
 1

��������	
��������

��������	
������

Removing Useless Events in Detecting Conjunctive Global Predicates

���� : NSC 87-2213-E-009-009

���� : 86	 8
 1�� 87	 7
 31�

 �� : ��� ������������

E-mail address: tlhuang@csie.nctu.edu.tw

�� !"#$

%&'()�)*�+,-./01�

234$56789:;.<=>?

(global predicates)5@ABCDE�FG)5

<=>?HIJKLMNOP(combinatorial

explosion)QR5STUV1WXYZ[\;

.]^T_`abSJK(tractable)5cd)

(conjunctive)<=>?Cefghi<=>?

jklZmnZ'oQ[pq=>?1rp

q=>?sStu�5�vwpx;.Cy

p�vzi{|q=>?Q�5}~(��

E>?}~ – predicate events)Y����;

.�v(checker process)1t;.�vw��

e�px5q=}~:�SGQ��5<=

}~1*����<=>?:�Q�C��

��5�h%&XYcd)<=>?5;.

�h1��S\��;.�)5��0�

(idle time)1������+}~�� ��

(useless)}~5�*�hCep�hS\��

}~��5����� ¡>?;.5JK

0�C\¢5£¤¥¦g5d§�h���

�+¦¨��5}~���¦��5�h©

S\C

���������	�
�����
���

�
����
������
����

�����

Abstractªª

ªªªªOne important task is testing and debug-

ging a distributed program is to detect truth

values of global predicates. Detecting a gen-

eral-form predicate involves handling global

states with combinatorial explosion. Therefore,

many researchers focused on the detection of

conjunctive-form global predicates which have

a weaker expressivability but the problem itself

becomes tractable. This approach decomposes

logically a global predicate into local predicates,

each of which can be detected independently by

a single process. Each process sends its predi-

cate events, the events that cause its local

predicate to be true, to a dedicate process called

the checker process. The checker process stores

events in event queues and determines whether

a collected set of events can from a consistent

event set or not and therefore determines

whether the global predicate is satisfied. Our

proposed method provides an improvement to

the conventional approach. It takes advantage

of idle time to find and remove in advance

useless events pending in event queues. This

method can reduce the space requirement of

event queues and increase the processing speed

of the checker process. Previous work in this

area does not find and remove all uselessª

events while our proposed method does.

����

Keywords: distributed programs, distrib-

uted testing, distributed debugging, global

 2

predicates, consistent global events, consis-

tent event sets.

«�¬t®5

 One important task in testing and debug-

ging a distributed program is to answer whether

a given execution run of this program fulfil ls a

particular property. Such a property is often

specified as a global predicate – a Boolean

expression whose value depends on the states

of multiple processes and, perhaps, communi-

cation channels. Detecting global predicates

involves identifying consistent global states [1],

on which predicates are to be evaluated. In

general, the number of consistent global states

is exponential in the number of processes [2].

Therefore, an exhaustive search for all system

states, which is necessary for detecting a

general-form predicate, will suffer from the

combinatorial explosion problem. Many

researchers avoid this problem by placing

restriction on the types of predicates. In par-

ticular, they have considered global predicates

that can be logically decomposed into

sub-expressions, each of which is locally

detected by a single process [4,5,6,12]. Such

sub-expressions are called local predicates.

Only local states upon which local predicates

are satisfied have to be examined to see if any

combination of them can form a consistent

global state. The number of states is therefore

reduced. Each process sends its events that

cause its local predicate to be true to a dedicate

process called the checker process. The checker

process stores events in event queues and

determines whether a collected set of events

can form a consistent event set and therefore

determines whether the global predicate is

satisfied.

The problem of finding all removable

events was not previously solved [6]. Suppose

that k event queues are non-empty, each of

which has n events. A straightforward approach

might involve looking at all nk possible sets

consisting of one event from each of the k event

queues [6]. Chiou and Korfhage [6] proposed

an algorithm for finding removable events that

has an O(k2n2) time complexity. Their method,

however, cannot identify all useless events.

Although the� necessary and sufficient condi-

tions for useless events have been formulated

[9,10,14], as to the author’s knowledge, no

practical algorithm has been proposed. Previ-

ous work in this area cannot find and remove

all useless events. We plan to find all useless

events.

�

¯�d§°±�

In our proposed method, the checker proc-

ess performs two routines. The first routine

examines if the event set comprising all current

head events in each queue is consistent. The

technique used in this routine is to repeatedly

find two causally related head events and

remove the one that happened before the other

[4]. When no head event is removable and no

event queue is empty, a consistent global

predicate is identified.

Events usually do not arrive at a constant

rate, so it is possible that some event queue

grows lengthily while others drain. If any event

queue is empty, the first routine must wait for

all absent events before it can make a determi-

nation. The second routine identifies and

removes all events currently pending in the

queues that are unable to be consistent with

other events (including those not arrived yet),

even under the condition that some event queue

 3

is empty. The main purpose of this routine is to

remove useless events in advance to reduce the

space requirement of the event queues and

avoid further process of useless events by the

first routine. This removal does not impose

additional overhead on the checker process:

while the first routine cannot progress, the

checker process can perform this routine rather

than being idle. In our proposed method, we

focus on the design of the second routine.

The second routine consists of two mod-

ules. The first module collects precedence

relation between event intervals. The second

module removes useless predicate events by

examining the collected information, and

discards collected information that is obsolete.

These two modules are not assumed to be

executed in parallel : only one module can be

activate at any instant of time. We do not

prescribe any particular scheduling policy of

them.

²�Q§³´

Our proposed method exploits the result in

[10], which established the theory of event

intervals, and treats the problem of finding

useless events as an on-line computation of an

adjacency matrix representing an event interval

graph. We avoid unlimitedly expansion of the

matrix by cutting down obsolete rows and

columns, saving both memory space and

execution time. The validity proof of our

method is provided. The simulation result

indicates that the cutting technique effectively

reduces the matrix size.

µ�¶·"¸

[1] K.M. Chandy and L. Lamport, “Distributed

snapshots: Determining global states of dis-

tributed systems,” ACM Trans. Comput.

Syst., vol. 3, pp. 63-75, Feb. 1985.

[2] R. Copper and K. Marzullo, “Consistent

detection of global predicates,” in Proceed-

ings of the ACM/ONR Workshop on parallel

and Distributed Debugging, ACM SIG-

PLAN Notices, vol.26, pp. 167-174, Dec.

1991.

[3] L. Lamport, “Time, clocks, and the ordering

of events in a distributed system,” Comm.

ACM, vol. 21, pp. 538-565, July 1978.

[4] V.K. Garg and B. Waldecker, “Detection of

weak unstable predicates in distributed pro-

grams,” IEEE Trans. Parallel Distrib. Syst.,

vol. 5, pp.299-307, Mar. 1994.

[5] H.-K. Chiou and W. Korfhage, “ Efficient

global event predicates detection,” in Pro-

ceedings of the 14th International Confer-

ence on Distributed Systems, pp. 642-649,

July 1994.

[6] K.-K Chiou and W. Korfhage, “ Enhancing

distributed event predicate detection algo-

rithms,” IEEE Trans. Parallel Distrib. Syst.,

vol.7, pp. 673-676, July 1996.

[7] F. Mattern, “Virtual time and global states

of distributed systems,” in Proceedings of

the International Workshop on Parallel and

Distributed Algorithms (M.C. et al., ed.),

(North-Holland), pp. 215-226, Elsevier Sci-

ence, 1989.

[8] J. Fidge, “Timestamps in message-passing

systems that preserve the partial ordering,”

in Proceedings of the 11th Australian Com-

puter Science Conference, pp. 56-66, Feb.

1988.

[9] R.H.B. Netzer and J. Xu, “Necessary and

sufficient conditions for consistent global

snapshots,” IEEE Trans. Parallel Distrib.

Syst., vol. 6, pp. 165-169, Feb. 1995.

 4

[10] R. Baldoni, J.-M. Helary, and M.

Raynal, “About state recording in asyn-

chronous computations,” in Proceedings of

the 15th ACM Symposium on Principles of

Distributed Computing, 1996.

[11] V.K. Garg and C.M. Chase, “Distrib-

uted algorithms for detecting conjunctive

predicates,” in Proceedings of the 15th In-

ternational Conference on Distributed

Computing Systems, May 30 – June 2,

1995.

[12] S. Venkatesan and B. Dathan, “Testing

and debugging distributed programs using

global predicates,” IEEE Trans. Software

Engrg., vol. 21, no. 2, pp.163-177, Feb.

1995.

[13] Y.-M. Wang, “Consistent gobal

checkpoints that contains a given set of lo-

cal checkpoints,” IEEE Trans. Comput., vol.

46, no. 4, pp. 456-468, Apr. 1997.

[14] D. Manivannan, R.H.B. Netzer, and M.

Singhal, “ Finding consistent global check-

points in a distributed computation,” IEEE

Trans. Parallel Distrib. Syst., vol. 8, no. 6,

pp.623-627, June 1997.

