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Physical characteristics and optical properties of sol-gel derived
Er3-Yb*" codoped TiO,for optical waveguide
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Abstract

Er*-Yb* codoped TiO, films were prepared on
fused silica by sol-gel processes. The maximum
~1.54 ;» m photoluminescence (PL) intensity occurs
in the Er** (5 mol %)-Yb*(30 mol %) codoped
TiO, samples anneadled at 700 °C. However, when
the concentration of Yb®" ions attends to 50 mol %,
the back energy transfer effect from Er** to Yb**
will deteriorate the ~1.54 1 m PL efficiency. It was
believed that the Yb* ion does not only play a
disperser but also a sensitizer to Er®** ion. This dual
effects lead to the larger PL intensity in Er**-Yb*
codoped TiO, system than that in Er**-Y>* codoped
TiO, system. Even compared with the SO, films
with Er** (3 mol %)-Yb* (30 mol %) codoped and
annealed at an optimal temperature of 985 °C, the
Er**-Yb* codoped TiO, film can obtain better PL
properties at alower annealing temperature.
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1. Introduction

TiO, film has higher refraction index (n=2.52
for anatase and n=2.76 for rutile) as well as lower
phonon energy (<700 cm™ )* than silica glass film,
Er**-doped TiO,-based films have shown potential
applications in the micro-integrated photonic
devices. However, little detailed studies were made
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to investigate the role of Er** content in the PL
properties of Er**-doped TiO, films.>*

TheYb* codopant has been demonstrated in
increasing the variation of Er sitesthat resultsin the
inhomogeneous broadening effect.* In addition,
Yb* ion can sensitize Er** ions so as to enhance the
~1.54  m PL intensity.” However, the role of Yb*
ion in phase development and related optica
properties of Er*-doped TiO, system has been not
investigated.  Furthermore, Yb*/Y*/Er** ions
have similar ionic radii (Yb* = 0.0862, Y*" =
00892, and Er* = 0081 nm) and
Y b,O5/Y ,04/Er,O; have nearly the same crysta
structural and lattice constant.

Therefore, it is very important to investigate
the influence of co-dopant Yb* on the physical
characteristics and optical properties of Er**-doped
titania. Furthermore, the role of Yb* and Y*
codopants in photoluminescence properties of
Er**-doped titania materials will be discussed and
compared.

2. Experimental

A. Thin films preparation

The Er*-Yb* codoped TiO, films were
prepared from yttrium acetate, erbium acetate (Alfa)
and titanium isopropoxide. The as-deposited films
were first pyrolyzed under dry oxygen atmospheres
at 400 °C for 30 min and then annealed at 600-1000
°C for 1 hiin dry oxygen atmosphere.

B. Characterization measurements

The phase structures of films were analyzed
by X-ray diffractometer. The electron spin
resonance (ESR) spectra were recorded using a
Bruker ESR spectrometer. The fluorescence spectra
were excited by a 980 nm diode laser. Erbium
Ly-edge X-ray absorption spectra were recorded at
Synchrotron Radiation Research Center (SRRC),
Hsinchu.

3. Resultsand discussion
3.1. Structural evolution

The X-ray diffraction (XRD) patterns in Fig.
1(a) show the effect of annealing temperatures on
structural evolution of Er** (5 mol %)-doped TiO,.
It is obvious that the addition of more than 5 mol %



Er* jons can lead to the destruction of TiO,
network structure. The crystalinity of anatase TiO,
was reduced and anatase-to-rutile (A — R)
transformation rate was accelerated (e.g., the

anatase phase totally disappear at 900 °C annealing).

Additionally, the Er,Ti,O; pyrochlore phase (P) was
detected at 800 °C. For the Er** (5 mol %)-Yb* (30
mol %) codoped TiO, samples, the XRD patternsin
Fig. 1(b) show that when the samples were
annedled 700 °C, the host matrix becomes
amorphous for Yb** concentration above 10 mol %.
Additionally, Yb** codopant was found to
accelerate the A— R transformation; all of the
anatase phase has been transformed into rutile
phase at 800 °C. After the Er**-Yb* codoped TiO,
samples were annealed at 900-1000 °C, both rutile
(R) and pyrochlore (P) phase become more
well-crystallized. Similar results are also observed
in the Y**-doped TiO, system.

In addition, Fig. 2 shows the surface morphologies
of Er*-doped TiO, and Er**-Yb* codoped TiO,
samples annealed 700°C/1 h. The grain sizes of
the TiO, samples doped with Er** (5 mol %),
Er**-Yb* (5-10 mol %) are about 60 and 25 nm,
respectively. It has been well known that smaller
grains can provide more surface nucleation sites,
which can accelerate the A — R phase
transformation. Therefore, the smaller grain size in
Er*-Yb* codoped TiO, samples than Er**-doped
TiO, samples reflects the higher A — R
transformation rate.

Figure 3 shows the pseudo-radial distribution
functions obtained from the K-weighted Fourier
transforms of the Er®*-Yb*" codoped TiO, samples
annealed at 700 for 1 h. Qualitative observation of
the 700°C-annealed samples (i.e., no formation of
pyrochlore phase) reveds that the first and
second-neighbor distance around Er** is close to the
Er-O and Er-Er bond length of Er,Os, respectively.
This means that the local structure around Er** ions
in the Er**-Yb** codoped TiO, systems is similar to
that of the crystalline Er,Os;. Additionaly, it is
noted that the second-neighbor distance around Er®*
dightly increased with the increase of Yb**
concentration up to 30 mol%. The increased
second-neighbor distance seems to reveal that the
second shell may partially contain Yb* ions. This
phenomenon can be attributed to the fact that as
Er* and Yb* have the same vaence and close
ionic radii, they can be replaced with each other.
However, as the Er**-doped TiO, was codoped with
50 mol% Yb*, the second-neighbor  distance
around Er** becomes larger as compared to that
with 30 mol% Yb*" codoped that is probably due to
ahigh disorder around Er**ions.

3.2. ~1.54 4 m photoluminescence properties

Figure 4 shows the ~1.54 ;» m PL spectra of the
Er®* (5 mol %)-doped TiO, samples with 0-50 mol
% Yb* added and annealed at 700 °C for 1 h. All of
the spectra were normalized to the same intensity to
compare the difference between spectra features.
The Er* (5 mol %)-doped TiO, sample exhibits a
sharp PL spectrum with a 1.537 x m main peak
which is characteristic emission (*/13, — *l15) Of
Er®* ion. However, by increasing the Yb* codopant
concentration, the PL spectra became more broaden.
The maximum bandwidth (FWHM= 67 nm) of
~1.54 ;1 m PL spectra was obtained for the sample
added with Yb*" content above 30 mol %. The
line-broadening mechanism can be attributed to the
inhomogeneously broadened transition of Er**
ions.® For the sample without Yb*" codopant, the
well-resolved spectrum demonstrates that the Er**
ions are located in well-defined sites of TiO, matrix.
Namely, each Er® ion occupies the similar type of
site that has well-defined surrounding and hence
each Er*" ion experiences the similar crysta field.
However, the Yb* codopant can destroy the
network of TiO, host matrix, which results in the
varying Er sites with different  surrounding
environment and causes a randomization of the
Stark splittings. Therefore, the overall spectral lines
resulting from the superimposed contributions of
each Er site are inhomogeneously broadened.

Figure 5 illugstrates that the influence of
anneadling temperatures on the ~154 y m PL
spectral feature of Er**(5 mol%)-Yb*(30 mol%)
codoped TiO, samples. The higher annealing
temperature (=800 °C) leads to the spectra with
many splitting lines. From the XRD detection, it
shows that the Er,Yb,,Ti,O; crystalites were
generated at the annealing temperatures above 800
°C. This means that the majority of Er®* ions should
be located in the crystalline Er,Yb,,Ti,O; phase
and the Er** bonding environment becomes uniform
to produce the well-resolved PL spectrum.

The variation of the ~1.54 4 m PL intensity of
Er**-Yb* codoped TiO, samples with Er¥-Yb*
concentration was summarized in Fig. 6. By
codoping 10-30 mol % Yb*" ions into Er**-doped
TiO, samples, the PL intensity can be remarkably
enhanced. Nevertheless, the 50 mol % Yb*
codopant leads to the reduction of PL intensities
that might be related to the back energy transfer
from Er** to Yb* ions® and the double energy
transfer (DET).  For comparison, the Er*(5 mol %)
-Yb*(30 mol%) codoped silica film was aso
prepared and annealed at an optimal temperature of
~ 985°C. Figure 7 illustrates that the PL properties
of the Er**-Yb* codoped TiO, system exhibit more
intense emission (~2 times) and wider FWHM



(~15 times) than those of optima Er*-Yb*
codoped SIO, system. This result implies that the
PL properties strongly depend on the composition
and structure of the host materials. Furthermore, the
Er**-Yb* codoped TiO, film does not only obtain
better PL properties but aso lower annealing
temperature.

The dependence of annealing temperatures on
the PL intensities of Er** (5 mol %)-Yb** (30 mol
%) codoped TiO, samples were shown in Fig. 8.
The increase in PL intensity from 600 to 700 °C is
attributed to the reduction of OH ™~ hydroxyl
content (as one can see in Fig. 9, the decrease of
FTIR absorption around 4000-3000 cm*
corresponding to the O-H vibration mode increases
with the annealing temperature.).” However, above
800 °C, the PL intensity is abruptly reduced that is
strongly related to the formation of pyrochlore
phase. The Er,Y b,,Ti,O; pyrochlore crystalites as
identified from XRD patterns are generated at 800
°C and its crystalinity can be enhanced a higher
temperature anneadling. Therefore, the loca
structure around Er** ions in the well-crystallized
Er,Yb,,Ti,O; phase becomes higher-order
symmetry compared to that of Er*" ions in
amorphous host matrix. That results in the reduced
probability of the normally forbidden intra-4f
transition of Er® ions and the degradation in the PL
efficiency. ®

On the other hand, for the Er**-doped TiO,
sample codoped with Y*, the ~1.54 z m PL spectra
(no shown here) exhibit the similar effects to the
Er**-Yb* codoped TiO, samples. An enhancement
of PL intensities with increasing Y* content was
observed for the Er** (5 mol %)-Y** (10-50 mol %)
codoped TiO, samples as shown in Fig. 10. In
contrast, a maximum PL intensity appears at the
sample of Er** (5 mol %)-Yb*" (30 mol %) codoped
TiO,, above that, a reduced PL intensity was
observed such as for the sample with 50 mol% Yb*.
As comparing the PL intensities of TiO, samples
codoped with Er® (5 mol %)-Yb** (30 mol %) with
Er®* (5 mol %)-Y** (30 mol %), it demonstrates that
the PL intensity in the former is about ~ 2 times
higher than that in the latter. According to the
aforementioned  experimental results, the
mechanisms for the enhancement of PL intensity
between Yb* and Y*' codoping are somewhat
different.

For the Er¥*-Y* (or Er*"-Yb*) codoped TiO,
systems without the formation of pyrochlore phase
(i.e, the annedling temperature < 700 °C), the
EXAFS analysis (see Fig. 3) shows that the local
environment of Er sites is similar to Er,O; in host
matrix. We believe that the Er sites with Er,Os-like
environment are optically active centers as the case
in the Er**-doped silicate glasses.” Because Er*

and Yb* (or Y*) have the same valence and
similar ionic radii, they could be replaced with each
other and the -Er-O-Er-O-Er- bonding structures
can be changed into -Er-O-[Yb (or Y*)-O],-Er-.
Therefore, the more Y** codopant results in the
larger atomic spacing among Er** ions and the
enhanced PL properties that can be attributed to the
increased dispersion and solubility of Er** ions in
Er*-Yb* (or Er*-Y*) codoped TiO, systems.
However, it is worthy to note that with increasing
Yb* up to 30 mol%, the PL intensity was
remarkably enhanced. It implies that the Yb* ion
does not only play a disperser but also a sensitizer
to Er** jon. This dual effects might have the
superimposed impact to the ~1.54 u m PL
efficiency, which seems consistent with our
experimental results that the Er¥*-Yb* (10-30 mol
%) codoped TiO, samples have larger PL intensity
than that of Er**-Y** (10-30 mol %) codoped TiO,
samples.

4. Conclusions

(1) The maximum ~ 154 m PL intensity was
obtained for the Er** (5 mol %)-Yb* (30 mol %)
codoped TiO, sample and annealed at 700 °C.
This can be attributed to the competition
between the content of hydroxyl groups and Er
site symmetry. Below 700 °C, the content of
hydroxyl groups plays an important role in PL
intensity. On the other hand, above 700 °C, the
formed pyrochlore phases in the Er**-Yb*
codoped TiO, systems can result in the
degradation of ~1.54 ;4 m PL efficiency and the
formation of well-resolved spectral lines.

(2) The local chemical environment of Er** ionsin
Er**-Yb* codoped TiO, films is similar to that
in Er,O; and the average spatial distance
between Er** ions is slightly increased due to
the partial substitution of Yb* for Er** ionsin
the Er,Os-like local structure. That indicates
that Yb* ion can act as disperser to Er** ions
and reduce the concentration quenching effect.

(3) In comparison with the Er*-Y*" codoped TiO,
samples, the Yb* ion in the Er¥*-Yb*" codoped
TiO, samples does not only play a disperser but
aso a sensitizer to Er** ion. This dua effects
lead to the larger PL intensity in Er*-Yb*
codoped TiO, system than that in Er*-Y*
codoped TiO, system. However, when the
concentration of Yb*" ions attends to 50 mol %,
the back energy transfer effect from Er* to
Yb* will deteriorate the ~1.54 © m PL
efficiency.
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Fig. 1. XRD patterns of (&) Er**-doped TiO, and
(b) different Er**-Yb* codoped TiO, films
annealed at 700-1000 °C for 1 h.

Fig. 2. Dependence of various Er**-Y** codoped
TiO, Filmsat 700°C on refractive index.
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Fig. 3 Fouier transform of EXAFS function at Er
L,-edge for the samples annealed at 700 ‘C with
various Y b content.
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Fig4 ~1.54 y m PL spectra of the Er** (5 mol
%)-doped TiO, samples with 0-50 mol % Yb*
codopant annealed at 700 °C for 1 h.
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Fig. 5 ~1.54 y m PL spectra of theEr* (5 mol

%)-Yb* (30 mol %) codoped TiO, annealed from
700 to 1000 °C for 1 h.
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Fig. 6. Dependence of Yb* concentration on the
~1.54 » mPL intensity of Er*-Yb*" codoped TiO,
samples added with different concentration of Er®*

ions and annealed at 700 °C/1 h.
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Fig. 7 PL intensity of the Er** (5 mol %)-doped
TiO, samples with the 30 mol % Yb**
codopant annealed from 600 to 1000°C for 1 h.
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Fig. 8 Comparison of ~1.54 ;z m PL spectra of Er**

(5 mol %)-Yb* (30 mol %) codoped TiO, and SiO,
films.
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Fig. 9. FTIR transmittance spectra of Er** (5 mol
%)-Yb** (30 mol %) codoped TiO, annealed from
600-1000 °C.
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Fig. 10 Comparison of ~1.54 xm PL intensities
between Er** (5 mol %)-Yb* (10-50 mol %) and
Er** (5 mol %)-Y* (10-50 mol %) codoped TiO,
system annealed at 700 °C for 1 h.
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