a finite set P of independent
mobile nodes, communicating by message
passing over a wireess network. A link
between two nodes indicates they are within
one another’s transmission radius.
Assumptions on the mobile nodes and
network are:

1. the nodes have unique node identities,

2. node failures do not occur,

3. communication links are
bidirectional,
4. neighbor-awareness, that is, a

link-level protocol ensures that each
node is aware of the set of nodes with
which it can currently
directly communicate by providing
indications of link formations and
failures,

5. the network is connected initialy,

6. the network is consistently connected.

Next, we assume that each node has a
wave process, modelled as a state machine,
with a set of states, some of which are initia
states, and a transition function. The
transitions are associated with named events.
The events are classified as either internal,
input, or output. The inputs and outputs are
used for communication with the
environment, while the internal actions are
visible only to the process itself. The internal
events at node p; include the ones below.

® |nity: if node p; is an initiator, this

event is enabled
spontaneously to start the wave
process.

® Decide,: the decide event of node
Pi.

Input events are as follows.

® Recvyi(p,m): node p; receives
message m from node
B

® LinkUpgi(p): node p; receives
notification that the

link between p; and p; is now up.
® LinkDowny(p;): node p; receives

notification that the
link between p; and p; is now
down.

The transition function takes as input the
current state of the process and the input or

internal event, and produces as a (possibly

empty) set of output events and a new state
for the process. Output event is:

® Sendy(p,m): node p;
message m to node p;.

sends

A wave agorithm is an agorithm that
satisfies the following conditions.

1. Decision. Each execution contains at
least one decide event.

2. Dependence. In each execution each
decide event is causally
preceded by an application event in each
other process.

Wave algorithm for MANETSs

Finn’s algorithm [2] is a wave algorithm
that can be used in arbitrary networks but
doesn’t tolerate link failures and link
reformations. We adapt Finn’s algorithm so
that it works in mobile ad hoc networks
(MANETS).

In Finn’s algorithm, each process p
maintains two sets of process identities, Inc,
and NInc,. A process q isin Inc, if an event
in q precedes the most recent event in p, and
in NInc, if for al neighborsr of g an event in
r precedes the most recent event in p. The
basic action of each process p is sending
messages, including Inc, and Ninc, to
neighbors whenever one of this two sets has
increased. Initially Inc, = {p} and NInc, = @.
When p receives a message, containing Inc
and NInc sets, the recelved identities are
inserted into p’s versions of these sets. After
receiving a message from all neighbors (i.e.,
Neigh, < Incy), p is inserted into NIncp.
Decide, doesn’t enabled until Inc, = NIncy.
Since the network is connected, if the
condition Inc, = NInc, holds, Inc, has
contained all processesin the network (which
can easily be proved by induction), and then
Decide, can be enabled.

However, the network may be
partitioned because each node has mobility in
MANETSs. In this case, it is possible that a
process at some partition decides before its
decide event is causally preceded by an event

of each process. In order to solve this
problem, each process maintans an
additional set of process identities, Leave,,
consisting of process g such that no event in
g precedes the most recent eventinp and q is
no longer p’s neighbor. Process decides only
if Inc, = NInc, and Leave, = @. Thus, the
problem is avoided.

The wave algorithm is event-driven.
Actions triggered by an event are assumed to
be executed atomically. The pseudocode
triggered by Init, and Recvp, is shown in Fig.
1. The pseudocode triggered by LinkDown,
and LinkUp, isshownin Fig. 2.

wave
leader election

mutual exclusion mutual

exclusion algorithm

[1] EJ.-H. Chang. Echo Algorithms: Depth Parallel
Operations on General Graphs. /EEE Trans. Sofew.
Eng., vol. SE-8, no. 4, pp. 391-401, July 1982.

[21 S.G. Finn. Resynch Procedures and Fail-safe
Network Protocol. /EEE Trans. Commun., vol.
COM-27, no.6, pp.840-845, June 1979.

31 J. Macker and M.S. Corson. Mobile Ad Hoc
Networking and the IFTF. ACM Mobile Computing
and Communication Review 2(1), pp.9-14, Jan.
1998.

[4] A. Segall. Distributed network protocols. IEEE
Trans. Inf. Theory, vol. 1T-29, pp.23-35, 1983.

5] G. Tel. Introduction to Distributed Algorithms.
Cambridge University Press, 2000.

6] G. Tel. Topics in Distributed Algorithms. vol. 1 of
Cambridge Int. Series on Parallel Computation,
Cambridge University Press, 1991.

var active, : boolean init false;
Inc, : set of processes init {p};
NInc, : set of processes init §;
Leave, : set of processes init {;
Neigh, : set of processes init {p's neighbors};

Init,:
1: begin
2: activep ;= true;
3: forall r € Neigh, do Send,(r, (sets,Inc,, NIncy, Leavep));
4: end
Recvy(g, (sets,Incg, NIncg, Leavey)):
5: begin
6: if active, = false then activep := true;
7 Incy := Incp U Incy;
8: NInc, := NIncy U NIncg;
9: Leave, := Leave, U Leavey;

10: Leavep, := Leave,, \ Incy;
11: if Neigh, C Inc, then

12: NlInecp := NlInc, U {p};

13: if Incy, NIncp, or Leave, has changed then

14: forall r € Neigh, do Sendy(r, (sets,Inc,, NIncy, Leavep));
15: if Inc, = NInc, A Leave, = () then

16: Decidep;

17 end

Figure 1: Pseudocode triggered by Init, and Recv, events.

LinkDowny,(q):
18: begin
19: Neighy := Neighy \ {q};
20: if ¢ & Inc, then

21: begin
22: Leavep, := Leave, U {q};
23: if Neigh, C Incp A active, then
24: begin
25: NlIncp := NInc, U {p};
26: forall r € Neigh, do Send,(r, (sets,Incy, NInc,, Leavep));
27: end
28: end
29: end
LinkUp,(q):
30: begin
31: Neighy, := Neighy U {g};
32: if active, then
33: Send,(g, (sets,Incy, NIncy, Leavey));
34: end

Figure 2: Pseudocode triggered by LinkDown, and LinkUp, events.

