Physical characteristics and optical properties of sol-gel derived Er³⁺-Yb³⁺ codoped TiO₂ for optical waveguide

計畫編號:NSC90-2216-E-009-041 執行時間:90/08/01 ~ 91/07/31 主持人:陳三元 副教授 交通大學材料科學與工程系

中文摘要

本研究主要是在探討氧化鈦材料來當作母材的 鉺、龜共摻雜氧化鈦薄膜,其藉由龜離子的共摻 雜,將使得此薄膜所放射出的~1.54µm 螢光的發 光強度較現今被廣泛報導且具有良好螢光特性 的鉺、鋁共摻雜氧化矽薄膜的螢光強度還強約 17 倍,且此螢光頻譜的半高寬亦增寬約 1.4 倍,此 外,同時此薄膜亦具有較低的製程溫度(比鉺、龜 共摻雜氧化矽之製程溫度低~300°C),故其可應用 在積體光學中平面光波導放大器的製作上。

關鍵詞: 鉺、**鑢**共摻雜氧化鈦、螢光、溶凝膠、 分散性

Abstract

 $Er^{3+}-Yb^{3+}$ codoped TiO₂ films were prepared on fused silica by sol-gel processes. The maximum ~1.54 μ m photoluminescence (PL) intensity occurs in the Er^{3+} (5 mol %)-Yb³⁺(30 mol %) codoped TiO₂ samples annealed at 700 °C. However, when the concentration of Yb^{3+} ions attends to 50 mol %, the back energy transfer effect from Er^{3+} to Yb^{3+} will deteriorate the ~1.54 μ m PL efficiency. It was believed that the Yb³⁺ ion does not only play a disperser but also a sensitizer to Er³⁺ ion. This dual effects lead to the larger PL intensity in Er³⁺-Yb³⁺ codoped TiO₂ system than that in $Er^{3+}-Y^{3+}$ codoped TiO_2 system. Even compared with the SiO₂ films with Er^{3+} (3 mol %)-Yb³⁺ (30 mol %) codoped and annealed at an optimal temperature of 985 °C, the $Er^{3+}-Yb^{3+}$ codoped TiO₂ film can obtain better PL properties at a lower annealing temperature.

Key words: $Er^{3+}-Yb^{3+}$ codoped $TiO_2 \sim$ photoluminescence \sim sol-gel \sim dispersion

1. Introduction

TiO₂ film has higher refraction index (n=2.52 for anatase and n=2.76 for rutile) as well as lower phonon energy (<700 cm⁻¹)¹ than silica glass film, Er^{3+} -doped TiO₂-based films have shown potential applications in the micro-integrated photonic devices. However, little detailed studies were made

to investigate the role of Er^{3+} content in the PL properties of Er^{3+} -doped TiO₂ films.^{2,,3}

TheYb³⁺ codopant has been demonstrated in increasing the variation of Er sites that results in the inhomogeneous broadening effect.⁴ In addition, Yb³⁺ ion can sensitize Er³⁺ ions so as to enhance the ~1.54 μ m PL intensity.⁵ However, the role of Yb³⁺ ion in phase development and related optical properties of Er³⁺-doped TiO₂ system has been not investigated. Furthermore, $Yb^{3+}/Y^{3+}/Er^{3+}$ ions have similar ionic radii ($Yb^{3+} = 0.0862$, $Y^{3+} =$ Er^{3+} 0.0892, and = 0.0881 nm) and $Yb_2O_3/Y_2O_3/Er_2O_3$ have nearly the same crystal structural and lattice constant.

Therefore, it is very important to investigate the influence of co-dopant Yb^{3+} on the physical characteristics and optical properties of Er^{3+} -doped titania. Furthermore, the role of Yb^{3+} and Y^{3+} codopants in photoluminescence properties of Er^{3+} -doped titania materials will be discussed and compared.

2. Experimental

A. Thin films preparation

The $Er^{3+}-Yb^{3+}$ codoped TiO_2 films were prepared from yttrium acetate, erbium acetate (Alfa) and titanium isopropoxide. The as-deposited films were first pyrolyzed under dry oxygen atmospheres at 400 °C for 30 min and then annealed at 600-1000 °C for 1 h in dry oxygen atmosphere.

B. Characterization measurements

The phase structures of films were analyzed by X-ray diffractometer. The electron spin resonance (ESR) spectra were recorded using a Bruker ESR spectrometer. The fluorescence spectra were excited by a 980 nm diode laser. Erbium L_{III} -edge X-ray absorption spectra were recorded at Synchrotron Radiation Research Center (SRRC), Hsinchu.

3. Results and discussion

3.1. Structural evolution

The X-ray diffraction (XRD) patterns in Fig. 1(a) show the effect of annealing temperatures on structural evolution of Er^{3+} (5 mol %)-doped TiO₂. It is obvious that the addition of more than 5 mol %

 Er^{3+} ions can lead to the destruction of TiO₂ network structure. The crystallinity of anatase TiO₂ was reduced and anatase-to-rutile $(A \rightarrow R)$ transformation rate was accelerated (e.g., the anatase phase totally disappear at 900 °C annealing). Additionally, the $Er_2Ti_2O_7$ pyrochlore phase (P) was detected at 800 °C. For the Er^{3+} (5 mol %)-Yb³⁺ (30 mol %) codoped TiO₂ samples, the XRD patterns in Fig. 1(b) show that when the samples were annealed 700 °C, the host matrix becomes amorphous for Yb^{3+} concentration above 10 mol %. Additionally, Yb³⁺ codopant was found to accelerate the $A \rightarrow R$ transformation; all of the anatase phase has been transformed into rutile phase at 800 °C. After the $Er^{3+}-Yb^{3+}$ codoped TiO₂ samples were annealed at 900-1000 °C, both rutile (R) and pyrochlore (P) phase become more well-crystallized. Similar results are also observed in the Y^{3+} -doped TiO₂ system.

In addition, Fig. 2 shows the surface morphologies of Er^{3+} -doped TiO₂ and Er^{3+} -Yb³⁺ codoped TiO₂ samples annealed 700°C/1 h. The grain sizes of the TiO₂ samples doped with Er^{3+} (5 mol %), Er^{3+} -Yb³⁺ (5-10 mol %) are about 60 and 25 nm, respectively. It has been well known that smaller grains can provide more surface nucleation sites, which can accelerate the A \rightarrow R phase transformation. Therefore, the smaller grain size in Er^{3+} -Yb³⁺ codoped TiO₂ samples than Er^{3+} -doped TiO₂ samples reflects the higher A \rightarrow R transformation rate.

Figure 3 shows the pseudo-radial distribution functions obtained from the k^3 -weighted Fourier transforms of the Er³⁺-Yb³⁺ codoped TiO₂ samples annealed at 700 for 1 h. Qualitative observation of the 700°C-annealed samples (i.e., no formation of pyrochlore phase) reveals that the first and second-neighbor distance around Er^{3+} is close to the Er-O and Er-Er bond length of Er₂O₃, respectively. This means that the local structure around Er^{3+} ions in the $Er^{3+}-Yb^{3+}$ codoped TiO₂ systems is similar to that of the crystalline Er₂O₃. Additionally, it is noted that the second-neighbor distance around Er³⁺ slightly increased with the increase of Yb³⁺ concentration up to 30 mol%. The increased second-neighbor distance seems to reveal that the second shell may partially contain Yb³⁺ ions. This phenomenon can be attributed to the fact that as Er^{3+} and Yb^{3+} have the same valence and close ionic radii, they can be replaced with each other. However, as the Er^{3+} -doped TiO₂ was codoped with 50 mol% Yb^{3+} , the second-neighbor distance around Er³⁺ becomes larger as compared to that with 30 mol% Yb^{3+} codoped that is probably due to a high disorder around Er^{3+} ions.

3.2. ~1.54 µ m photoluminescence properties

Figure 4 shows the ~1.54 μ m PL spectra of the Er^{3+} (5 mol %)-doped TiO₂ samples with 0-50 mol % Yb³⁺ added and annealed at 700 °C for 1 h. All of the spectra were normalized to the same intensity to compare the difference between spectral features. The Er^{3+} (5 mol %)-doped TiO₂ sample exhibits a sharp PL spectrum with a $1.537 \,\mu$ m main peak which is characteristic emission $({}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2})$ of Er³⁺ ion. However, by increasing the Yb³⁺ codopant concentration, the PL spectra became more broaden. The maximum bandwidth (FWHM= 67 nm) of ~1.54 μ m PL spectra was obtained for the sample added with Yb³⁺ content above 30 mol %. The line-broadening mechanism can be attributed to the inhomogeneously broadened transition of Er³⁺ ions.⁶ For the sample without Yb³⁺ codopant, the well-resolved spectrum demonstrates that the Er³⁺ ions are located in well-defined sites of TiO₂ matrix. Namely, each Er^{3+} ion occupies the similar type of site that has well-defined surrounding and hence each Er^{3+} ion experiences the similar crystal field. However, the Yb^{3+} codopant can destroy the network of TiO₂ host matrix, which results in the varying Er sites with different surrounding environment and causes a randomization of the Stark splittings. Therefore, the overall spectral lines resulting from the superimposed contributions of each Er site are inhomogeneously broadened.

Figure 5 illustrates that the influence of annealing temperatures on the ~1.54 μ m PL spectral feature of Er³⁺(5 mol%)-Yb³⁺(30 mol%) codoped TiO₂ samples. The higher annealing temperature (≥ 800 °C) leads to the spectra with many splitting lines. From the XRD detection, it shows that the Er₂Yb_{2-x}Ti₂O₇ crystallites were generated at the annealing temperatures above 800 °C. This means that the majority of Er³⁺ ions should be located in the crystalline Er₂Yb_{2-x}Ti₂O₇ phase and the Er³⁺ bonding environment becomes uniform to produce the well-resolved PL spectrum.

The variation of the ~1.54 μ m PL intensity of Er³⁺-Yb³⁺ codoped TiO₂ samples with Er³⁺-Yb³⁺ concentration was summarized in Fig. 6. By codoping 10-30 mol % Yb³⁺ ions into Er³⁺-doped TiO₂ samples, the PL intensity can be remarkably enhanced. Nevertheless, the 50 mol % Yb³⁺ codopant leads to the reduction of PL intensities that might be related to the back energy transfer from Er³⁺ to Yb³⁺ ions⁶ and the double energy transfer (DET). For comparison, the Er³⁺(5 mol%) -Yb³⁺(30 mol%) codoped silica film was also prepared and annealed at an optimal temperature of ~ 985°C. Figure 7 illustrates that the PL properties of the Er³⁺-Yb³⁺ codoped TiO₂ system exhibit more intense emission (~2 times) and wider FWHM

(~1.5 times) than those of optimal $Er^{3+}-Yb^{3+}$ codoped SiO₂ system. This result implies that the PL properties strongly depend on the composition and structure of the host materials. Furthermore, the $Er^{3+}-Yb^{3+}$ codoped TiO₂ film does not only obtain better PL properties but also lower annealing temperature.

The dependence of annealing temperatures on the PL intensities of Er^{3+} (5 mol %)-Yb³⁺ (30 mol %) codoped TiO_2 samples were shown in Fig. 8. The increase in PL intensity from 600 to 700 °C is attributed to the reduction of OH hydroxyl content (as one can see in Fig. 9, the decrease of absorption around 4000-3000 cm^{-1} **FTIR** corresponding to the O-H vibration mode increases with the annealing temperature.).⁷ However, above 800 °C, the PL intensity is abruptly reduced that is strongly related to the formation of pyrochlore phase. The $Er_xYb_{2-x}Ti_2O_7$ pyrochlore crystallites as identified from XRD patterns are generated at 800 ^oC and its crystallinity can be enhanced at higher temperature annealing. Therefore, the local structure around Er³⁺ ions in the well-crystallized $\mathrm{Er}_{\mathrm{x}}\mathrm{Yb}_{2-\mathrm{x}}\mathrm{Ti}_{2}\mathrm{O}_{7}$ becomes higher-order phase symmetry compared to that of Er^{3+} ions in amorphous host matrix. That results in the reduced probability of the normally forbidden intra-4f transition of Er^{3+} ions and the degradation in the PL efficiency.⁸

On the other hand, for the Er^{3+} -doped TiO₂ sample codoped with Y^{3+} , the ~1.54 μ m PL spectra (no shown here) exhibit the similar effects to the $\mathrm{Er}^{3+}-\mathrm{Yb}^{3+}$ codoped TiO₂ samples. An enhancement of PL intensities with increasing Y^{3+} content was observed for the Er^{3+} (5 mol %)- Y^{3+} (10-50 mol %) codoped TiO₂ samples as shown in Fig. 10. In contrast, a maximum PL intensity appears at the sample of $\operatorname{Er}^{3+}(5 \mod \%)$ -Yb³⁺ (30 mol %) codoped TiO₂, above that, a reduced PL intensity was observed such as for the sample with 50 mol% Yb^{3+} . As comparing the PL intensities of TiO₂ samples codoped with $\operatorname{Er}^{3+}(5 \mod \%)$ -Yb³⁺ (30 mol %) with $\operatorname{Er}^{3+}(5 \mod \%)$ -Y³⁺ (30 mol %). it demonstrates that the PL intensity in the former is about ~ 2 times higher than that in the latter. According to the aforementioned experimental results. the mechanisms for the enhancement of PL intensity between Yb3+ and Y3+ codoping are somewhat different.

For the Er^{3+} - Y^{3+} (or Er^{3+} - Yb^{3+}) codoped TiO₂ systems without the formation of pyrochlore phase (i.e., the annealing temperature ≤ 700 °C), the EXAFS analysis (see Fig. 3) shows that the local environment of Er sites is similar to Er_2O_3 in host matrix. We believe that the Er sites with Er_2O_3 -like environment are optically active centers as the case in the Er^{3+} -doped silicate glasses.⁹ Because Er^{3+}

and Yb^{3+} (or Y^{3+}) have the same valence and similar ionic radii, they could be replaced with each other and the -Er-O-Er- bonding structures can be changed into -Er-O-[Yb (or Y^{3+})-O]_n-Er-. Therefore, the more Y^{3+} codopant results in the larger atomic spacing among Er³⁺ ions and the enhanced PL properties that can be attributed to the increased dispersion and solubility of Er³⁺ ions in $\mathrm{Er}^{3+}-\mathrm{Yb}^{3+}$ (or $\mathrm{Er}^{3+}-\mathrm{Y}^{3+}$) codoped TiO₂ systems. However, it is worthy to note that with increasing Yb^{3+} up to 30 mol%, the PL intensity was remarkably enhanced. It implies that the Yb^{3+} ion does not only play a disperser but also a sensitizer to Er^{3+} ion. This dual effects might have the superimposed impact to the ~1.54 μ m PL efficiency, which seems consistent with our experimental results that the $Er^{3+}-Yb^{3+}$ (10-30 mol %) codoped TiO₂ samples have larger PL intensity than that of $Er^{3+}-Y^{3+}$ (10-30 mol %) codoped TiO₂ samples.

4. Conclusions

- (1) The maximum ~ $1.54 \,\mu$ m PL intensity was obtained for the Er³⁺ (5 mol %)-Yb³⁺ (30 mol %) codoped TiO₂ sample and annealed at 700 °C. This can be attributed to the competition between the content of hydroxyl groups and Er site symmetry. Below 700 °C, the content of hydroxyl groups plays an important role in PL intensity. On the other hand, above 700 °C, the formed pyrochlore phases in the Er³⁺-Yb³⁺ codoped TiO₂ systems can result in the degradation of ~1.54 μ m PL efficiency and the formation of well-resolved spectral lines.
- (2) The local chemical environment of Er^{3+} ions in Er^{3+} -Yb³⁺ codoped TiO₂ films is similar to that in Er_2O_3 and the average spatial distance between Er^{3+} ions is slightly increased due to the partial substitution of Yb³⁺ for Er^{3+} ions in the Er_2O_3 -like local structure. That indicates that Yb³⁺ ion can act as disperser to Er^{3+} ions and reduce the concentration quenching effect.
- (3) In comparison with the Er^{3+} - Y^{3+} codoped TiO₂ samples, the Yb³⁺ ion in the Er^{3+} -Yb³⁺ codoped TiO₂ samples does not only play a disperser but also a sensitizer to Er^{3+} ion. This dual effects lead to the larger PL intensity in Er^{3+} -Yb³⁺ codoped TiO₂ system than that in Er^{3+} -Y³⁺ codoped TiO₂ system. However, when the concentration of Yb³⁺ ions attends to 50 mol %, the back energy transfer effect from Er^{3+} to Yb³⁺ will deteriorate the ~1.54 μ m PL efficiency.

Acknowledgments

This work was financially supported by the

National Science Council of the Republic of China, Taiwan under Contract No. NSC90-2216-E-009-041.

References

- C. Urlacher and J. Mugnier, J. Raman Spectrosc. 27, 785 (1996).
- 2. A. Bahtat, M. Bouazaoui, M. Bahtat, and J. Mugnier, Opt. Commun. **111**, 55 (1994).
- 3. A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and M. Druetta, Thin Solid Films **323**, 59 (1998).
- 4. C. C. Robinson and J.T. Fournier, J. Phys. Chem. Solids **31**, 895 (1970).
- 5. E. Cantelar and F. Cussó, Appl. Phys. B **69**, 29 (1999).
- 6. E. F. Artemev, Sov. J. of Quant. Electr. **11**, 1266 (1981).
- 7. R. F. Bartholomew, B.L. Butler, H.L. Hoover, and C.K. Wa, J. Am. Ceram. Soc. **63**, 481 (1980).
- B.A. Block and B.W. Wessels, Appl. Phys. Lett. 65, 25 (1994).
- M. Marcus, D. Jacobson, A. Vredenberg, and G. Lamble, J. Non-Cryst. Solids 195, 232 (1996).

Fig. 1. XRD patterns of (a) Er^{3+} -doped TiO₂ and (b) different Er^{3+} -Yb³⁺ codoped TiO₂ films annealed at 700-1000 °C for 1 h.

Fig. 2. Dependence of various Er^{3+} - Y^{3+} codoped TiO₂ Films at 700°C on refractive index.

Fig. 3 Fourier transform of EXAFS function at Er L_{III} -edge for the samples annealed at 700 °C with various Yb content.

Fig.4 ~1.54 μ m PL spectra of the Er³⁺ (5 mol %)-doped TiO₂ samples with 0-50 mol % Yb³⁺ codopant annealed at 700 °C for 1 h.

Fig. 5 ~1.54 μ m PL spectra of theEr³⁺ (5 mol %)-Yb³⁺ (30 mol %) codoped TiO₂ annealed from 700 to 1000 °C for 1 h.

Fig. 6. Dependence of Yb³⁺ concentration on the ~1.54 μ m PL intensity of Er³⁺-Yb³⁺ codoped TiO₂ samples added with different concentration of Er³⁺ ions and annealed at 700 °C/1 h.

Fig. 7 PL intensity of the Er^{3+} (5 mol %)-doped TiO₂ samples with the 30 mol % Yb³⁺ codopant annealed from 600 to 1000°C for 1 h.

Fig. 8 Comparison of ~1.54 μ m PL spectra of Er³⁺ (5 mol %)-Yb³⁺ (30 mol %) codoped TiO₂ and SiO₂ films.

Fig. 9. FTIR transmittance spectra of Er^{3+} (5 mol %)-Yb³⁺ (30 mol %) codoped TiO₂ annealed from 600-1000 °C.

Fig. 10 Comparison of ~1.54 μ m PL intensities between Er³⁺ (5 mol %)-Yb³⁺ (10-50 mol %) and Er³⁺ (5 mol %)-Y³⁺ (10-50 mol %) codoped TiO₂ system annealed at 700 °C for 1 h.