Development of Three Dimensional Biotransformation Model for Organic Chemicals (I)

計畫編號:NSC87-2211-E-009-006 執行期限:86年8月1日至88年7月31日 主持人:葉弘德教授 交通大學環境工程研究所

中文摘要

關鍵詞:微生物分解,地下水,數值模式

本研究利用一個三維污染物含生物 性分解的傳輸模式,結合地下水流模 式,透過有限元素法,模擬分析有機污 染物於飽和地下水層中的傳輸及其宿 命。這個三維模式,把污染物視為基質, 同時考慮微生物的成長、衰滅、及它與 基質、氧、硝酸鹽及營養源的利用關係; 傳輸的機制,包括傳流、延散、吸附、 源/沈及生物動力反應。

本文針對一個地下水受到油脂類有 機污染,濃度高達1000mg/L的場址,使 用代表抽取處理法的抽注井各三口和加 氧促進生物分解法,整治該場址的地下 水。模式模擬的結果顯示,污染物隨著 供氧量之增加,濃度分佈呈現下降的趨 勢,若一併使用抽注井整治地下水時, 污染團濃度降低的趨勢更顯著;此外, 此結果與 MOC/BIOPLUME II 模式模擬 結果比較,顯示殘留的污染物濃度稍微 偏高,這有可能是因使用的數值方法或/ 及生物轉換機制與它相關參數值不同所 造成。

ABSTRACT

The research employs a

three-dimensional (3D) finite element solute transport model, which can couple with a 3D groundwater flow model, to simulate the migration and fate of microbes and organic contaminants in saturated or unsaturated aquifer. This model composes of five coupled nonlinear equations, while one is to describe the processes of transport, growth, and decay for microbes and four equations are to describe the processes of transport and biotransformation for each substrate, oxygen, nitrate, and nutrient.

A hypothetical site contamination by organic chemical with the concentration of 1000mg/L is remediated using three pumping wells and three injection wells and the injection of oxygen to enhance biodegradation. Simulation results indicate that organic concentrations decrease more than one order of magnitude after the simulation time of two years while injection increasing the oxygen concentration. Besides the simulation results of organic concentrations are higher than those simulation results by MOC/BIOPLUME Π model. The differences between these two results may be due to the use of numerical approaches and/or different biotransform function and its parameter values.

緣由與目的

近幾年來,由於工廠不當的排放廢 水或除油槽及其配置管路的滲漏,而使 地下水受有機污染物污染的問題,逐漸 受到重視。一些針對有機污染物的研究 成果中顯示,兼氣厭養菌利用氧或硝酸 鹽的呼吸,對地表下有機碳的分解,扮 演一個主要的角色。而進行此代謝作用 時,在好氧的條件下,氧是電子的接受 者;在厭氧的條件下,硝酸鹽則是電子 的接受者,而這時候營養源如氨氮,需 同時存於地下水中。因此,利用微生物 的成長、衰減與基質、氧、硝酸鹽和營 養源之間關係和傳輸的機制,可建立五 條耦合非線性之傳輸、宿命方程式 (Widdowson et al., 1988; Bedient et al., 1994; Yeh and Cheng, 1998), 透過數值 方法,如有限元素法或有限差分法,可 將此五條方程式發展成數值模式,能用 於地下水整治復育工作的模擬分析。

模式理論

基質、氧、硝酸鹽、營養鹽、及微 生物之傳輸方程式,主要是建立於質量 不滅定律和希克(Fick)定律的基礎下, 而傳輸的機制,包括傳流、延散、吸附、 源/沈、及生物動力反應。利用符號 S、 O、N、A、M分別來表示基質、氧、硝 酸鹽、營養鹽、及微生物,可發展得如 下五條非線性之傳輸、宿命方程式:

1.基質

$$R_{s} \frac{\partial S}{\partial t} = D \nabla^{2} S - V \bullet \nabla S - R_{s} S + WS'$$
$$- R_{m} M \begin{cases} \frac{\mu_{o}}{Y_{o}} \left(\frac{S}{K_{so} + S}\right) \left(\frac{O}{K_{o} + O}\right) \left(\frac{A}{K_{ao} + A}\right) + \\ \frac{\mu_{n}}{Y_{n}} \left(\frac{S}{K_{sn} + S}\right) \left(\frac{N}{K_{n} + N}\right) \left(\frac{A}{K_{an} + A}\right) I(O) \end{cases}$$

式中 Rs、Rm 分別為基質與微生物的遲 滯係數(Retardation factor),D為延散 係數(Dispersion coefficient),W為氧、 硝酸鹽、營養鹽之注流比(inject flow rate), μ_0 、 μ_n 分別代表氧與硝酸鹽之 最大比生長率(maximum specific growth rate), Y_0 、 Y_n 分別代表氧與硝酸鹽之 成長轉換率(yield coefficient), K_{so} 、 K_o 、 K_{ao} 分別為喜氣狀態下基 質、氧、營養鹽之飽和常數, K_{sn} 、 K_n 、 K_{an} 分別代表厭養狀態下基 質、氧、營養鹽之飽和常數,I(O)為限 制 方 程(inhibition function), I(O)=[1+O/Kc]⁻¹, K_c 為限制係數。

2.氧

$$R_{o}\frac{\partial}{\partial t} = D\nabla^{2}O - V \bullet \nabla O - \tau_{o}R_{o}S + WS'$$
$$- R_{m}M \begin{cases} \gamma_{o}\mu_{o}\left(\frac{S}{K_{so} + S}\right)\left(\frac{O}{K_{o} + O}\right)\left(\frac{A}{K_{an} + A}\right)\\ + \alpha_{o}\kappa_{o}\left(\frac{O}{K_{o}' + O}\right) \end{cases} \end{cases}$$
$$(2)$$

γ_o代表氧的使用係數, α_o、κ_o、K_o'分 別代表氧轉換成能量的係數、微生物在 好氧狀況下之衰減係數、及在微生物衰 減時氧的飽和係數(好氧狀況下)。

3.硝酸鹽

$$R_{n}\frac{\partial N}{\partial t} = D\nabla^{2}N - V \bullet \nabla N - \tau_{n}R_{n}N + WN'$$

$$-R_{m}M\begin{cases} \eta \mu_{n}\left(\frac{S}{K_{sn}+S}\right)\left(\frac{O}{K_{o}+O}\right)\left(\frac{A}{K_{sn}+A}\right)\\ +\alpha_{n}\kappa_{n}\left(\frac{N}{K_{n}'+N}\right)\end{cases} I(O)$$

$$(3)$$

4.營養鹽(考慮氨氮)

$$R_{a}\frac{\partial A}{\partial t} = D\nabla^{2}A - V \bullet \nabla A - \tau_{a}R_{a}A + WA'$$
$$-R_{m}M \begin{cases} \left[\psi\mu_{o}\left(\frac{S}{K_{s}+S}\right)\left(\frac{O}{K_{o}+O}\right)\left(\frac{A}{K_{ao}+A}\right) \\ +\varepsilon\mu_{n}\left(\frac{S}{K_{sn}+S}\right)\left(\frac{N}{K_{n}+N}\right)\left(\frac{A}{K_{aN}+A}\right) \end{bmatrix} I(O) \end{cases}$$
$$(4)$$

ψ、ε分別代表在好氧與厭養狀態下 氨氮使用係數。

5.微生物

$$R_{ma}\frac{\partial M}{\partial t} = D\nabla^{2}M - V \bullet \nabla M + WM'$$
$$-R_{m}M \begin{cases} \left[\mu_{o} \left(\frac{S}{k_{so} + S} \right) \left(\frac{O}{k_{o} + O} \right) \left(\frac{A}{k_{ao} + A} \right) - \kappa_{o} \right] \\ + \left[\mu_{n} \left(\frac{S}{k_{n} + S} \right) \left(\frac{N}{k_{n} + N} \right) \left(\frac{A}{k_{aN} + A} \right) - \kappa_{n} \right] I(O) \end{cases}$$
(5)

案例模擬

本研究針對 Bendient et al. (1994, p.236)所設計的一個虛構受有機污染的 場址,以展示模式用於設計地下水污染 整治與生物復育系統的功能。場址網格 劃分及污染初始濃度分佈,示於圖一, 模擬時之和網格相關水文地質參數值, 列於表一,與基質、氧有關的生物參數 值,係參考相關文獻 (Watson et al., 1986; Wheeler et al., 1987)並取合理值, 列於表二。

表一 模式參數表

模擬參數	數量/單位
Grid size	22*22
Cell size	15m*15m
Transmissivity	$1.8\text{E-4} \text{ m}^2/\text{sec}$
Aquifer thickness	3.048m
Hydraulic gradient	0.001
Longitudinal dispersivity	3.48m
Transverse dispersivity	0.9m
Effective porosity	0.3

表二 生物參數表

生物參數	數量/單位
μο	2.10D-01 day-1
Yo	4.26D-01 kg/kg
K _{so}	$6.54D+02 \text{ kg/m}^3$
Ko	$1.00D+02 \text{ kg/m}^3$
K _{ao}	$3.00D-04 \text{ kg/m}^3$
K _o '	2.00D-04
γo	7.044D+00
-	

模式模擬時間為2年(730天), 地下水中氧的背景濃度為3mg/L,考慮 無抽注井與抽注井各三口且流量為 5.43m³/day的情形,分別探討下列三種 條件對地下水復育的效果:(1)注入水 不含氧;(2)於注入井注入氧的濃度為 20mg/L;(3)注入氧的濃度為 40mg/L。

結果與討論

在無抽注井的條件下,污染物的濃 度變化,隨著供氧量的不同,模擬二年 後場址中污染物的濃度分佈,繪於圖 二,其中最大污染濃度點分別為 558mg/L、419mg/L、及384mg/L,由此 濃度的分佈可得知,當地下水中氧的濃 度增加時,模擬的結果顯示,污染物濃 度會降低。在抽注井各三口的情況時, 模擬整治二年後的結果,繪於圖三,它 顯示注入井不含氧,而地下水中氧的背 景濃度為3mg/L時,污染團的最高濃度 為37mg/L。當注入氧的濃度為20mg/L 時,污染團的最高濃度降至26mg/L。而 注入氧的濃度為40mg/L時,污染團最高 濃度減至15.9mg/L。

這個結果若與Bendient et al.(1994) 利用 MOC/BIOPLUME II 模擬結果比 較,在注入氧量分別為0、20、及40mg/L 的情況,其污染團最高濃度分別為20、 15、及9mg/L,略低於我們模擬的結果, 這個差異可能是下列兩個原因造成:1. 使用的數值方法不同。在 BIOPLUME II Model 是利用特徵曲線法 (method of characteristics、簡稱 MOC) 做計算,與 本研究採用的 back particle tracking 與有 限元素法不同,造成模擬結果之差異。 2.使用的生物轉換機制和它相關參數值 不同所造成。本文採用的生物轉換機制 是根據 Monod 公式, 見方程式(1)-(5), 而 BIOPLUME II Model 則利用簡單的 轉換因子 (F),以轉化污染物的濃度 (Bendient et al., 1994, eq8-20, p.226) •

結論與建議

由上述的實例顯示,我們採用的模

式,具有模擬分析以抽注法及生物復育 整治受有機污染的地下水。此外,值的 注意的,在當注入井及抽水井各三口以 整治地下水時,污染團的濃度從 1000mg/L 降至 37mg/L,此時地下水中 的含氧量,係自然背景值 3mg/L,但當 三口注入井連續地各加入 20mg/L 與 40mg/L,污染團的最高濃度只各再降 11mg/L (37-26=11) 與 21mg/L (37-16 =21),加氧轉化污染物的成效,似乎 不彰,一個較有效率的物化或生物復育 方法,配合抽注井或其他設施,以整治 地下水的污染,在實際上是必要的。未 來我們將近一步考慮,在厭氧狀態或兼 氣性狀態下地下水的生物復育,並配合 其他的整治措施(如 funnel -and- gate 法),作模擬分析,使地下水復育系統 的規劃,能更有效率、省錢。

圖二 無注入及抽取井作用,注入井中氧的濃度

(a) 0mg/L (b) 20mg/L (c) 40mg/L,污染图濃度分佈圖。

圖三 有三口注入及抽取井作用時,注入井中氧 的濃度 (a) 0mg/L (b) 20mg/L (c) 40mg/L,污染 團濃度分佈圖。

Reference

- Bedient, P. B., H. S. Rifai and C. J. Newell,Ground Water ContaminationTransport and Remediation, PTRPrentice Hall, Inc., New Jersey, 1994.
- Watson, J. E., and W. R. Gradner, A mechanistic model of bacteria colony growth response to substrate supply, paper presented at the *Chapman Conference on Microbial Processes in the Transport, Fate and in situ Treatment of Subsurface*

Contaminants, Snowbird, Utah, Oct 1-3, 1986.

- Wheeler, M. F., C. N. Dawson, P. B. Bedient, C. Y. Chiang, R. C. Borden, and H. S. Rifai, Numerical simulation of microbial biodegradation of hydrocarbons in groundwater, paper presented at the NWWA Conference on Solving Ground Water Problems with Models, Natl. Water Well Assoc., Denver, CO, 1987.
- Widdowson, M. A., F. J. Molz, and L. D. Benefield, "A Numerical Transport Model for Oxygen- and Nitrate-based Respiration Linked to Substrate and Nutrient Availability in Porous Media", Water Resour. Res., Vol.24, No.9, pp.1553-1565, 1988.
- Yeh, G. T., and J. R. Cheng, "Three-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemical Model, User's Manual", U.S.EPA, 1998.