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Abstract In this paper, a quantum neuro-fuzzy classifier
(QNFC) for classification applications is proposed. The pro-
posed QNFC model is a five-layer structure, which combines
the compensatory-based fuzzy reasoning method with the
traditional Takagi–Sugeno–Kang (TSK) fuzzy model. The
compensatory-based fuzzy reasoning method uses adaptive
fuzzy operations of neuro-fuzzy systems that can make the
fuzzy logic system more adaptive and effective. Layer 2
of the QNFC model contains quantum membership func-
tions, which are multilevel activation functions. Each quan-
tum membership function is composed of the sum of sigmoid
functions shifted by quantum intervals. A self-constructing
learning algorithm, which consists of the self-clustering algo-
rithm (SCA), quantum fuzzy entropy and the backpropaga-
tion algorithm, is also proposed. The proposed SCA method
is a fast, one-pass algorithm that dynamically estimates the
number of clusters in an input data space. Quantum fuzzy
entropy is employed to evaluate the information on pattern
distribution in the pattern space. With this information, we
can determine the number of quantum levels. The backprop-
agation algorithm is used to tune the adjustable parameters.
The simulation results have shown that (1) the QNFC model
converges quickly; (2) the QNFC model has a higher correct
classification rate than other models.
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1 Introduction

Classification is one of the most frequent decision-making
tasks performed by humans. A classification problem occurs
when an object needs to be assigned to a predefined group
or class based on the number of observed attributes related
to that object. Many problems in business, science, industry,
and medicine can be treated as classification problems. Tra-
ditional statistical classification procedures, such as discrim-
ination analysis, are built on the Bayesian decision theory
(Duda and Hart 1973). In these procedures, an underlying
probability model must be assumed in order to calculate the
a posteriori probability upon which a classification decision
is made. One major limitation of statistical models is that they
work well only when the underlying assumptions are correct.
The effectiveness of these methods depends to a large extent
on the various assumptions or conditions under which the
models are developed. Users must have a good knowledge of
both data properties and model capabilities before the models
can be successfully applied.

Neural networks (Setiono and Liu 1997) have emerged as
an important tool for classification tasks. The recent and vast
research activities in neural classification have established
that neural networks are promising alternatives to various
conventional classification methods. However, it is difficult
to understand the meaning associated with each neuron and
each weight in the neural networks. A fuzzy entropy measure
(Lee et al. 2001) is employed to partition the input feature
space into decision regions and to select relevant features
with good separability for the classification task. However,
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as compared with the neural networks, learning ability is lock
of fuzzy logic. When the views above are summarized, it can
be said that, in contrast to pure neural networks or fuzzy
systems, the neuro-fuzzy network methods (Halgamuge and
Glesner 1994; Kasabov 1996; Nauck and Kruse 1997; Paul
and Kumar 2002; Russo 1998; Wang and George Lee 2002)
possess the advantages of both neural networks and fuzzy
systems. Neuro-fuzzy methods bring the low-level learning
and computational power of neural networks into fuzzy sys-
tems and give the high-level human-like thinking and rea-
soning of fuzzy systems to neural networks.

Many papers (Halgamuge and Glesner 1994; Kasabov
1996; Nauck and Kruse 1997; Paul and Kumar 2002; Russo
1998; Wang and George Lee 2002) have dealt with how to
optimize fuzzy membership functions and how to choose
an optimal defuzzification scheme for applications by using
learning algorithms to adjust the parameters of fuzzy
membership functions and defuzzification functions. Unfor-
tunately, for optimizing fuzzy logic reasoning and selecting
optimal fuzzy operators, only static fuzzy operators are often
used to create fuzzy reasoning (Zhang and Kandel 1998).
Because the conventional neuro-fuzzy system can only adjust
fuzzy membership functions by using fixed fuzzy operations,
such as Min and Max, the compensatory neuro-fuzzy sys-
tem (Zhang and Kandel 1998) with adaptive fuzzy reasoning
is more effective and adaptive than the conventional neuro-
fuzzy systems with non-adaptive fuzzy reasoning. Therefore,
an effective neuro-fuzzy system should be able not only to
adaptively adjust fuzzy membership functions but also to
dynamically optimize adaptive fuzzy operators.

Recently, quantum neural networks (QNNs)
(Purushothaman and Karayiannis 1997; Kretzschmar et al.
2000; Fei et al. 2000) have been developed for detecting
and identifying the input data with uncertainty. Conventional
NNs and QNNs satisfy the requirements outlined in Leshno
et al. (1993) for a universal function approximator. More
specifically, QNNs can identify overlaps between data due to
their ability to approximate any arbitrary membership profile
up to any degree of accuracy. However, QNNs and NNs are
generally disadvantaged by their “black box” format, lack a
systematic way to determine the appropriate model structure,
have no localizability, and converge slowly.

In this paper, a quantum neuro-fuzzy classifier (QNFC)
is proposed. The proposed QNFC model includes five major
components—quantum membership function, compensatory
operation, self-clustering algorithm, quantum fuzzy entropy,
and supervised learning method. The proposed QNFC model
is a five-layer structure, which combines the compensatory-
based fuzzy reasoning method with the traditional Takagi–
Sugeno–Kang (TSK) fuzzy model. Layer 2 of the QNFC
model contains quantum membership functions, which are
multilevel activation functions. Each quantum membership
function is composed of the sum of sigmoid functions shifted

by quantum intervals. The quantum intervals add an addi-
tional degree of freedom that can be exploited during the
learning process to capture and quantify the structure of the
input space. The advantages of the proposed quantum mem-
bership function are summarized as follows: (1) it has the
ability of approximate any membership function arbitrarily
by the efficient parameters; (2) it has the ability to detect
the presence of uncertainty in the input data. At the same
time, the compensatory fuzzy inference method uses adap-
tive fuzzy operations of neuro-fuzzy systems that can make
the fuzzy logic system more adaptive and effective.

A self-constructing learning algorithm for the QNFC is
also proposed, as follows. First, a structure learning scheme
is used to determine proper input space partitioning and to
find the center of each cluster. Furthermore, we use quantum
fuzzy entropy to determine the number of quantum
levels, which reflect the actual distribution of classification
patterns. Second, a supervised learning scheme is used to
adjust the parameters to obtain the desired outputs. The pro-
posed learning algorithm uses the self-clustering algorithm
(SCA), quantum fuzzy entropy to perform structure learn-
ing, and the backpropagation algorithm to perform parame-
ter learning. Finally, we evaluate the performance of the pro-
posed QNFC model using two classification problems.

This paper is organized as follows. Section 2 describes
the compensatory operation. Section 3 describes the quan-
tum membership function and the structure of the QNFC
model. Section 4 describes the learning algorithm of the
QNFC model. The self-clustering algorithm, quantum fuzzy
entropy, and backpropagation algorithm are presented in this
section. In Sect. 5, the QNFC model is used to classify the
Iris data and the Wisconsin breast cancer data to demonstrate
its learning capability. We also compare our approach with
other methods in the literature. Finally, conclusions are given
in the last section.

2 The compensatory operation

Zimmermann and Zysno (1980) first defined the essence
of compensatory operations. Zhang and Kandel (1998)
proposed more extensive compensatory operations based on
the pessimistic operation and the optimistic operation. The
pessimistic operation can map the inputs xi to the pessimistic
output by making a conservative decision for the pessimistic
situation or for even the worst case. For example,
p(x1, x2, . . . , xn) = M I N (x1, x2, . . . , xn) or � xi . Actu-
ally, the t-norm fuzzy operation is a pessimistic operation.

The optimistic operation can map the inputs xi to the
optimistic output by making an optimistic decision for the
optimistic situation or for even the best case. For exam-
ple, o(x1, x2, . . . , xn) = M AX (x1, x2, . . . , xn). Actually,
the t-conorm fuzzy operation is an optimistic operation. The
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compensatory operation can map the pessimistic input x1

and the optimistic input x2 to make a relatively compromised
decision for the situation between the worst case and the best
case. For example, c(x1, x2) = x1−γ

1 xγ
2 , where γ ∈ [0, 1] is

called the compensatory degree. Many researchers (Ouyang
and Lee 1999; Seker et al. 2001; Lin and Ho 2003; Lin and
Chen 2003) have used the compensatory operation in fuzzy
systems successfully.

The general fuzzy if-then rule is shown as follows:

R j : I Fx1 is A1 j and . . . and xn is Anj THEN y is b j (1)

where xi and y are the input dimensions and output variables,
respectively; Ai j is the linguistic term of the precondition
part with membership function µAi j ; b j is the constant con-
sequent; the i is the input dimension, i = 1, . . . , n; the n is
the number of existing dimensions; j is the number of rules,
j = 1, . . . , p; and p is the number of existing rules.

For an input fuzzy set A′ in U , the j th fuzzy rule (1)
can generate an output fuzzy set b′

j in v by using the sup-dot
composition

µb j
′ = sup

x−∈U
[µA1 j ×···×Anj →b j (x−, y) • µA′(x−)] (2)

where x− = (x1, x2, . . . , xn).µA1 j ×···×Anj (x−) is defined in a

compensatory operation

µA1 j ×···×Anj (x−) = (u j )
1−γ j (v j )

γ j (3)

where γ j ∈ [0, 1] is a compensatory degree. The pessimistic
operation and the optimistic operation are as follows:

u j =
n∏

i=1

µAi j (xi ) (4)

v j =
[ n∏

i=1

µAi j (xi )

]1/n
(5)

For simplicity, we can rewrite

µA1 j ×···×Anj (x−) =
[ n∏

i=1

µAi j (xi )

]1−γ j +γ j

/
n

(6)

Since µA′(xi ) = 1 for the singleton fuzzifier and µb j
′(y)=1,

according to (2) we have

µb j
′(y) =

[ n∏

i=1

µAi j (xi )

]1−γ j +γ j

/
n

(7)

Therefore, we can rewrite the fuzzy if-then rule as follows

R j : [I Fx1 is A1 j and . . . and xnis Anj ]1−γ j +γ j

/
n

THEN y is b j (8)

3 The structure of the QNFC

In this section, we propose the quantum neuro-fuzzy classi-
fier (QNFC). Nodes in layer 1 are input nodes, which rep-
resent input variables. Nodes in layer 2 are called quantum
membership functions to express the input fuzzy linguistic
variables. Nodes in this layer are used to calculate quantum
membership values. Each node in layer 3 is called a compen-
satory rule node. Nodes in layer 3 are equal to the number
of compensatory fuzzy sets corresponding to each external
linguistic input variable. Links before layer 3 represent the
preconditions of the rules, and links after layer 3 represent the
consequences of the rule nodes. Nodes in layer 4 are called
consequent nodes, where each node is a linear function of
the input variables. Nodes in layer 5 are called output nodes,
where the node is recommended by layers 3 and 4 and acts
as a defuzzifier.

The proposed QNFC realizes a fuzzy if-then rule in the
following form (Lin and Chen 2003):

R j : IF [x1 is Q1 j and . . . and xn is Qnj ]1−γ j + γ j
n

THEN y is a0 j +
n∑

i=1
ai j xi

(9)

where xi and y are the input and output variables, respec-
tively; Qi j is the linguistic term of the precondition part with
quantum membership functionµQi j ; γ j ∈ [0, 1] is a compen-
satory degree; n is the number of input dimensions; a0 j and
ai j are the parameters of consequent part; R j is j th fuzzy rule.
The proposed compensatory-based fuzzy reasoning method
is based on our previous research (Lin and Chen 2003).

The membership function of the precondition part dis-
cussed in this paper is different from the typical Gaussian
membership function. We propose the quantum membership
function to approximate desired results. The basic concept
of quantum membership function is derived from a mul-
tilevel transfer function (Purushothaman and Karayiannis
1997). Therefore, the response of the j th quantum mem-
bership function for the i th feature vector can be written as
(Lin et al. 2004)

Qi j = 1

nsi j

nsi j∑

α=1

[(
1

1 + exp(−β(xi − mi j + |θα
i j |))

)

×U
(
xi ;−∞, mi j

)
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Fig. 1 Quantum membership function shown in a one-dimension and
b two-dimensions

+
(

exp(−β(xi − mi j − |θα
i j |))

1 + exp(−β(xi − mi j − |θα
i j |))

)

× U
(
xi ; mi j ,∞

) ]
(10)

where U (xi ; a, b) =
{

1, if a ≤ xi < b
0, otherwise

, β is the slope

factor, θα
i j is the quantum interval, mi j is the center of the

quantum membership function, and nsi j is the number of
levels in the quantum membership function for the j th rule
of the i th input. Therefore, we can describe the fuzzy if-then
rule as follows:

R j : IF

[
x1is µ

(
m1 j ; θα

1 j

)
and . . . andx i is µ

(
mi j ; θα

i j

)

and . . . and xn is µ
(

mnj ; θα
nj

) ]1−γ j + γ j
n

THEN y is a0 j + a1 j x1 . . . + ai j xi + · · · + anj xn

(11)

Figure 1 shows the response of a three-level quantum mem-
bership function using Eq. (10) with β = 1, θ = [5, 15, 25] ,

m = 0, ns = 3.
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Fig. 2 Structure of the proposed QNFC

The structure of the quantum neuro-fuzzy classifier
(QNFC), which is systematized into n input variables, p-
term nodes for each input variable, one output node, and
n × p membership function nodes, is shown in Fig. 2. We
shall introduce the operation functions of the nodes in each
layer of the QNFC model. In the following description, u(l)

denotes an output of a node in the lth layer.
Layer 1 (input node): No computation is done in this layer.

Each node in this layer is an input node, which corresponds
to one input variable and which only transmits input values
to the next layer directly.

u(1)
i = xi (12)

Layer 2 (quantum membership function node): Nodes in this
layer correspond to one linguistic label of the input variables
in layer1 and a unit of memory. That is, the membership
value specifying the degree to which an input value and a
unit of memory belong to a fuzzy set is calculated in layer
2. The quantum membership function (Lin et al. 2004), the
operation performed in layer 2 is

u(2)
i j = 1

nsi j

nsi j∑

α=1

[(
1

1 + exp(−β(u(1)
i − mi j + |θα

i j |))

)

×U
(

u(1)
i ;−∞, mi j

)
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+
( exp(−β(u(1)

i − mi j − |θα
i j |))

1 + exp(−β(u(1)
i − mi j − |θα

i j |))

)

×U
(

u(1)
i ; mi j ,∞

) ]
(13)

where U (xi ; a, b) =
{

1, ifa ≤ xi < b
0, otherwise

, β is the slope

factor, θα
i j is the quantum interval, mi j is the center of the

quantum membership function, and nsi j is the number of
levels in the quantum membership function for the j th rule
of the i th input.

Layer 3 (compensatory rule node): Nodes in this layer
represent the preconditioned part of one fuzzy logic rule.
They receive one-dimensional membership degrees of the
associated rule from nodes of a set in layer 2. Here, we use
the compensatory operator previously mentioned to perform
IF-condition matching of fuzzy rules. As a result, the output
function of each inference node is (Lin and Chen 2003)

u(3)
j =

(
∏

i

u(2)
i j

)1−γ j + γ j
n

(14)

where the
∏

i u(2)
i j of a rule node represents the firing strength

of its corresponding rule, and γ j = c2
j

/(
c2

j + d2
j

)
∈ [0, 1]

is called the compensatory degree and c j , d j ∈ [−1, 1]. The
purpose of tuning c j and d j is to increase the adaptability of
the fuzzy operator.

Layer 4 (consequent node): Nodes in this layer are called
consequent nodes. The input to a node in layer 4 is the output
delivered from layer 3, and the other inputs are the input
variables from layer 1 as depicted in Fig. 2. For this kind of
node, we have

u(4)
j = u(3)

j (a0 j +
n∑

i=1

ai j xi ) (15)

where the summation is over all the inputs and where ai j are
the corresponding parameters of the consequent part.

Layer 5 (output node): Each node in this layer corresponds
to one output variable. The node integrates all the actions
recommended by layers 3 and 4 and acts as a defuzzifier
with

y = u(5) =
∑p

j=1 u(4)
j

∑p
j=1 u(3)

j

=
∑p

j=1 u(3)
j (a0 j + ∑n

i=1 ai j xi )
∑p

j=1 u(3)
j

(16)

where p is the number of fuzzy rule.

4 A learning algorithm for the QNFC model

In this section, we present a learning algorithm for the pro-
posed QNFC model. The following two schemes are part of
this learning algorithm. First, a structure learning scheme is
proposed to determine proper input space partitioning and
to find the center of each cluster. Furthermore, we propose
quantum fuzzy entropy to decide the number of quantum
levels that reflect the actual distribution of classification pat-
terns. Second, a supervised learning scheme is proposed to
adjust the parameters for the desired outputs. The proposed
learning algorithm uses the self-clustering algorithm (SCA),
quantum fuzzy entropy to perform structure learning and the
backpropagation algorithm to perform parameter learning.

4.1 The structure learning

The first step in structure learning is to determine the number
of rules using the self-clustering algorithm (SCA) from the
training data, as well as to determine the number of fuzzy
sets in the universe of discourse of each input variable, since
one cluster in the input space corresponds to one potential
fuzzy logic rule, with mi j and θα

i j representing the center
and the quantum interval, respectively. Simultaneously, we
employ quantum fuzzy entropy to determine the appropriate
number of quantum levels. After the self-clustering algorithm
(SCA), the quantum intervals and the number of quantum
levels are determined, it is then easy to decide on the quantum
membership function.

4.1.1 The self-clustering algorithm

Layer 2 of the QNFC model can be viewed as a function that
maps input patterns. Hence, the discriminative ability of these
new features is determined by the centers of the quantum
membership function. To achieve good classification, centers
are best selected based on their ability to provide large class
separation.

A clustering method, called the self-clustering algorithm
(SCA), is proposed to implement scatter partitioning of the
input space. Without any optimization, the online SCA is
a fast, one-pass algorithm for a dynamic estimation of the
number of clusters in a set of data and for finding the current
centers of clusters in the input data space. It is a distance-
based connectionist-clustering algorithm. In any cluster, the
maximum distance between a sample point and the cluster
center is less than a threshold value which has been set as a
clustering parameter and which would affect the number of
clusters to be estimated.

In the clustering process, the data samples come from a
data stream. The process starts with an empty set of clus-
ters. When a new cluster is created, the cluster center, C , is
defined, and its cluster distance and cluster width, Dc and
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Wd, is initially set to zero. When more samples are presented
one after another, some created clusters will be updated by
changing the positions of their centers and increasing the
cluster distances and cluster width. Which cluster will be
updated and how much it will be changed depends on the
position of the current sample in the input space. A cluster
will not be updated any more when its cluster distance, Dc,
reaches the value that is equal to the threshold value Dthr .
In the clustering process, the threshold parameter Dthr is an
important parameter. A low threshold value leads to the learn-
ing of coarse clusters (i.e., less rules are generated), whereas
a high threshold value leads to the learning of fine clusters
(i.e., more rules are generated). Therefore, the selection of
the threshold value Dthr will critically affect the simulation
results, and the value will be based on practical experimen-
tation or on trial-and-error tests. We defined generally that
Dthr is equal to 0.5–1 times of summation of the samples
variance.

Figure 3 briefly shows the SCA clustering process in two-
input space. The SCA is described as follows.

Step 1: We have to disarrange the order of the original data
samples by randomization. Create the first cluster by simply
taking the position of the first sample from the input stream
as the first cluster center C1, and setting its cluster distance
Dc1 and cluster width W d1_x and W d1_y to zero, as shown
in Fig. 3(a).

Step 2: If all samples of the data stream have been
processed, the algorithm is finished. Otherwise, the current
input sample, Pi , is taken and the distances between this sam-
ple and all p already created cluster centers C j , Disti j =∥∥Pi − C j

∥∥ , j = 1, 2, . . . , p, are calculated.
Step 3: If there is any distance value Disti j equal to, or

less than, at least one of the distance Dc j , j = 1, 2, . . ., p,
it means that the current sample Pi belongs to a cluster Cm
with the minimum distance

Distim = ‖Pi − Cm‖ = min
(∥∥Pi − C j

∥∥)
, j = 1, 2, . . . , p

(17)

In this case, neither a new cluster is created, nor any existing
cluster is updated, as in the cases of P4 and P6 shown in Fig. 3,
for example. The algorithm then returns to Step2. Otherwise,
the algorithm goes to the next step.

Step 4: Find a cluster with center Cm and cluster distance
Dcm from all n existing cluster centers by calculating the
values Si j = W di j+Dc j , j = 1, 2, . . ., p, and then choosing
the cluster center Cm with the minimum value Sim :

Sim = W dim + Dcm = min(Si j ), j = 1, 2, . . . , p (18)

In Eq. (17), the maximum distance from any cluster center
to the samples that belong to this cluster is not greater than
the threshold, Dthr , though the algorithm does not keep any

Fig. 3 A brief clustering process using the SCA with samples P1 to P9
in 2D space. a The sample P1 causes the SCA to create a new cluster
center C1. b P2: update cluster center C1, P3: create a new cluster center
C2, P4: do nothing. c P5: update cluster C1, P6: do nothing, P7: update
cluster center C2, P8: create a new cluster C3. d P9: update cluster C1

information of passed samples. However, we find that the
formulation only considers the distance between the input
data and cluster center in Eq. (18). But the special situation
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Fig. 4 The special case of SCA

shows that the distances between a given point P11 and both
cluster centers Dc1 and Dc2 are the same as shown in Fig. 4.
In the aforementioned technique, the cluster C2, which has
small dimension distances D2_x , will be selected to expand
according to Eq. (18). However, this causes a problem in that
the cluster numbers increase quickly. To avoid this problem,
we make a judgment, as follows:

If (the distance between P11 and Dc1 is equal to the
distance between P11 and Dc2) and (D1_x > D2_x )

then Dim = Dc1

From the above rule, we find that when the distances
between the input data and both clusters are the same, the
formulation will choose the cluster that has large dimension
distances D1_x .

Step 5: If Sim is greater than Dthr , the sample Pi does not
belong to any existing clusters. A new cluster is created in
the same way as described in Step 1, as in the cases of P3

and P8 shown in Fig. 3, and the algorithm returns to Step 2.
Step 6: If Sim is not greater than Dthr , the cluster Cm is

updated by moving its center, Cm , and increasing the value of
its cluster distance, Dcm , and cluster width W dm_x, W dm_y.
The parameters are updated by the following equation:

W dm_xnew = (‖Cm_x − Pi _x‖ + W dm_x) /2 (19)

W dm_ynew = (‖Cm_y − Pi _y‖ + W dm_y) /2 (20)

Cm_xnew = Pi _x − Dm_xnew (21)

Cm_ynew = Pi _y − Dm_ynew (22)

Dcnew
m = Sim/2 (23)

where Cm_x is the value of the x dimension for Cm, Cm_y is
the value of the y dimension for Cm, Pi _x is the value of the
x dimension for Pi , and Pi _y is the value of the y dimension
for Pi , as in the cases of P2, P5, P7, and P9 shown in Fig. 3.
The algorithm returns to Step 2.

In this way, the maximum distance from any cluster center
to the samples that belong to this cluster is not greater than
the threshold value Dthr , though the algorithm does not keep
any information of passed samples. After that, the center and
the quantum interval of the quantum membership function

Fig. 5 The flow diagram of the determination of quantum level number

are defined by the following equation:

mi j = C j , j = 1, 2, . . . , p (24)

θα
i j = 1

((nsi j +1)/2)
· α · D j ,

α = 1, 2, . . . , nsi j , j = 1, 2, . . . , p
(25)

4.1.2 Quantum fuzzy entropy

After that, the center and the quantum interval of the quan-
tum membership function are determined. The number of
quantum levels in each dimension has a profound effect on
learning efficiency and classification accuracy. If the number
of quantum levels is too large, it will take too long to fin-
ish the training and classification processes, and overfitting
may result. On the other hand, if the number of quantum lev-
els is too small, the size of each decision region may be too
big to fit the distribution of input patterns, and classification
performance may suffer.

Therefore, the selection of the optimal number of quantum
levels is an important task. In this subsection, we will inves-
tigate a systematic method to select the appropriate number
of quantum levels. The flow diagram of the determination of
quantum level number using quantum fuzzy entropy is shown
in Fig. 5. The proposed criterion is based on quantum fuzzy
entropy, since it has the ability to reflect the actual distrib-
ution of pattern space. Figure 6 briefly shows the clustering
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Fig. 6 The pattern distribution with two dimensions and three classes of the cluster

results of pattern distribution after the SCA clustering process
in two-input space. The steps involved in selecting the quan-
tum level number for each dimension of the each cluster are
described as follows:

Step 1: Set the initial number of quantum levels ns to 1,
i.e. the number of quantum levels is equal to one.

Step 2: Locate the centers and the quantum intervals. The
self-clustering algorithm will be used to locate the center and
the quantum interval of each cluster.

Step 3: Assign a quantum membership function to each
cluster. In order to apply quantum fuzzy entropy to calculate
the distribution information of patterns in a cluster, we have
to assign a quantum membership function to each cluster.

Step 4: Compute the total quantum fuzzy entropy for all
clusters in each dimension for ns = 1 and ns = 2. We
compute the quantum fuzzy entropy for all clusters in each
dimension to obtain the distribution information of patterns
projected in this dimension. The notations in the quantum
fuzzy entropy are described as follows:

X all elements are the same cluster
Q̃ the quantum fuzzy set with ns quan-

tum levels
µQ̃(xi ) the degree of the element xi with the

quantum fuzzy set Q̃
p the number of classification
C j the j th class for classification C
TC j (xn) the set of elements of class j in the

cluster X
SD j the calculated degree with the quan-

tum fuzzy set Q̃ for the elements of
class j in the quantum levels ns

QF EC j (Q̃) the quantum fuzzy entropy for the ele-
ments of class j in the quantum lev-
els ns

QF E(Q̃) the quantum fuzzy entropy for the ele-
ments within the quantum levels ns
in the cluster X

Quantum fuzzy entropy is defined as follows:

(1) Let X = {x1, x2, . . ., xn} be a cluster set with elements
xi distributed in a pattern space, where i = 1; 2; . . . ; n.

(2) Let Q̃ be a quantum fuzzy set defined in the quantum
levels ns of a pattern space. The mapped quantum mem-
bership degree of the element xi with the quantum fuzzy
set Q̃ is denoted by µQ̃(xi ).

(3) Let C1; C2; . . . ; C p represent p classes into which the
n elements are divided. (e.g. there are two classes ◦ and
�	 in Fig. 6)

(4) Let TC j (xn) denote a set of elements of class j in the
cluster X . It is a subset of the cluster X .

(5) The sub-degree SD j with the quantum fuzzy set Q̃ for
the elements of class j in the quantum levels ns, where
j = 1; 2; . . . ; p, is defined as

SD j =
∑

x∈TC j (xn) µQ̃(x)
∑

x∈X µQ̃(x)
(26)

(6) The quantum fuzzy entropy QF EC j (Q̃) of the elements
of class j in the quantum levels ns is defined as (Lee et
al. 2001)

QF EC j (Q̃) = −SD j log SD j (27)

(7) The quantum fuzzy entropy QF E(Q̃) for the elements
within the quantum levels ns in the cluster X is defined as

QF E(Q̃) =
p∑

j=1

QF EC j (Q̃) (28)

In this step, we can compute the quantum fuzzy entropy for
the quantum levels ns = 1 and ns = 2, as shown in Fig. 7.

Step 5: If the total quantum fuzzy entropy of ns + 1
quantum levels is less than that of ns quantum levels, then
ns = ns +1. Then go to Step 2. Otherwise, else go to Step 6.

123



An efficient quantum neuro-fuzzy classifier based on fuzzy entropy and compensatory operation 575

Fig. 7 The pattern distribution with corresponding quantum membership function. a The number of quantum levels is one and b the number of
quantum levels is two

Step 6: The term ns represents the number of quantum lev-
els in a specified dimension. Since the quantum fuzzy entropy
does not decrease, we stop increasing the quantum level in
this dimension, and we let ns be the number of quantum levels
in this dimension.

4.2 The parameter learning

After the network structure is determined by the self-
clustering algorithm, the network then enters the parame-
ter learning phase to adjust the parameters of the network
based on the training patterns. The learning process involves
minimizing a given cost function. The gradient of the cost
function is computed and adjusted along the negative gra-
dient. The backpagation algorithm (Lin et al. 2004) is used
for this supervised learning method. When we consider the
single output case for clarity, our goal to minimize the cost
function E is defined as

E = 1

2
[y − yd ]2 (29)

where yd is the desired output and y is the current output.
Then the parameter learning algorithm based on backpropa-
gation is described as follows:

The error term to be propagated is calculated as

δe = −∂ E

∂y
= yd − y (30)

The parameter of consequent part is updated by the amount

∆a0 j = − ∂ E

∂a0 j
=

[
− ∂ E

∂u(5)

][
∂u(5)

∂u(4)
j

][∂u(4)
j

∂a0 j

]
=

δeu(3)
j

∑p
j=1 u(3)

j

(31)

and

∆ai j = − ∂ E

∂ai j
=

[
− ∂ E

∂u(5)

][
∂u(5)

∂u(4)
j

][∂u(4)
j

∂ai j

]
=

δeu(3)
j xi

∑p
j=1 u(3)

j

(32)

The parameter of consequent part in the output layer is
updated according to the following equation:

a0 j (t + 1) = a0 j (t) + ηa∆a0 j (33)

ai j (t + 1) = ai j (t) + ηa∆ai j (34)
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where factorηa is the learning rate parameter of the parameter
and t denotes the j th iteration number . The output error (i.e.,
the difference between the desired output and the current
output) is then backpropagated to update their compensatory
degree, centers and quantum intervals. According to the chain
rule, the updated compensatory degree is as follows:

∆γ j = − ∂ E

∂γ j
=

[
− ∂ E

∂u(5)

][
∂u(5)

∂γ j

]

= δe ·
⎡

⎢⎣

(
a0 j + ∑n

i=1 ai j xi
) · ∑p

j=1 u(3)
j − ∑p

j=1

(
u(3)

j · (
a0 j + ∑n

i=1 ai j xi
))

(∑p
j=1 u(3)

j

)2

⎤

⎥⎦ ·
[

1

n
− 1

]
· ln

[
∏

i

u(2)
i j

]
·
[

u(3)
j

]
(35)

We have

c j (t + 1) = c j (t) + ηc

{
2c j (t)d2

j (t)

[c2
j (t) + d2

j (t)]2

}
∆γ j (36)

d j (t + 1) = d j (t) − ηd

{
2c2

j (t)d j (t)

[c2
j (t) + d2

j (t)]2

}
∆γ j (37)

γ j (t + 1) = c2
j (t + 1)

c2
j (t + 1) + d2

j (t + 1)
(38)

In Eqs. (36) and (37), ηc and ηd are the learning rate of the
parameter c j and the parameter d j , respectively. The para-
meters c j and d j are factors of the compensatory degree γ j .
The quantum function memberships of layer 2 are updated
for their centers and quantum intervals. The updated center
is as follows:

∆mi j = − ∂ E

∂mi j
=

[
− ∂ E

∂u(5)

][
∂u(5)

∂mi j

]

= δe ·
⎡

⎢⎣

(
a0 j + ∑n

i=1 ai j xi
) · ∑p

j=1 u(3)
j − ∑p

j=1

(
u(3)

j · (
a0 j + ∑n

i=1 ai j xi
))

(∑p
j=1 u(3)

j

)2

⎤

⎥⎦

×
[
1 − γ j + γ j

n

]
·
[
∏

i

u(2)
i j

]−γ j + γ j
n

·

⎡

⎢⎢⎣
p∏

j=1
i 
= j

u(2)
i j

⎤

⎥⎥⎦

× 1

nsi j

nsi j∑

α=1

⎡

⎢⎣−
β ·

(
exp

(
−β ·

(
xi − mi j +

∣∣∣θα
i j

∣∣∣
)))

(
1 + exp

(
−β ·

(
xi − mi j +

∣∣∣θα
i j

∣∣∣
)))2 ∪ (

xi ; −∞, mi j
)

+
β ·

(
exp

(
−β ·

(
xi − mi j +

∣∣∣θα
i j

∣∣∣
)))

(
1 + exp

(
−β ·

(
xi − mi j +

∣∣∣θα
i j

∣∣∣
)))2 ∪ (

xi ; mi j , ∞
)
⎤

⎥⎦ (39)

The updated quantum interval is as follows:
If θα

i j ≥ 0, then

∆θα
i j = − ∂ E

∂θα
i j

=
[

− ∂ E

∂u(5)

][
∂u(5)

∂θα
i j

]

= δe ·
⎡

⎢⎣

(
a0 j + ∑n

i=1 ai j xi
)·∑p

j=1 u(3)
j −∑p

j=1

(
u(3)

j · (
a0 j +

∑n
i=1 ai j xi

))

(∑p
j=1 u(3)

j

)2

⎤

⎥⎦

×
[

1 − γ j + γ j

n

]
·
⎡

⎣
∏

i

u(2)
i j

⎤

⎦
−γ j +

γ j
n

·

⎡

⎢⎢⎢⎣

p∏

j=1
i 
= j

u(2)
i j

⎤

⎥⎥⎥⎦

× 1

nsi j
·
⎡

⎢⎣
β ·

(
exp

(
−β ·

(
xi − mi j + θα

i j

)))

(
1 + exp

(
−β ·

(
xi − mi j + θα

i j

)))2
∪ (

xi ;−∞, mi j
)

−
β ·

(
exp

(
−β ·

(
xi − mi j + θα

i j

)))

(
1 + exp

(
−β ·

(
xi − mi j + θα

i j

)))2
∪ (

xi ; mi j ,∞
)
⎤

⎥⎦ (40)

else θα
i j < 0

∆θα
i j = − ∂ E

∂θα
i j

=
[

− ∂ E

∂u(5)

][
∂u(5)

∂θα
i j

]

= δe ·
⎡

⎢⎣

(
a0 j + ∑n

i=1 ai j xi
) · ∑p

j=1 u(3)
j − ∑p

j=1

(
u(3)

j · (
a0 j + ∑n

i=1 ai j xi
))

(∑p
j=1 u(3)

j

)2

⎤

⎥⎦

×
[
1 − γ j + γ j

n

]
·
[
∏

i

u(2)
i j

]−γ j + γ j
n

·

⎡

⎢⎢⎣
p∏

j=1
i 
= j

u(2)
i j

⎤

⎥⎥⎦

× 1

nsi j
·
⎡

⎢⎣−
β ·

(
exp

(
−β ·

(
xi − mi j − θα

i j

)))

(
1 + exp

(
−β ·

(
xi − mi j − θα

i j

)))2 ∪ (
xi ; −∞, mi j

)

+
β ·

(
exp

(
−β ·

(
xi − mi j − θα

i j

)))

(
1 + exp

(
−β ·

(
xi − mi j − θα

i j

)))2 ∪ (
xi ; mi j ,∞

)
⎤

⎥⎦

(41)

The centers and quantum intervals of the quantum function
neurons in this layer are updated as follows:

mi j (t + 1) = mi j (t) + ηm∆mi j (42)

θα
i j (t + 1) = θα

i j (t) + ηθ∆θα
i j (43)

where ηm and ηθ are the learning rate parameters of the center
and the quantum interval of the quantum function neurons,
respectively.

5 Illustrative examples

In this section, we evaluate the performance of the proposed
QNFC model using two better-known benchmark data sets
used for classification problems. The first example uses the
Iris data and the second example uses the Wisconsin breast
cancer data. The two benchmark data sets are available from
the University of California, Irvine, via an anonymous ftp
address ftp://ftp.ics.uci.edu/pub/machine-learning-databases.

In the following simulations, the parameters and number
of training epochs were based on the desired accuracy. In
short, the trained QNFC model was stopped once its high
learning efficiency was demonstrated.
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Example 1: Iris data classification

The Fisher–Anderson Iris data consists of four input mea-
surements, sepal length (sl), sepal width (sw), petal length
(pl), and petal width (pw), on 150 specimens of the Iris plant.
Three species of Iris were involved, Iris sestosa, Iris versiolor
and Iris virginica, and each species contains 50 instances. The
measurements are shown in Fig. 8.

In the Iris data experiment, 25 instances with four features
from each species were randomly selected as the training set
(i.e., a total of 75 training patterns were used as the training
data set) and the remaining instances were used as the test-
ing set. The 75 training patterns were obtained via a random
selection process from the original Iris dataset of 150 pat-
terns. For the self-clustering algorithm (SCA), we chose the
parameter Dthr = 4.5. Furthermore, we determined the dif-
ferent number of quantum levels for each dimension of each
cluster using quantum fuzzy entropy and tabulated them in
Table 1. After structure learning, three clusters were gener-
ated.

The network then entered the parameter learning phase.
We set the learning rate to η = 0.01 and trained the QNFC
model with different quantum levels for each dimension of
each cluster. After 100 training steps, the final rms error was
0.0133. Three fuzzy logic rules were generated. The three
designed fuzzy rules were

Figures 9a–f show the distribution of the training patterns
and the final assignment of the fuzzy rules (i.e., the distrib-
ution of the input membership functions). The boundary of
each rectangle represents a rule with a firing strength of 0.5.
Figure 10 shows the learned QNFC structure and the corre-
sponding quantum membership functions for each dimension
after the parameter learning phase. We compared the testing
accuracy of our model with that of other methods—the tra-
ditional multilayer neural network, the standard radial basis
function network (RBFN) with the self-clustering algorithm
(SCA), and the QNFC without compensatory operation. Five
experiments were used. These experiments calculated the
classification accuracy and the values of the average pro-
duced on the testing set using the traditional multilayer neural
network, the radial basis function network (RBFN) with the
self-clustering algorithm (SCA), the QNFC model without
compensatory operation, and the proposed QNFC model.

During the learning phase, the learning curves from the
proposed QNFC model, the QNFC without compensatory
operation, and the RBFN with the SCA model are shown in
Fig. 11. Table 2 shows that the experiments with the QNFC
model result in high accuracy, with an accuracy percentage
ranging from 96 to 98.67%. The means of re-substitution
accuracy was 97.6%. The average classification accuracy of
the QNFC model was better than that of other methods. In
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Fig. 8 Iris data: Iris sestosa (�), Iris versiolor (©), and Iris virginica
(�)

Table 1 The number of quantum levels for each dimension of cluster

Dimension

No. of ns

Cluster 

#1 #2 #3 #4 

#1 5 5 2 1 

#2 1 2 1 2 

#3 1 1 1 1 

Table 3, we compared the learning speed (i.e., CPU time) of
the QNFC model with those of the QNFC without compen-
satory operation, NN and RBFN. The average learning times
of the QNFC, QNFC without compensatory operation, NN
and RBFN were 1.0663, 1.9843, 2.127 and 4.6219 s, respec-
tively. The average learning time was measured on a personal
computer with an Intel Pentium 4 (2,500 MHz) CPU inside.
Table 4 shows the comparison of the classification results
of the QNFC model with other classifiers (Lee et al. 2001;
Wang and George Lee 2002; Simpson 1992; Lee 1998; Wu
and Chen 1999) on the Iris data. The results show that the
proposed QNFC model is able to keep similar average sub-
stitution accuracy.

Example 2: Wisconsin breast cancer diagnostic data

The Wisconsin breast cancer diagnostic data set contains
699 patterns distributed into two output classes, “benign”
and “malignant.” Each pattern consists of nine input fea-
tures: clump thickness, uniformity of cell size, uniformity of
cell shape, marginal adhesion, single epithelial cell size, bare
nuclei, bland chromatin, normal nucleoli, and mitoses. Four
hundred fifty-eight patterns are in the benign class and the
other 241 patterns are in the malignant class. Since there were
16 patterns containing missing values, we used 683 patterns
to evaluate the performance of the proposed QNFC model. To
compare the performance with other models, we used half of
the 683 patterns as the training set and the remaining patterns
as the testing set.

Experimental conditions were the same as the previous
experiment. We also used half of the original data patterns
as the training data (randomly selected) and the remaining
patterns as the testing data. For the self-clustering algorithm
(SCA), we chose the parameter Dthr = 35. Furthermore, we
set the different number of quantum levels for each dimen-
sion of each cluster using quantum fuzzy entropy and tabu-
lated them in Table 5. After the structure learning phase, two
clusters were generated.

The network then entered the parameter learning phase.
We set the learning rate to η = 0.005 and trained the QNFC
model with different quantum levels for each dimension of
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Fig. 9 The distribution of input training patterns and final assignment
of three rules. a For the sepal length and sepal width dimensions. b For
the petal length and petal width dimensions. c For the sepal length and

petal length dimensions. d For the sepal width and petal width dimen-
sions. e For the sepal width and petal length dimensions. f For the sepal
length and petal width dimensions

each cluster. Five experiments also were used. These exper-
iments calculated the classification accuracy and the values
of the average produced on the testing set by the neural net-
work, the RBFN with the SCA model, the QNFC model with-
out compensatory operation, and the proposed QNFC model.
During the supervised learning phase, 100 epochs of training
were performed. Figure 12 shows the quantum membership
functions for each input dimension. The learning curves from

the proposed QNFC model, the QNFC without compensatory
operation and the RBFN with the SCA model are shown in
Fig. 13. The performance of the QNFC model is better than
the performance of all other models.

Table 6 shows that the experiments with the QNFC model
result in high accuracy, with an accuracy percentage ranging
from 97.66 to 98.54%. The means of re-substitution accu-
racy was 97.95%. The average classification accuracy of the
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Fig. 10 Corresponding
quantum membership functions
for each dimension after
parameter learning. a For the
sepal length dimension. b For
the sepal width dimension. c For
the petal length dimension. d
For the petal width dimension

Fig. 11 Learning curves of the
QNFC, the QNFC without
compensatory operation, and the
RBFN with the SCA model

QNFC model was better than that of other methods. Table 7
shows the CPU time of the cost of the QNFC model, the
QNFC without compensatory operation, NN and RBFN. The
average learning times of the QNFC, QNFC without com-
pensatory operation, QNFC(1), QNFC(2), NN and RBFN
were 4.535, 5.9781, 4.5256, 4.5351, 6.1094 and 9.5375 s,
respectively. We compared the testing accuracy of our model

with that of other methods (Setiono and Liu 1997; Lee et al.
2001; Nauck and Kruse 1997; Wang and George Lee 2002;
Lovel and Bradley 1996). Table 8 shows the comparison
between the learned QNFC models and other fuzzy, neural
networks, and neuro-fuzzy classifiers. The average classifica-
tion accuracy of the QNFC model is better than that of other
methods.
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Table 2 Classification accuracy
using various methods for the
Iris data

Experiment # Model

Neural network RBFN with SCA Non-compensatory QNFC QNFC

1 96 98.67 98.67 98.67

2 92 93.33 96 96

3 97.33 94.67 97.33 98.67

4 97.33 98.67 98.67 97.33

5 94.67 94.67 96 97.33

Average (%) 95.47 96 97.33 97.6

Table 3 The average learning
time using various methods for
the Iris data

Experiment # Model

Neural network RBFN with SCA Non-compensatory QNFC QNFC

1 4.6563 2.1406 1.9688 1.1361

2 4.6094 2.1250 2.0156 0.9837

3 4.5781 2.0781 2.0313 0.9516

4 4.6250 2.1563 1.9219 1.1203

5 4.6406 2.1350 1.9844 1.1401

Average (second) 4.6219 2.1270 1.9843 1.0663

Table 4 Average re-substitution
accuracy comparison of various
models for the Iris data
classification problem

Methods Average re-substitution accuracy (%)

FEBFC (Lee et al. 2001) 96.91

SANFIN (Wang and George Lee 2002) 97.33

FMMC (Simpson 1992) 97.3

FUNLVQ+GFENCE (Lee 1998) 96.3

Wu and Chen’s (Wu and Chen 1999) 96.21

QNFC 97.6

Table 5 The number of quantum level for each dimension of cluster

     Dimension

   No. of ns

Cluster 

#1 #2 #3 #4 #5 #6 #7 #8 #9 

#1 1 1 1 1 1 2 1 1 1 

#2 1 1 1 1 1 1 1 1 1 

6 Conclusion

In this paper, a quantum neuro-fuzzy classifier (QNFC)
was proposed for classification applications. The proposed
QNFC model is a five-layer structure, which combines the
compensatory-based fuzzy reasoning method with the
traditional Takagi–Sugeno–Kang (TSK) fuzzy model. Com-

pensatory operators are used to optimize fuzzy logic rea-
soning and to select optimal fuzzy operators. Therefore, an
effective neuro-fuzzy system should be able not only to adap-
tively adjust fuzzy membership functions but also to
dynamically optimize adaptive fuzzy operators. A self-
constructing learning algorithm, which consists of the
self-clustering algorithm (SCA), quantum fuzzy entropy and
the backpropagation algorithm, were also proposed.
Finally, simulation results were conducted to show the perfor-
mance and applicability of the proposed model. The advan-
tages of the proposed QNFC model are summarized as
follows: (1) it converges quickly; (2) it is constructed
automatically; (3) it has much lower rms error; and (4)
it has a higher accuracy classification rate than other
models.

123



582 C.-H. Chen et al.

Fig. 12 Input quantum
membership function for breast
cancer classification (solid line
Rule 1, dotted line Rule 2)

Fig. 13 Learning curves from
the QNFC model, the QNFC
without compensatory and the
RBFN with the SCA model

Table 6 Classification accuracy for the Wisconsin breast cancer diagnostic data

Experiment # Model

Neural network RBFN with SCA Non-compensatory QNFC QNFC(1)a QNFC(2)b QNFC

1 96.49 95.32 97.66 97.66 97.66 97.66

2 97.08 95.61 98.54 98.54 98.54 98.54

3 94.44 93.86 97.37 97.66 97.37 97.66

4 97.37 94.74 97.37 97.66 97.66 97.95

5 96.49 94.74 97.66 97.66 97.66 97.95

Average (%) 96.37 94.85 97.72 97.84 97.78 97.95

a The QNFN model with one quantum level for all dimensions
b The QNFN model with two quantum levels for all dimensions

Table 7 The average learning time using various methods for the Wisconsin breast cancer diagnostic data

Experiment # Model

Neural network RBFN with SCA Non-compensatory QNFC QNFC(1) QNFC(2) QNFC

1 9.5938 6.1094 6.0156 4.6113 4.3325 4.8190

2 9.4531 6.0469 6.0781 4.7629 4.5960 4.5813

3 9.5469 6.0625 5.8750 4.3563 4.8112 4.3155

4 9.5156 6.0938 5.9688 4.4181 4.4347 4.4214

5 9.5781 6.2344 5.9531 4.4792 4.5011 4.5376

Average (second) 9.5375 6.1094 5.9781 4.5256 4.5351 4.5350
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Table 8 Average accuracy comparison of various models for
Wisconsin breast cancer diagnostic data

Models Average accuracy (%)

NNFS (Setiono and Liu 1997) 94.15

FEBFC (Lee et al. 2001) 95.14

NEFCLASS (Nauck and Kruse 1997) 92.7

SANFIS (Wang and George Lee 2002) 96.3

MSC (Lovel and Bradley 1996) 94.9

QNFC 97.95

In addition to being used to solve the problems given in
this paper, the proposed QNFC model was also used in our
laboratory to solve practical problems on the detection of
skin color and the posture classification of human body.
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