平面光波導元件之鉺共掺雜氧化鈦基薄膜材料製程與光電特性研究

Physical characteristics and optical properties of sol-gel derived Er 3+ -Yb3+ codoped TiO2 for optical waveguide

計畫編號: NSC90-2216-E-009-041 執行時間:90/08/01 ~ 91/07/31 主持人:陳三元 副教授 交通大學材料科學與工程系

中文摘要

本研究主要是在探討氧化鈦材料來當作母材的 组、鏡共掺雜氧化鈦薄膜,其藉由鏡離子的共掺 雜,將使得此薄膜所放射出的~1.54μm 螢光的發 光強度較現今被廣泛報導且具有良好螢光特性 的鉺、鋁共掺雜氧化矽薄膜的螢光強度還強約 17 倍,且此螢光頻譜的半高寬亦增寬約 1.4 倍,此 外,同時此薄膜亦具有較低的製程溫度(比鉺、鐵 共掺雜氧化矽之製程溫度低~300°C),故其可應用 在積體光學中平面光波導放大器的製作上。

關鍵詞: 鉺、鑢共摻雜氧化鈦、螢光、溶凝膠、 分散性

Abstract

 $Er³⁺ - Yb³⁺$ codoped TiO₂ films were prepared on fused silica by sol-gel processes. The maximum \sim 1.54 μ m photoluminescence (PL) intensity occurs in the Er^{3+} (5 mol %)-Yb³⁺(30 mol %) codoped TiO₂ samples annealed at 700° C. However, when the concentration of Yb^{3+} ions attends to 50 mol %, the back energy transfer effect from Er^{3+} to Yb^{3+} will deteriorate the \sim 1.54 μ m PL efficiency. It was believed that the Yb^{3+} ion does not only play a disperser but also a sensitizer to $Er³⁺$ ion. This dual effects lead to the larger PL intensity in Er^{3+} -Yb³⁺ codoped TiO₂ system than that in $Er^{3+} - Y^{3+}$ codoped $TiO₂$ system. Even compared with the $SiO₂$ films with Er^{3+} (3 mol %)-Yb³⁺ (30 mol %) codoped and annealed at an optimal temperature of $985\textdegree C$, the $Er³⁺-Yb³⁺$ codoped TiO₂ film can obtain better PL properties at a lower annealing temperature.

Key words: Er^{3+} -Yb³⁺ codoped TiO₂ \rightarrow photoluminescence、sol-gel、dispersion

1. Introduction

TiO₂ film has higher refraction index $(n=2.52)$ for anatase and n=2.76 for rutile) as well as lower phonon energy $(<700 \text{ cm}^{-1})^1$ than silica glass film, Er^{3+} -doped TiO₂-based films have shown potential applications in the micro-integrated photonic devices. However, little detailed studies were made to investigate the role of Er^{3+} content in the PL properties of Er^{3+} -doped TiO₂ films.^{2,.3}

The Yb^{3+} codopant has been demonstrated in increasing the variation of Er sites that results in the inhomogeneous broadening effect.⁴ In addition, Yb^{3+} ion can sensitize Er^{3+} ions so as to enhance the ~1.54 μ m PL intensity.⁵ However, the role of Yb³⁺ ion in phase development and related optical properties of $Er³⁺$ -doped TiO₂ system has been not investigated. Furthermore, $Yb^{3+}/Y^{3+}/Er^{3+}$ ions have similar ionic radii $(Yb^{3+} = 0.0862, Y^{3+} =$ 0.0892, and $Er^{3+} = 0.0881$ nm) $Yb_2O_3/Y_2O_3/Er_2O_3$ have nearly the same crystal structural and lattice constant.

Therefore, it is very important to investigate the influence of co-dopant Yb^{3+} on the physical characteristics and optical properties of $Er³⁺$ -doped titania. Furthermore, the role of Yb^{3+} and Y^{3+} codopants in photoluminescence properties of Er³⁺-doped titania materials will be discussed and compared.

2. Experimental

A. Thin films preparation

The $Er^{3+}-Yb^{3+}$ codoped TiO₂ films were prepared from yttrium acetate, erbium acetate (Alfa) and titanium isopropoxide. The as-deposited films were first pyrolyzed under dry oxygen atmospheres at 400 $^{\circ}$ C for 30 min and then annealed at 600-1000 $\rm{^{\circ}C}$ for 1 h in dry oxygen atmosphere.

B. Characterization measurements

The phase structures of films were analyzed by X-ray diffractometer. The electron spin resonance (ESR) spectra were recorded using a Bruker ESR spectrometer. The fluorescence spectra were excited by a 980 nm diode laser. Erbium *^L*III-edge X-ray absorption spectra were recorded at Synchrotron Radiation Research Center (SRRC), Hsinchu.

3. Results and discussion

3.1. Structural evolution

The X-ray diffraction (XRD) patterns in Fig. 1(a) show the effect of annealing temperatures on structural evolution of Er^{3+} (5 mol %)-doped TiO₂. It is obvious that the addition of more than 5 mol %

 $Er³⁺$ ions can lead to the destruction of TiO₂ network structure. The crystallinity of anatase $TiO₂$ was reduced and anatase-to-rutile $(A \rightarrow R)$ transformation rate was accelerated (e.g., the anatase phase totally disappear at $900\degree$ C annealing). Additionally, the $Er_2Ti_2O_7$ pyrochlore phase (P) was detected at 800 °C. For the Er^{3+} (5 mol %)-Yb³⁺ (30) mol %) codoped $TiO₂$ samples, the XRD patterns in Fig. 1(b) show that when the samples were annealed $700 \degree C$, the host matrix becomes amorphous for Yb^{3+} concentration above 10 mol %. Additionally, Yb^{3+} codopant was found to accelerate the $A \rightarrow R$ transformation; all of the anatase phase has been transformed into rutile phase at 800 °C. After the Er^{3+} -Yb³⁺ codoped TiO₂ samples were annealed at $900-1000$ °C, both rutile (R) and pyrochlore (P) phase become more well-crystallized. Similar results are also observed in the \dot{Y}^{3+} -doped TiO₂ system.

In addition, Fig. 2 shows the surface morphologies of Er^{3+} -doped TiO₂ and Er^{3+} -Yb³⁺ codoped TiO₂ samples annealed 700° C/1 h. The grain sizes of the TiO₂ samples doped with Er^{3+} (5 mol %), $Er³⁺-Yb³⁺$ (5-10 mol %) are about 60 and 25 nm, respectively. It has been well known that smaller grains can provide more surface nucleation sites, which can accelerate the $A \rightarrow R$ phase transformation. Therefore, the smaller grain size in $Er³⁺-Yb³⁺$ codoped TiO₂ samples than $Er³⁺$ -doped TiO₂ samples reflects the higher $A \rightarrow R$ transformation rate.

Figure 3 shows the pseudo-radial distribution functions obtained from the k^3 -weighted Fourier transforms of the $Er^{3+}Yb^{3+}$ codoped TiO₂ samples annealed at 700 for 1 h. Qualitative observation of the 700° C-annealed samples (i.e., no formation of pyrochlore phase) reveals that the first and second-neighbor distance around $Er³⁺$ is close to the Er-O and Er-Er bond length of Er_2O_3 , respectively. This means that the local structure around $Er³⁺$ ions in the Er^{3+} -Yb³⁺ codoped TiO₂ systems is similar to that of the crystalline Er_2O_3 . Additionally, it is noted that the second-neighbor distance around $Er³⁺$ slightly increased with the increase of Yb^{3+} concentration up to 30 mol%. The increased second-neighbor distance seems to reveal that the second shell may partially contain Yb^{3+} ions. This phenomenon can be attributed to the fact that as Er^{3+} and Yb^{3+} have the same valence and close ionic radii, they can be replaced with each other. However, as the Er^{3+} -doped TiO₂ was codoped with 50 mol% Yb^{3+} , the second-neighbor distance around $Er³⁺$ becomes larger as compared to that with 30 mol% Yb^{3+} codoped that is probably due to a high disorder around $E\bar{r}^{3+}$ ions.

*3.2. ~1.54*μ*m photoluminescence properties*

Figure 4 shows the \sim 1.54 μ m PL spectra of the $Er³⁺$ (5 mol %)-doped TiO₂ samples with 0-50 mol % Yb^{3+} added and annealed at 700 °C for 1 h. All of the spectra were normalized to the same intensity to compare the difference between spectral features. The Er^{3+} (5 mol %)-doped TiO₂ sample exhibits a sharp PL spectrum with a 1.537 μ m main peak which is characteristic emission $({}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2})$ of $Er³⁺$ ion. However, by increasing the Yb³⁺ codopant concentration, the PL spectra became more broaden. The maximum bandwidth (FWHM= 67 nm) of \sim 1.54 μ m PL spectra was obtained for the sample added with Yb^{3+} content above 30 mol %. The line-broadening mechanism can be attributed to the inhomogeneously broadened transition of Er^{3+} ions.⁶ For the sample without Yb^{3+} codopant, the well-resolved spectrum demonstrates that the Er^{3+} ions are located in well-defined sites of $TiO₂$ matrix. Namely, each $Er³⁺$ ion occupies the similar type of site that has well-defined surrounding and hence each $Er³⁺$ ion experiences the similar crystal field. However, the Yb^{3+} codopant can destroy the network of $TiO₂$ host matrix, which results in the varying Er sites with different surrounding environment and causes a randomization of the Stark splittings. Therefore, the overall spectral lines resulting from the superimposed contributions of each Er site are inhomogeneously broadened.

Figure 5 illustrates that the influence of annealing temperatures on the ~1.54 μ m PL spectral feature of $Er^{3+}(5 \text{ mol\%})$ -Yb³⁺(30 mol%) $codoped TiO₂ samples. The higher annealing$ temperature (≥ 800 °C) leads to the spectra with many splitting lines. From the XRD detection, it shows that the $Er_2Yb_{2-x}Ti_2O_7$ crystallites were generated at the annealing temperatures above 800 ^oC. This means that the majority of $Er³⁺$ ions should be located in the crystalline $Er_2Yb_{2-x}Ti_2O_7$ phase and the Er^{3+} bonding environment becomes uniform to produce the well-resolved PL spectrum.

The variation of the ~1.54 μ m PL intensity of $Er^{3+}-Yb^{3+}$ codoped TiO₂ samples with $Er^{3+}-Yb^{3+}$ concentration was summarized in Fig. 6. By codoping 10-30 mol % Yb^{3+} ions into Er^{3+} -doped $TiO₂$ samples, the PL intensity can be remarkably enhanced. Nevertheless, the 50 mol % Yb^{3+} codopant leads to the reduction of PL intensities that might be related to the back energy transfer from Er^{3+} to Yb^{3+} ions⁶ and the double energy transfer (DET). For comparison, the $Er^{3+}(5 \text{ mol})\%$) $-Yb^{3+}(30 \text{ mol})$ codoped silica film was also prepared and annealed at an optimal temperature of \sim 985°C. Figure 7 illustrates that the PL properties of the $Er^{3+} \cdot Yb^{3+}$ codoped TiO₂ system exhibit more intense emission (~2 times) and wider FWHM

 (-1.5 times) than those of optimal Er^{3+} -Yb³⁺ codoped $SiO₂$ system. This result implies that the PL properties strongly depend on the composition and structure of the host materials. Furthermore, the $Er³⁺-Yb³⁺$ codoped TiO₂ film does not only obtain better PL properties but also lower annealing temperature.

The dependence of annealing temperatures on the PL intensities of Er^{3+} (5 mol %)- Yb^{3+} (30 mol %) codoped $TiO₂$ samples were shown in Fig. 8. The increase in PL intensity from 600 to 700 $^{\circ}$ C is attributed to the reduction of OH hydroxyl content (as one can see in Fig. 9, the decrease of FTIR absorption around 4000-3000 cm⁻¹ corresponding to the O-H vibration mode increases with the annealing temperature.).⁷ However, above 800 \degree C, the PL intensity is abruptly reduced that is strongly related to the formation of pyrochlore phase. The $Er_xYb_{2-x}Ti_2O_7$ pyrochlore crystallites as identified from XRD patterns are generated at 800 $\rm{^{\circ}C}$ and its crystallinity can be enhanced at higher temperature annealing. Therefore, the local structure around $Er³⁺$ ions in the well-crystallized $Er_{x}Yb_{2-x}Ti_{2}O_{7}$ phase becomes higher-order symmetry compared to that of $Er³⁺$ ions in amorphous host matrix. That results in the reduced probability of the normally forbidden intra-4*f* transition of $Er³⁺$ ions and the degradation in the PL efficiency.⁸

On the other hand, for the $Er³⁺$ -doped TiO₂ sample codoped with Y^{3+} , the ~1.54 μ m PL spectra (no shown here) exhibit the similar effects to the $Er³⁺-Yb³⁺$ codoped TiO₂ samples. An enhancement of PL intensities with increasing Y^{3+} content was observed for the Er^{3+} (5 mol %)- Y^{3+} (10-50 mol %) codoped $TiO₂$ samples as shown in Fig. 10. In contrast, a maximum PL intensity appears at the sample of Er^{3+} (5 mol %)-Yb³⁺ (30 mol %) codoped $TiO₂$, above that, a reduced PL intensity was observed such as for the sample with 50 mol% Yb^{3+} . As comparing the PL intensities of $TiO₂$ samples codoped with Er^{3+} (5 mol %)-Yb³⁺ (30 mol %) with Er^{3+} (5 mol %)- Y^{3+} (30 mol %), it demonstrates that the PL intensity in the former is about \sim 2 times higher than that in the latter. According to the aforementioned experimental results, the mechanisms for the enhancement of PL intensity between Yb^{3+} and Y^{3+} codoping are somewhat different.

For the $Er^{3+}-Y^{3+}$ (or $Er^{3+}-Yb^{3+}$) codoped TiO₂ systems without the formation of pyrochlore phase (i.e., the annealing temperature ≤ 700 °C), the EXAFS analysis (see Fig. 3) shows that the local environment of Er sites is similar to Er_2O_3 in host matrix. We believe that the Er sites with Er_2O_3 -like environment are optically active centers as the case in the Er^{3+} -doped silicate glasses.⁹ Because Er^{3+}

and Yb^{3+} (or Y^{3+}) have the same valence and similar ionic radii, they could be replaced with each other and the -Er-O-Er-O-Er- bonding structures can be changed into -Er-O-[Yb (or Y^{3+})-O]_n-Er-. Therefore, the more Y^{3+} codopant results in the larger atomic spacing among Er^{3+} ions and the enhanced PL properties that can be attributed to the increased dispersion and solubility of $Er³⁺$ ions in $Er³⁺-Yb³⁺$ (or $Er³⁺-Y³⁺$) codoped TiO₂ systems. However, it is worthy to note that with increasing Yb^{3+} up to 30 mol%, the PL intensity was remarkably enhanced. It implies that the Yb^{3+} ion does not only play a disperser but also a sensitizer to Er^{3+} ion. This dual effects might have the superimposed impact to the ~1.54 μ m PL efficiency, which seems consistent with our experimental results that the Er^{3+} -Yb³⁺ (10-30 mol $\%$) codoped TiO₂ samples have larger PL intensity than that of $Er^{3+} - Y^{3+}$ (10-30 mol %) codoped TiO₂ samples.

4. Conclusions

- (1) The maximum $\sim 1.54 \mu$ m PL intensity was obtained for the Er^{3+} (5 mol %)-Yb³⁺ (30 mol %) codoped TiO₂ sample and annealed at $700 \degree C$. This can be attributed to the competition between the content of hydroxyl groups and Er site symmetry. Below 700° C, the content of hydroxyl groups plays an important role in PL intensity. On the other hand, above 700° C, the formed pyrochlore phases in the $Er^{3+}Yb^{3+}$ codoped $TiO₂$ systems can result in the degradation of \sim 1.54 μ m PL efficiency and the formation of well-resolved spectral lines.
- (2) The local chemical environment of $Er³⁺$ ions in $Er³⁺-Yb³⁺$ codoped TiO₂ films is similar to that in Er_2O_3 and the average spatial distance between Er^{3+} ions is slightly increased due to the partial substitution of Yb^{3+} for Er^{3+} ions in the Er_2O_3 -like local structure. That indicates that Yb^{3+} ion can act as disperser to Er^{3+} ions and reduce the concentration quenching effect.
- (3) In comparison with the $Er^{3+}Y^{3+}$ codoped TiO₂ samples, the Yb^{3+} ion in the $Er^{3+}-Yb^{3+}$ codoped $TiO₂$ samples does not only play a disperser but also a sensitizer to Er^{3+} ion. This dual effects lead to the larger PL intensity in $Er^{3+}Yb^{3+}$ codoped TiO₂ system than that in $Er^{3+}-Y^{3+}$ codoped TiO₂ system. However, when the concentration of Yb^{3+} ions attends to 50 mol %, the back energy transfer effect from Er^{3+} to Yb^{3+} will deteriorate the ~1.54 μ m PL efficiency.

Acknowledgments

This work was financially supported by the

National Science Council of the Republic of China, Taiwan under Contract No. NSC90-2216-E-009-041.

References

- 1. C. Urlacher and J. Mugnier, J. Raman Spectrosc. **27**, 785 (1996).
- 2. A. Bahtat, M. Bouazaoui, M. Bahtat, and J. Mugnier, Opt. Commun. **111**, 55 (1994).
- 3. A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and M. Druetta, Thin Solid Films **323**, 59 (1998).
- 4. C. C. Robinson and J.T. Fournier, J. Phys. Chem. Solids **31**, 895 (1970).
- 5. E. Cantelar and F. Cussó, Appl. Phys. B **69**, 29 (1999).
- 6. E. F. Artemev, Sov. J. of Quant. Electr. **11**, 1266 (1981).
- 7. R. F. Bartholomew, B.L. Butler, H.L. Hoover, and C.K. Wa, J. Am. Ceram. Soc. **63**, 481 (1980).
- 8. B.A. Block and B.W. Wessels, Appl. Phys. Lett. **65**, 25 (1994).
- 9. M. Marcus, D. Jacobson, A. Vredenberg, and G. Lamble, J. Non-Cryst. Solids **195**, 232 (1996).

Fig. 1. XRD patterns of (a) $Er³⁺$ -doped TiO₂ and (b) different $Er^{3+}-Yb^{3+}$ codoped TiO_2 films annealed at $700-1000$ °C for 1 h.

Fig. 2. Dependence of various $Er^{3+} - Y^{3+}$ codoped $TiO₂$ Films at 700°C on refractive index.

Fig. 3 Fouier transform of EXAFS function at Er L_{II} -edge for the samples annealed at 700 °C with various Yb content.

Fig.4 ~1.54 μ m PL spectra of the Er³⁺ (5 mol %)-doped TiO₂ samples with 0-50 mol % Yb^{3+} codopant annealed at 700 °C for 1 h.

Fig. 5 ~1.54 μ m PL spectra of the Er³⁺ (5 mol %)- Yb^{3+} (30 mol %) codoped TiO₂ annealed from 700 to 1000° C for 1 h.

Fig. 6. Dependence of Yb^{3+} concentration on the ~1.54 μ m PL intensity of Er^{3+} -Yb³⁺ codoped TiO₂ samples added with different concentration of Er^{3+} ions and annealed at $700 \degree C/1$ h.

Fig. 7 PL intensity of the Er^{3+} (5 mol %)-doped TiO₂ samples with the 30 mol % Yb^{3+} codopant annealed from 600 to 1000° C for 1 h.

Fig. 8 Comparison of ~1.54 μ m PL spectra of Er³⁺ (5 mol %)- Yb^{3+} (30 mol %) codoped TiO₂ and SiO₂ films.

Fig. 9. FTIR transmittance spectra of $Er³⁺$ (5 mol %)- Yb^{3+} (30 mol %) codoped TiO₂ annealed from 600-1000 $°C$.

Fig. 10 Comparison of \sim 1.54 μ m PL intensities between Er^{3+} (5 mol %)-Yb³⁺ (10-50 mol %) and Er^{3+} (5 mol %)- Y^{3+} (10-50 mol %) codoped TiO₂ system annealed at 700 °C for 1 h.