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Abstract

Ant colony optimization (ACO) is a meta-heuristic based on the indirect communication of a colony of artificial ants

mediated by pheromone trails with the collaboration and knowledge-sharing mechanism during their food-seeking process.

In this study, we introduce two new features that are inspired from real ant behavior to develop a new ACO algorithm to

produce better solutions. The proposed ACO algorithm is applied to two NP-hard flowshop scheduling problems. The first

problem is to minimize the total completion time and the second is to minimize a combination of makespan and total

completion time. Numerical results indicate that the proposed new features of ACO are very effective and the synergy of

combining all the new features for the proposed ACO algorithm can solve the two problems to a certain scale by producing

schedules of better quality.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Scheduling refers to the allocation of limited
resources to specific tasks over a planning horizon
so as to reach an optimal or satisfactory decision. It
is a decision-making process that has a goal as the
optimization of one or more objectives (Pinedo,
2002). Scheduling theory has been growing since the
e front matter r 2007 Elsevier B.V. All rights reserved
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first algorithm developed in the 1950s. Many
scheduling algorithms have been successfully ap-
plied to manufacturing and production systems,
computer resource management and many real-life
situations (Brucker, 1997; Pinedo, 2002). Although
several dispatching rules can provide optimal
decisions to some specific scheduling problems,
there are many computationally difficult scheduling
problems encountered in real applications. For
large-scale instances, it is very unlikely to devise
good algorithms for finding optimal solutions to
these hard problems in an acceptable time. There-
fore, it is reasonable for the management to obtain
near-optimal solutions in a timely manner by using
.
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approximation heuristics and meta-heuristics such
as genetic algorithms (Holland, 1975; Goldberg,
1989), simulated annealing (Kirkpatrick et al.,
1983), tabu search (Glover, 1990) and ant colony
optimization (Colorni et al., 1991). Among the
meta-heuristic algorithms for solving hard combi-
natorial optimization problems, the ant colony
optimization (henceforth, the acronym ACO will
be used throughout this paper) was the most
recently developed. The theme of the ACO is based
on the indirect communication of a colony of real
ants mediated by pheromone trails with the
collaboration and knowledge-sharing mechanism
during their food-seeking process. Since it was
introduced, the ACO has been applied to several
optimization problems with distinguished perfor-
mance. In this paper, we exert to develop new
features to enhance the problem-solving capability
of the ACO. Two scheduling problems will be used
to illustrate how our concepts are applied and
realized.

The problems under study in this paper are a two-
machine flowshop scheduling problem to minimize
the total completion time and a two-machine
flowshop scheduling problem to minimize a
weighted combination of the total completion time
and the makespan. In the first problem, the
objective is a measurement concerning the minimum
average flow time of all jobs in the manufacturing
environment as well as the minimum average
waiting time for customers. The objective of the
second problem concerns both the satisfaction of
customers and companies because makespan, i.e.
the maximum completion time of all jobs, reflects
the facility utilization. In this study, we not only
adopt the ACO algorithm to solve the scheduling
problems but also propose some new features
inspired from real ant behavior to develop a new
ACO algorithm for improving the quality of
solutions.

This paper is organized into six sections. In
Section 2, we introduce the basic concepts and
previous applications of the ACO. Formal problem
definitions and related works for the studied
problems are presented in Section 3. Section 4 is
devoted to describing the proposed new features of
the ACO for the two scheduling problems. Section 5
includes computational experiments designed to
evaluate the effectiveness of the proposed new
features for the studied problems. Comparisons
with existing ACO algorithms follow. Finally,
concluding remarks and discussions are given in
Section 6. Before proceeding to the main text, we
would like to emphasize that the goal of this paper
is not to show the superiority of the ACO algorithm
over other meta-heuristics, but to propose new
features of the ACO algorithms for dealing with the
two sequencing problems.

2. Ant colony optimization

The ACO algorithm was first introduced by
Colorni et al. (1991) and the first ant system (AS)
was proposed by Dorigo (1992) in his Ph.D. thesis.
The ACO is a meta-heuristic algorithm, which is
inspired by real ant colony behavior in finding a
shortest path from a food source to the nest without
using visual cues by exploiting pheromone informa-
tion (Beckers et al., 1992; Goss et al., 1989;
Hölldobler and Wilson, 1994). When ant colonies
are seeking for food, they leave a kind of chemical
compositions, called pheromone, on their trails. The
more the ants walk through the path, the more the
pheromone left on the ground. Because the next ant
will choose one path with a probability proportional
to the amount of pheromone, this positive feedback
process will finally develop a common path from
their nest to the food source. Real ants have the
following key characteristics (Colorni et al., 1991):
(1) Real ants prefer to choose the trail with a higher
intensity of pheromone. (2) The shorter the distance
of a path, the more the pheromone left on it.
(3) Real ants conduct indirect communication via
pheromone. The above behavior of self-organizing
real ants for finding the shortest path fostered the
development of the ACO. Artificial ants cooperate
to come up with the solution by exchanging
information via depositing pheromone on paths.

The algorithmic steps of the ACO designed by
Dorigo and Gambardella (1997) are outlined as the
following. For details of the ACO, the reader is
referred to the original paper.

Algorithm: ant colony optimization
1.
 Initialize
Set initial pheromone on each edge
2.
 Loop/* at this level each loop is called an
iteration */

Each ant is positioned on a starting node
2.1. Loop/* at this level each loop is called
a step */

Each ant applies a state transition rule to
incrementally build a solution and a
local pheromone updating rule



ARTICLE IN PRESS
B.M.T. Lin et al. / Int. J. Production Economics 112 (2008) 742–755744
Until all ants have built complete solu-
tions

2.2. A global pheromone updating rule is
applied
Until stopping criterion
3.
 Output the global best tour.

The ACO has been successfully used to solve
many discrete optimization problems such as the
traveling salesman problems (Colorni et al., 1996;
Dorigo et al., 1996; Dorigo and Gambardella, 1997;
Stützle and Dorigo, 1999a), the quadratic assign-
ment problems (Maniezzo et al., 1994; Gambardella
et al., 1999; Stützle and Dorigo, 1999b), the vehicle
routing problems (Bullnheimer et al., 1999a, b), the
partitioning problems (Kuntz and Snyers, 1994),
the vertex cover problems (Shyu et al., 2004a), the
generalized spanning tree problem (Shyu et al.,
2003), the telecommunications networks problems
(Schoonderwoerd et al., 1997; Di Caro and Dorigo,
1998; Shyu et al., 2004c) and the image processing
problems (Ramos and Almeida, 2000), just to name
a few. For more researches and algorithmic details
about the ACO, the reader is referred to Dorigo
et al. (1996, 1999) and Dr. Dorigo’s website http://
iridia.ulb.ac.be/�mdorigo/ACO/.

3. Flowshop scheduling and related ACO works

Flowshop scheduling problems have been exten-
sively studied in the scheduling literature since
Johnson’s seminal work (Johnson, 1954). A two-
machine flowshop consists of two machines ar-
ranged in a pipeline way. A set of jobs N ¼ {1, 2,
y, n} is available from time zero onwards for
processing on the machines. Each job i of N consists
of two operations or subtasks that will be processed
on the two machines. The processing times required
by the two operations are ai and bi. The second
operation cannot start until the first operation is
finished and the second machine is free. Preemption
on either operation is not allowed and the same
job order is applied on every machine. Each job can
be processed on a machine at a time and each
machine can process only one job at a time. In two-
machine flowshop scheduling, Johnson proposed an
O(n log n) algorithm to minimize the makespan
Cmax, which is the largest completion time of the
jobs max1pipn{Ci}, where Ci is the completion of
job i. While makespan reflects facility utiliza-
tion from the management’s point of view, total
completion time, or the sum of completion times of
all jobs S1pipnCi, is an important indicator for the
company’s WIP or service level. Unfortunately, to
minimize the total completion time in a two-
machine flowshop is unary NP-hard (Garey et al.,
1979). In this paper, we first consider the problem of
minimizing total completion time. The second
problem is focused on a bicriteira objective with a
weighted combination of total completion time and
makespan (Nagar et al., 1995). Because the second
problem is a generalization of the first one, it is
also unary NP-hard. Following the standard
three-field notation introduced by Graham et al.
(1979), F2jprmujSCi and F2jprmujuSCi+vCmax will
be used throughout this paper to denote the
studied problems. In the notation, the first field
describes the machine environment, the second field
indicates the problem constraints and the last
field specifies the objective functions to be opti-
mized. Although there are many previous works on
the studied problems, we shall not introduce each of
them in detail. We just describe the research on the
ACO algorithm for the permutation flowshop
problem. For more related works on this problem,
the reader is referred to Dudek et al. (1992),
Reisman et al. (1997) and Stützle (1998a).

As for ACO applications in flowshop scheduling,
Stützle (1998a) applied the max–min ant system
(MMAS), which was proposed by Stützle and Hoos
(1997), to the flowshop scheduling problem for
minimizing the makespan. T’kindt et al. (2002)
proposed an SACO heuristic that incorporates
simulated annealing algorithm and adjacent pair-
wise interchange (API) local search to solve the
two-machine flowshop scheduling problem of mini-
mizing both the makespan and total completion
time. They also used the hybrid strategy in the state
transition rule. To minimize total completion time
in a no-wait two-machine flowshop, Shyu et al.
(2004b) designed some specific features, including a
greedy heuristic for initializing the initial phero-
mone, a hybrid state transition rule and a hybrid
local search. Rajendran and Ziegler (2004) proposed
two ACO algorithms for dealing with the studied
flowshop scheduling problem. The first algorithm,
called M-MMAS, refers to the idea of the max–min
ant system and incorporates the summation rule
suggested by Merkle and Middendorf (2003) and a
newly proposed local search approach. The second
ACO algorithm, called PACO, incorporates the
concept of relative distance between a given position
and the position of a job in the resultant sequence.
The algorithms use the NEH heuristic (Nawaz et al.,

http://iridia.ulb.ac.be/~mdorigo/ACO/
http://iridia.ulb.ac.be/~mdorigo/ACO/
http://iridia.ulb.ac.be/~mdorigo/ACO/
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1983) to generate an initial sequence for minimizing
the makespan and Rajendran’s (1993) heuristic to
generate an initial sequence for minimizing the total
flow time. In their experiments, the proposed ACO
algorithms outperform the heuristics constructed by
Liu and Reeves (2001), which provides the best
heuristic solutions known for the benchmark
instances from OR-Library. Ferretti et al. (2006)
and Gajpal and Rajendran (2006) are recent ACO
applications in scheduling research.

4. New features for flowshop scheduling

The main idea for developing new features for
the ACO will be addressed first in this section.
In the remaining part of this section, we focus
on the design details of new ACO features for the
F2jprmujSCi and F2jprmujuSCi+vCmax problems.

4.1. New features of the ACO

For several decades, researchers have studied
many interesting applications using meta-heuristic
algorithms, among which the ACO has been shown
to be capable of producing quality approximate
solutions. In ACO applications to scheduling
problems, Colorni et al. (1994) proposed an ant
system for job shop scheduling. After this paper was
published, many researchers proposed different ant-
based approaches for such scheduling problems as
bus driver scheduling (Forsyth and Wren, 1997),
flowshop scheduling (Stützle, 1998a; T’kindt et al.,
2002; Shyu et al., 2004b; Rajendran and Ziegler,
2004) and total tardiness problems (Bauer et al.,
1999; Merkle and Middendorf, 2003; Besten et al.,
2000). The main idea of the above studies is to
design specific evaluation functions, state transition
rules and/or pheromone updating rules for different
problem settings. Some of the above-mentioned
papers proposed to use local search methods to
reach an earlier convergence state (Dorigo and
Gambardella, 1997). In this paper, we undertake a
different way of thinking for designing ACO
algorithms. In addition to defining new evaluation
functions and pheromone updating rules, we
introduce two features or components to enrich
the ACO algorithm.

4.1.1. New type of pheromone

In the real world, ants can leave and sense at least
five different types of pheromone for indirect
communication. Besides for trail marking, phero-
mones play roles in aggregating group work,
alarming for crisis, courtship, attacking the enemy
and finding good places to build a nest (Hölldobler
and Wilson, 1994). The natural phenomenon has
inspired us to take into account a new type of
pheromone for the ACO algorithm. Such a feature
will not only reflect the real-world situations but
also have potentials for providing more informative
communication in the ant colony and thus solve
combinatorial optimization problems better. The
traditional ACO algorithm utilizes only pheromone
tij to dictate the quality of the edge from node i to
node j. In our approach, we make use of a new type
of pheromone into the state transition rule. Assume
that ant k is currently at node i that dictates the job
assigned to position (l�1) in a schedule. Ant k needs
to determine a node as the immediate successor of
job i, which will occupy position l in the schedule.
We use new pheromone ejl to indicate the preference
for assigning job j to position l as the immediate
successor of job i. To examine each node j to the
visit next, we are concerned about not only the cost
from the current node to it but also the relative
position it would be assigned to in the schedule.
Incorporating the new pheromone, we reshape the
preference function as the following:

pk
ij ¼

ðtij Þ
a
ðZij Þ

b
ð�jl Þ

gP
hetabuk

ðtihÞ
a
ðZihÞ

b
ð�hl Þ

g ; if jetabuk;

0; otherwise;

8<
: (1)

where tabuk is the set of nodes that are either
already visited or unreachable from node i.

The basic idea behind our design is due to the
behavior of real ants as well as practical applica-
tions. Standard pheromone tij used in the ACO
reflects the preference of the edge from node i to
node j. In some application problems, the actual
position of a job in a sequence may be crucial. Such
a pheromone is especially useful, even crucial, in
hard scheduling problems. For example, assume
that letting job i precede job j can produce a good
outcome when they both appear in the head part of
the schedule. But, this does not imply that it is also
beneficial to let job i precede job j in the rear part
of a schedule. Consider the job set N as shown in
Table 1. Let schedule S ¼ 1–2–3. The total comple-
tion time of schedule S is Z(S) ¼ 58. Consider
another schedule S0 ¼ 2–1–3 with Z(S0) ¼ 60. Let-
ting job 1 precede job 2 as in schedule S can produce
a better solution when they constitute the prefix.
Consider schedule p ¼ 3–1–2 with Z(p) ¼ 77 and



ARTICLE IN PRESS

Table 1

Data set N of the flowshop problem

Jobs 1 2 3

pi 5 7 10

qi 4 3 12
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schedule p0 ¼ 3–2–1 with Z(p0) ¼ 76. The situation,
however, implies that it is beneficial to let job 2
precede job 1 at the rear part of a schedule.

The above example tells us that positional
information is crucial, too. While conventional
pheromone reflects the relative significance of the
move from a job to its immediate successor job, the
new pheromone dictates the relative positional
significance of a job in a specific schedule. That is,
the new pheromone will reflect the preference
for assigning job j to position l in a schedule.
Incorporating positional pheromone will not only
reflect the fact that ants communicate via multiple
pheromones but also provide useful information to
compose better solutions.

4.1.2. Dominance criteria

Dominance criteria are very useful and efficient in
pruning the enumeration tree by constraining
the search space of a branch-and-bound algorithm.
Similarly, dominance rules can also be applied to
ACO algorithms such that the ants will not waste
time in constructing the solution on a non-promis-
ing path. From ants’ point of view, dominance rules
can be regarded as a special type of pheromone that
warns or prohibits the ants from some dangerous
sites and/or tours. To the best of our knowledge,
only Merkle and Middendorf (2003) have proposed
a simple dominance rule, which is called determi-

nistic property, in their paper. In this paper, we shall
investigate the effectiveness of dominance criteria
on different scheduling problems.

4.2. Specific design of the ACO for F2jprmujSCi

4.2.1. Initialization

In the literature, there are many different
strategies proposed for initializing pheromone at
the very beginning. Usually a constant amount
of initial pheromone is deposited on each edge.
However, this strategy is not informative to the
ants. Therefore, we can use a problem-specific
heuristic to achieve a better initialization of
pheromone intensity. In this paper, we propose a
hybrid heuristic to initialize the initial pheromone.
This hybrid heuristic first sets a constant amount of
initial pheromone on each edge and updates initial
pheromone according to the solution found via the
API and NAPI local search procedures. The
intensities of two pheromones will be initialized
using the hybrid heuristic strategy.

4.2.2. State transition rule

We propose a new visibility function to evaluate
the costs of edges for state transition. In the total
completion time problem, there is a very important
intrinsic cumulative property specifying that when a
job is positioned in the front part of a schedule, its
processing time will be counted several times in the
objective evaluation. As a sequel, we apply this
cumulative property to design a new visibility
function for the state transition decision. The new
visibility function Zij is defined as

Zij ¼

Pi
r¼1CrPi

r¼1Cr þ ðn� mþ 1Þbj

, (2)

where variable m represents the total number
of already scheduled jobs in the partial schedule.
The numerator reflects the cost already incurred.
The second part of the denominator is an estimate
of the total completion time of the unscheduled
jobs. A job producing a larger total completion time
of the unscheduled job will have to be assigned a
smaller visibility value. When problem size n

becomes large, setting the numerator as 1 will not
affect the value of Zij. This is the reason why we set
the numerator as the value of total completion time
of the jobs already scheduled. The proposed new
visibility function can provide a certain degree of
guidance for the ants to improve the quality of
solutions.

We use the hybrid selection strategy and the new
type of pheromone for the preference definition of
choosing the next node to move on in our ACO
algorithm. For ant k on node i, which is the (l�1)st
job in the partial schedule, the preference for
selecting job j as the next node is determined by
the following state transition function:

pk
ij ¼

ðtij Þ
a
ðZij Þ

b
ð�jl Þ

gP
hetabuk

ðtihÞ
a
ðZihÞ

b
ð�hl Þ

g ; if jetabuk;

0; otherwise:

8<
: (3)

4.2.3. Pheromone updating rule

Colorni et al. (1991) proposed the elitist strategy
that resembles the elitist approach in genetic algo-
rithm. At the end of every iteration, the pheromone
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laid on edges is only reinforced by the elitist ants,
which construct the best-found tours. The trail of best
tours will probabilistically attract all the other ants
towards the edges belonging to these tours. Because
the problem sizes will be large in our experiments, we
need to consider the normalization issue. Therefore,
we design a specific pheromone updating rule for
large-scale problems as follows:

tij ¼ ð1� rÞtij þ
Xm

k¼1

Dtk
ij, (4)

Dtk
ij ¼

Pm

s¼1
ZðSsÞ

n
Pi

r¼1
Cr

; if ant k traversed edge ði; jÞ;

0; otherwise;

8<
:

(5)

where
Pm

s¼1ZðSsÞ is the summation of total comple-
tion times over all ants. The new type of pheromone
mentioned in the above section is also updated by the
same way as in Eqs. (4) and (5):

�jl ¼ ð1� rÞ�jl þ
Xm

k¼1

D�k
jl , (6)

D�k
ij ¼

Pm

s¼1
ZðSsÞ

n
Pi

r¼1
Cr

; if ant k placed job j at position l;

0; otherwise:

8<
:

(7)

Dorigo and Gambardella (1997) deployed a local
pheromone updating policy for the TSP and Besten
et al. (2000) also proposed a local pheromone updating
rule for the total tardiness problem. Although the
change of pheromone intensity over time is a fact of
the natural behavior of real ants, embedding the local
update rule, however, did not provide significant
improvements in our preliminary experiments. There-
fore, to avoid extra computational load, we use only
the global pheromone updating rule in our experi-
mental setting.

4.2.4. Local search method

Dorigo and Gambardella (1997) used a 3-OPT
local search approach to improve the quality of
solutions to the TSP. In the literature, many
researches applied different local search methods
because the local search method usually plays a key
role in improving the quality of solutions. We use
API and NAPI local search methods in our ACO
algorithm. In each iteration, all ants complete their
tours and then the best one is identified. The best
solution is used as the starting point of the local
search heuristic. Therefore, local search is invoked
once at the end of each iteration.

4.2.5. Stopping criterion

In our experiment setting, the program will
terminate when a given maximum number of
iterations within which no better solution is
encountered.

4.2.6. Dominance criteria

Della Croce et al. (1996, 2002) have proposed
four dominance rules for the total completion time
problem. Dominance rules can be classified as either
static or dynamic. A static rule means that the rule is
determined once the input instance is given and
remains unchanged along the solution-finding pro-
cess. If the conditions specifying a rule to be
satisfied vary depending on the scenarios of problem
status, then such a rule is called dynamic. Activation
of dynamic rules incurs extra computing efforts
during resolution. We therefore incorporate only
static dominance rules for our ACO algorithm
because these rules can be easily examined during
the running sessions.

Dominance Rule 1. . If there exists an unscheduled
job i such that pipqi, pippj and qipqj for each other
unscheduled job j, then in at least one optimal
sequence job i is placed first among all the
unscheduled jobs (Della Croce et al., 2002).

In the rule developed by Cadambi and Sathe
(1993), variable m represents the total number of
jobs already scheduled.

Dominance Rule 2. . If bipbj and bi�bj+max{0,
ai–aj}+(n�m+1)(min{ai, bj}�min{bi, bj})p0, then
job i precedes job j when they are adjacent in a
sequence (Cadambi and Sathe, 1993).

4.3. Specific design of the ACO for

F2jprmujuSCi+vCmax

We shall also apply the specific new features
of the ACO to solve the F2jprmujuSCi+vCmax

flowshop problem. From the problem definition,
we know that the major difference between
F2jprmujuSCi+vCmax and F2jprmujSCi problems
is that the first problem involves not only the total
completion time but also the makespan. Two
parameters, u and v, are used to control the relative
importance for the bicriteria decision. The specific
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strategies with the new features of the ACO for
F2jprmujuSCi+vCmax are similar to the strategies
for F2jprmujSCi. Therefore, we simply highlight the
major differences in our ACO application to the
F2jprmujuSCi+vCmax problem.

4.3.1. State transition rule

The cumulative property still has evident influ-
ences on the solution quality. Therefore, it is
incorporated into the definition of the preference
value as shown in the following:

Zij ¼
u
Pi

r¼1Cr þ vðCi þ bjÞ

uð
Pi

r¼1Cr þ ðn� mþ 1ÞbjÞ þ vðCi þ bjÞ
. (8)

Hybrid selection strategy is applied in the state
transition rule.

4.3.2. Pheromone updating rule

We design the pheromone updating rule for the
F2jprmujuSCi+vCmax problem as

Dtk
ij ¼

u

Pm

i¼1
ZðSsÞ

n
Pi

i¼1
Cr

� �

þvðCi þ bjÞ; if ant k traversed edge ði; jÞ;

0; otherwise:

8>>><
>>>:

(9)

The new type of pheromone mentioned in the
above section is updated as follows:

D�k
jl ¼

Pm

i¼1
ZðSsÞPi

r¼1
Cr

þv Ci þ bj

� �
; if ant k placed job j to position l;

0; otherwise:

8>>><
>>>:

(10)

The elitist strategy is used in the global pher-
omone updating rule.

5. Computational experiments

In this section, we describe the computational
experiments designed to evaluate the effectiveness
of the proposed new features of the ACO. The
platform of our experiments is a personal computer
with a Pentium-4 1.6GHz CPU and 1GB RAM.
The operating system is Linux Red Hat 7.3. The
programs were coded in Java. Following the
commonly adopted scheme in flowshop research,
we generated job processing times on machines one
and two from the interval [1, 100]. The experiments
include two parts designed for F2jprmujSCi and
F2jprmujuSCi+vCmax, respectively. Both of the two
experiments used the same setting for the ACO
algorithms. We set the number of ants ¼ 10, the
number of iterations for stopping criterion ¼ 50,
evaporation rate ¼ 0.1, parameters a, b and g for
state transition rule were 2, 4 and 4, respectively.
Threshold value l of 0.7 was set for the hybrid
strategy in the state transition stage. The problem
size n was set to be 50, 100, 200, 300, 400 or 500. For
each problem size n, 10 input instances were
randomly generated and the numerical results were
averaged through each 10 instances. The above
experimental setting, especially the threshold value
and parameters a, b and g, were determined by
extensive preliminary experiments that suggested
the best setting of these parameters.

We first implemented different strategies of the
ACO algorithms for the F2jprmujSCi problem and
recorded the average and the maximum objective
values. The first concern of our experiments is to
study the effectiveness of the proposed visibility
function. For convenience, we denote the basic
ACO algorithm, which does not include our
proposed visibility function and pheromone updat-
ing rules, as Algorithm ACO_Base. The ACO
algorithm that uses the new visibility function and
pheromone updating rule is denoted by Algorithm

ACO_New. The numerical results of ACO_Base and
ACO_New are summarized in Table 2. The first
column n denotes the number of jobs. In the column
under each algorithm, Mean indicates the average
objective value of each 10 test instances, Maximum
the maximum objective value in each 10 test
instances and Improvement the percentage of
relative improvement in objective value between
ACO_Base and ACO_New. In all tables shown in
the paper, the entry with a best value in each
scenario is highlighted in boldface. The results
clearly show that Algorithm ACO_New provides
better solutions with average improvements of
about 4–5%. The comparison suggests that apply-
ing the cumulative property to design a new
visibility function for the state transition decision
in the total completion time problem can provide
better solutions.

We move on to examine the effectiveness of
the new pheromone and dominance rules. Because
the statistics of the above experiments confirm the
significance of the new visibility function and
pheromone updating rules, we shall use ACO_New

as the baseline for measuring the potential gains
that can be brought forth by the new pheromone
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Table 2

Solution values of the new visibility function and pheromone updating rule

N ACO_Base ACO_New

Mean Maximum Mean Maximum Improvement (%)

50 60,513.8 70,685.0 57,514.3 63,942.0 5.2

100 232,922.4 265,777.0 218,105.0 236,951.0 6.8

200 999,351.3 1,035,317.0 946,723.3 1,022,225.0 5.6

300 2,248,663.4 2,392,810.0 2,157,731.6 2,294,407.0 4.2

400 3,999,218.5 4,237,702.0 3,891,694.2 4,060,783.0 2.8

500 6,504,035.2 6,826,198.0 6,208,090.1 6,541,192.0 4.8

Table 3

Solution values of the new features for F2JSCi

N 50 100 200 300 400 500

ACO_New Mean 59,713.8 254,501.2 1,029,271.0 2,317,734.2 4,151,265.3 6,535,600.9

Maximum 67,857.0 284,304.0 1,086,548.0 2,440,002.0 4,298,046.0 6,615,499.0

ACO_Domi Mean 57,859.0 239,659.0 986,159.1 2,211,197.6 3,940,477.6 6,180,904.1

Maximum 63,907.0 257,777.0 1,089,692.0 2,377,897.0 4,098,513.0 6,426,580.0

Improvement (%) 3.1 5.8 4.2 4.6 5.1 5.4

ACO_Pher Mean 56,282.1 226,538.9 978,785.4 2,169,474.3 3,940,182.4 6,236,174.9

Maximum 62,244.0 249,016.0 1,059,486.0 2,384,138.0 4,215,962.0 6,507,733.0

Improvement (%) 5.7 11.0 4.9 6.4 5.1 4.6

ACO_All Mean 55,803.8 221,099.7 904,918.1 2,013,321.4 3,676,940.5 5,720,991.4

Maximum 61,823.0 238,277.0 986,905.0 2,225,316.0 4,090,737.0 6,146,974.0

Improvement (%) 6.5 13.1 12.1 13.1 11.4 12.5
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Fig. 1. Comparisons on improvement ratios of new features for

F2JSCi.
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and the application of dominance rules. In the
following context, the columns entitled Improve-
ment in the following tables indicate the relative
improvement in percentages over ACO_New. Title
Algorithm ACO_Domi stands for the ACO algo-
rithm that applies new visibility function, new
pheromone updating rule and two dominance rules.
Algorithm ACO_Pher represents the algorithm
using the new visibility function, new pheromone
updating rule and the new type of pheromone.
Finally, Algorithm ACO_All denotes the algorithm
that incorporates all the proposed new features.

The numerical results of four combinations of the
features are shown in Table 3. Algorithms ACO_

Domi and ACO_Pher both outperform ACO_New.
For the instances with 100 jobs, the new pheromone
provides an impressive improvement of 11%. We
also find that ACO_Pher, which has an average
percentage of improvement of 6.3%, performs
better than ACO_Domi, whose average percentage
of improvement is about 4.7%. Another interesting
observation from Fig. 1 is that when the problem
size becomes large, the performance of dominance
rules becomes better than that of ACO_Pher. The
reason behind this observation could be that in
large-scale problems more dominance relations
among the jobs are satisfied and thus a larger
portion of infeasible paths were identified and
eliminated.
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We further examine the situation when the new
pheromone and dominance rules are simultaneously
deployed. Algorithm ACO_All presents significant
synergy of the proposed features. The improvement
percentages are from 6.5% to 13.1%; especially, the
improvement percentages are over 11% for large-
scale instances.

The second part of the computational experi-
ments is dedicated to the study on the bicriteria
F2jprmujuSCi+vCmax problem. The experimental
settings for the total completion time problem
are similarly applied except that we need to
consider another parameter u for tuning the weights
between total completion time and makespan.
In the experiments, u is 0.2, 0.5 or 0.8, and
accordingly v is 0.8, 0.5 or 0.2. Setting u ¼ 1 means
solving the F2jprmujSCi problem, and setting u ¼ 0
indicates the sole focus on F2JCmax. Therefore,
the settings with u ¼ 0 or 1 were not tested.
The computational results are shown in Table 4.
Figs. 2–4 illustrate the relative improvement ratios
of three algorithms for different values of u.
We found that ACO_Pher is still superior to
ACO_Domi when solving the bicriteria problem.
Algorithm ACO_All achieves synergy effects with an
Table 4

Evaluation results of the new features for F2JuSCi+vCmax

N u ACO_New ACO_Domi A

Mean Maximum Mean Maximum Impr.

(%)

M

50 0.2 14,254.6 16,694.0 13,440.6 15,360.4 5.7

0.5 31,387.7 36,678.0 30,089.2 35,235.0 4.1

0.8 47,978.8 56,004.6 45,948.5 52,250.4 4.2

100 0.2 52,952.2 59,415.4 50,871.0 54,944.6 3.9

0.5 126,207.8 140,259.5 118,724.2 130,186.0 5.9

0.8 202,073.7 222,775.0 190,296.9 216,061.8 5.8

200 0.2 207,346.0 228,321.6 198,135.4 216,057.6 4.4

0.5 509,612.7 571,542.5 475,183.7 531,064.0 6.8

0.8 810,129.5 877,943.2 770,392.5 874,396.6 4.9

300 0.2 459,967.5 477,137.2 448,583.8 463,441.4 2.5

0.5 1,140,693.3 1,179,663.5 1,095,209.3 1,151,222.5 4.0 1

0.8 1,837,173.8 1,969,210.8 1,753,725.4 1,871,998.8 4.5 1

400 0.2 829,450.5 875,766.8 794,849.5 848,701.8 4.2

0.5 2,066,884.1 2,159,000.0 1,968,102.9 2,136,205.0 4.8 1

0.8 3,306,375.0 3,451,038.8 3,154,700.2 3,322,084.8 4.6 3

500 0.2 1,309,920.4 1,389,081.6 1,247,351.0 1,328,280.4 4.8 1

0.5 3,195,009.3 3,314,018.5 3,104,667.3 3,222,830.0 2.8 2

0.8 5,164,165.9 5,333,183.2 4,972,551.0 5,274,530.0 3.7 4
average percentage of improvement from 6.5% to
11.4%. The performance is not as impressive as that
for the F2jprmujSCi problem. The phenomenon
might be attributed to the fact that when solving the
bicriteria problem the dominance rules do not make
significant contributions to the reduction of solution
space and they even deteriorate the performance of
ACO_All.

By and large, numerical results showed that the
proposed new features of the ACO algorithms
CO_Pher ACO_All

ean Maximum Impr.

(%)

Mean Maximum Impr.

(%)

13,239.8 14,460.2 7.1 13,152.4 14,511.0 7.7

29,050.2 32,417.5 7.4 29,200.6 33,831.5 7.0

45,122.2 50,982.6 6.0 44,855.3 53,202.6 6.5

48,410.7 52,511.4 8.6 47,800.9 53,740.6 9.7

115,231.7 134,889.5 8.7 111,844.4 124,593.0 11.4

177,508.9 198,901.6 12.2 179,091.5 205,165.8 11.4

190,774.7 212,617.8 8.0 186,852.6 210,379.4 9.9

464,272.7 521,362.5 8.9 455,213.3 509,533.5 10.7

737,010.8 786,062.8 9.0 718,861.4 795,115.6 11.3

414,533.6 458,266.4 9.9 412,681.0 455,352.4 10.3

,018,818.8 1,164,491.5 10.7 1,043,902.3 1,160,943.0 8.5

,662,491.7 1,805,508.8 9.5 1,634,905.3 1,831,020.0 11.0

761,411.5 826,885.4 8.2 758,206.0 820,171.4 8.6

,877,515.5 2,093,691.0 9.2 1,879,695.8 2,043,478.0 9.1

,129,769.4 3,369,178.4 5.3 3,066,076.2 3,250,935.2 7.3

,167,022.9 1,286,109.4 10.9 1,209,202.7 1,262,423.0 7.7

,975,883.1 3,427,605.5 6.9 2,886,682.2 3,165,256.5 9.7

,794,820.8 5,111,511.8 7.2 4,823,266.2 5,121,649.0 6.6



ARTICLE IN PRESS

4.0%

50 200 400

Im
pr

ov
em

en
t

Problem Size

100 300 500

12.0%

10.0%

8.0%

6.0%

2.0%

0.0%

ACO_Domi ACO_Pher ACO_All

Fig. 3. Comparisons on improvement ratios of new features for

u ¼ 0.5.

0.0%
2.0%
4.0%
6.0%

50 200 400

Im
pr

ov
em

en
t

14.0%
12.0%
10.0%
8.0%

Problem Size

100 300 500

ACO_Domi ACO_Pher ACO_All

Fig. 4. Comparisons on improvement ratios of new features for

u ¼ 0.8.

B.M.T. Lin et al. / Int. J. Production Economics 112 (2008) 742–755 751
outperform the conventional ones: the average
percentage of improvement of ACO_Domi, ACO_

Pher and ACO_All are 4.5%, 8.5% and 9.1%,
respectively. We may conclude that in the studied
sequencing problems, the new type of pheromone
conveys positional information for the ant colony to
conduct precise and informative communication
and construct quality tours.

To better assess the performance of the new
features, we conducted further experiments1 to
compare the proposed algorithm ACO_ALL with
SACO (T’kindt et al., 2002), M-MMAS and PACO

(Rajendran and Ziegler, 2004). All algorithms
deployed the same population of 10 ants. Numerical
results of solution quality and run time for the
F2jprmujCmax problem are summarized in Tables 5
and 6, respectively. It is clear that PACO and
M-MMAS produce better solutions than ACO_ALL

and SACO. Nevertheless, ACO_ALL and SACO
1The experiments were conducted during the revision of this

paper. Therefore, a modern computer (AMD Athlon MP

2200+CPU, 1GB MB RAM, 20GB HD, Linux Red Hat 8.0)

was used as the platform.
take less time. The long execution time of PACO and
M-MMAS could be attributed to the way the local
search heuristic was invoked. In the two algorithms,
each ant in each iteration triggers local search when it
completes a schedule. Frequent deployment of the
local search heuristic has a better opportunity to
reach a good solution at the cost of a longer
execution time. Comparing ACO_ALL and SACO,
the former can find better schedules. ACO_ALL

takes a longer time for small-size instances. The run
time required by SACO becomes longer when 300 or
more jobs are considered. The randomness of
simulated annealing might have delayed the conver-
gence process of SACO when there are more jobs.
The results for the F2jprmujuSCi+vCmax problem
are given in Tables 7 and 8. Similarly, PACO

demonstrates absolute superiority concerning solu-
tion quality. On the other hand, for all test scenarios
ACO_ALL takes the shortest execution time. The
experiments provide observations on the possible
tradeoffs between solution quality and run time when
different algorithms are considered.

The investigated ACO algorithms are hybridiza-
tions of ACO and local search heuristics. The
approaches proposed in this paper does not
emphasize too much on local search, but focus on
the intrinsic nature of ACO and real ants. Real ants
use multiple types of pheromones for communica-
tion, whereas sequencing or scheduling problems
require extra positional information to produce
better solutions. The natural phenomenon of multi-
ple pheromones paves the way to the design of a
new mechanism for acquiring positional informa-
tion in sequencing problems. Our design might
suggest a new alternative or way of thinking for the
development of ACO algorithms.

6. Concluding remarks and future research

In this paper, we developed new ingredients to
reshape the ACO algorithms. The first new feature
is a new type of pheromone that will dictate the
preference for assigning a job to a specific position
in a schedule so as to provide more informative
communication in the ant colony and thus better
solve hard combinatorial optimization problems.
This pheromone design could be useful specifically
for sequencing problems. Moreover, such an idea
might motivate more alternatives of ACO design.
The second new feature is about dominance
rules that can curtail unnecessary paths so that the
ants will not waste time in traversing infeasible or
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Table 5

Solution values of F2J
P

Ci with different ACO algorithms

N 50 100 200 300 400 500

ACO_ALL Mean 56,705 221,955 958,059 2,151,480 3,757,637 5,875,092

Maximum 64,317 269,829 1,085,141 2,474,699 4,253,432 6,745,419

M-MMAS Mean 54,806 204,587 810,570 1,805,098 3,145,376 4,891,381

Maximum 62,375 231,740 864,458 1,850,812 3,260,178 5,058,216

PACO Mean 54,777 204,342 809,641 1,803,170 3,142,351 4,887,836

Maximum 62,387 231,668 864,161 1,848,439 3,257,317 5,058,594

SACO Mean 62,067 245,936 997,317 2,256,341 3,968,490 6,185,820

Maximum 67,477 274,681 1062,690 2,306,964 4,109,679 6,288,014

Table 6

Average elapsed run time (s) of different ACO algorithms for F2J
P

Ci

N 50 100 200 300 400 500

ACO_All 4.01 19.26 75.98 379.23 542.84 1236.21

M-MMAS 26.75 197.45 1079.98 2943.78 7895.45 14,728.82

PACO 29.69 170.49 920.39 3471.82 7597.72 17,014.64

SACO 2.21 16.97 135.02 450.90 1081.48 2175.18

Table 7

Solution values of F2Ju
P

Ci+vCmax with different ACO algorithms

N u ACO_All M-MMAS PACO SACO

Mean Maximum Mean Maximum Mean Maximum Mean Maximum

50 0.2 13,633 15,394 13,145 14,882 13,141 14,860 14,369 16,588

0.5 29,946 33,885 28,771 32,657 28,760 32,658 31,772 36,648

0.8 45,974 52,554 44,380 50,484 44,384 50,452 48,808 55,856

100 0.2 47,149 53,028 45,127 50,990 45,118 51,009 52,161 59,889

0.5 110,760 126,613 104,902 118,775 104,835 118,748 122,639 137,819

0.8 172,318 196,463 164,673 186,480 164,622 186,549 193,462 222,696

200 0.2 181,131 200,101 170,433 181,725 170,261 181,555 202,340 218,462

0.5 440,257 488,901 410,417 437,585 410,167 437,585 493,591 514,883

0.8 690,388 751,543 650,434 692,388 649,702 692,835 788,634 833,339

300 0.2 404,377 415,108 373,396 382,357 372,936 381,818 453,836 463,614

0.5 978,873 1,014,845 910,228 932,899 909,293 931,824 1,107,614 1,125,861

0.8 1,551,631 1,588,144 1,446,758 1,482,423 1,445,645 1,481,715 1,768,030 1,802,767

400 0.2 695,840 724,665 645,322 668,810 644,915 668,402 788,158 825,449

0.5 1,719,186 1,756,559 1,582,597 1,640,632 1,581,679 1,638,617 1,937,232 2,057,875

0.8 2,713,958 2,805,259 2,520,192 2,611,355 2,519,041 2,608,255 3,084,945 3,272,494

500 0.2 1,089,426 1,154,058 998,578 1,032,278 998,191 1,031,777 1,230,456 1,270,146

0.5 2,690,311 2,812,971 2,458,413 2,542,692 2,456,581 2,542,205 3,032,094 3,141,046

0.8 4,310,216 4,584,747 3,917,877 4,052,012 3,915,832 4,052,039 4,862,816 5,021,643
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Table 8

Average elapsed run time (s) of different ACO algorithms for

F2Ju
P

Ci+vCmax

N u ACO_All M-MMAS PACO SACO

50 0.2 2.35 22.27 28.38 13.09

0.5 2.51 24.46 29.64 13.10

0.8 2.79 27.01 29.55 13.09

100 0.2 17.56 149.49 172.14 114.46

0.5 16.57 164.77 145.49 114.42

0.8 17.68 214.04 163.49 114.42

200 0.2 82.77 1177.37 1051.71 1005.68

0.5 84.15 1129.27 1079.69 1005.56

0.8 80.32 1119.80 992.42 1005.64

300 0.2 277.27 2862.75 3766.53 3610.07

0.5 304.87 3575.73 3351.74 3612.16

0.8 301.14 3379.26 3,911.68 3613.72

400 0.2 666.40 9145.58 7699.58 8014.59

0.5 538.52 8047.84 7974.58 8018.11

0.8 619.58 7364.61 8093.64 8016.87

500 0.2 1516.34 17,303.44 15,013.90 17,953.41

0.5 1181.76 16,225.55 16,125.87 17,953.80

0.8 1144.13 16,445.94 16,340.88 17,935.69
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non-promising paths during their food-seeking
process. The proposed new features of the ACO
algorithm were applied to two flowshop scheduling
problems. Due to the cumulative property of total
completion time, we also developed a new visibility
function. Computational results showed that the
proposed new strategies for state transition and
pheromone update are very effective in comparison
with the generic ACO algorithm. Furthermore, the
results also evinced the significance of new pher-
omone and dominance rules. Further experiments
were also done to compare the proposed approach
with the three existing algorithms.

Although many applications of the ACO have
been proposed to deal with complex sequencing
problems thus far, there are still many interesting
research directions. For example, considering other
sequencing problems to test and verify the effec-
tiveness and robustness of the proposed new
features of ACO is a worthy topic. And, ant
algorithms are well suited for parallelization but
not much relevant research has been done. To the
best of our knowledge, only a few papers on parallel
implementations of ACO algorithms (Bullnheimer
et al., 1998; Stützle, 1998b; Talbi et al., 1999;
Middendorf et al., 2002; Randall and Lewis, 2002)
have been reported. It is interesting to examine
whether our proposed new features of ACO are
effective for parallelization or not. It could be
interesting to create another new type of pheromone
for parallelization. Finally, we may regard the
behavior of artificial ants cooperating with one
another to exchange their information and to share
their knowledge as a group decision and learning
process. Therefore, another direction of potential
interest could be the application of the ACO in
e-learning and knowledge management.
Acknowledgments

The authors are grateful to the anonymous
referees who provided suggestions that have
improved the presentation of this paper.
References

Bauer, A., Bullnnherimer, B., Hartl, R.F., Strauss, C., 1999. An

ant colony optimization approach for the single machine

total tardiness problem. In: Proceedings of the 1999 Congress

on Evolutionary Computation. Washington, DC, USA,

pp. 1445–1450.

Beckers, R., Deneubourg, J.L., Goss, S., 1992. Trails and U-turns

in the selection of the shortest path by the ant Lasius niger.

Journal of Theoretical Biology 159, 397–415.
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