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Abstract: A new program model is presented to 
accurately represent parallel programs for 
partitioning and scheduling problems. This model 
extends the graphic representation of the 
macrodataflow by considering the complex 
communication options supported by NUMA 
systems. The proposed model shows not only task 
precedence relations but also data sharing status. 
Moreover, a new partitioning method based on 
the proposed model is also developed. 
Experimental results show that many 
conventional partitioning algorithms operate 
more efficiently using the proposed model, and 
that the proposed algorithm surpasses existing 
algorithms. 

1 Introduction 

Partitioning a program into parallel tasks and schedul- 
ing them are essential steps in parallel compilation sys- 
tems [ 1-31. Parallel compilers manipulate partitioning 
and scheduling problems according to the information 
supplied by program models. Accurate representation 
of program models is therefore one of the most impor- 
tant issues in parallel compilation systems. Wolski and 
Feo [2] stated that macrodataflow model [l] is not ade- 
quate for NUMA systems. They provided thorough 
details and motivations for a new program model 
(memory node model) for NUMA systems. However, 
their work still does not precisely characterise programs 
for NUMA systems. Their work hypothesised that 
communication edges associated with the same memory 
location may have no different access latency. This 
assumption is true only for multiprocessor systems with 
physical memory modules that are uniformly shared by 
all processors. The global address space is scattered 
over physically separated memory modules for NUMA 
multiprocessors with distributed shared memory sys- 
tems (for example, the BBN TC-2000 Butterfly). Access 
latencies for the same memory location addressed by 
different processors are not identical in such NUMA 
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systems; only one of these processors is local with 
respect to this memory address, all the others are 
remote processors. Moreover, Wolski and Feo hypoth- 
esised that the earliest starting time of a task is the time 
after all of its predecessor tasks finishing data transmis- 
sion. So, even after the inecessary data having already 
arrived, this task still can not be issued if any one of its 
predecessors has not finish the data transmission to 
other successors. The memory node model therefore 
cannot precisely characterise programs for NUMA 
multiprocessor systems. 

In this paper, a new program model is offered, and a 
new partitioning heuristic based on this model is estab- 
lished for evaluating performance improvement. The 
proposed model is called the shared communication 
resource (SCR) model. It enlarges the macrodataflow 
program description to allow employment of partition- 
ing heuristics for NUMA systems. It not only indicates 
precedence relations but also the status of data sharing 
within programs as well as resource contention associ- 
ated with system models. A new partitioning algorithm, 
referred to as the shortest extended critical path first 
(SECPF), is also presented here to demonstrate excel- 
lent qualities of the SCR model. It considers the com- 
plex communication options, data sharing and resource 
contention in the SCR model. Experimental results 
show that adoption of the SCR model can achieve 
more realistic outcomes for the partitioning problem, 
and that parallel partitioned tasks execute well on 
NUMA systems. 

2 Shared communication resource model 

The main idea behind the SCR model is that tasks gen- 
erally communicate through some ‘shared’ communica- 
tion resources, such as registers, caches (when the tasks 
are in the same processor) and shared memories (when 
the tasks are in different processors). Therefore, a com- 
munication operation is divided into two phases in the 
SCR model. In the first, the producer task sends data 
to a ‘shared’ communication resource, and in the sec- 
ond, the consumer task receives this data from the 
‘shared’ communication resource. The ‘shared’ commu- 
nication resource is referred to as the shared communi- 
cation resource (SCR) node in the SCR model. 

Now, we describe the SCR model formally as fol- 
lows. A program is represented as a directed acyclic 
graph (DAG) based on the SCR model. The DAG is 
defined by a tuple G = i(Nt, N,, E, C, T), where Nt is 
the set of task nodes, N, is the set of SCR nodes, C is 
the set of communication volumes, Tis  the set of com- 
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putation costs, E is the set of communication edges 
which define a partial order or precedence constraints 
on NpN,.  There is no communication edge between ni 
and nj when ni, n j E  Nt or ni, n j E  N,. The value of cii€ C 
is the communication volume occurring along the edge 
eii = (ni, nj) E E, either n i E  N,, n j E  N, or n i E  hT,, n j E  AT,. 
The value z i sT  is the computation time for node 
ni.Nt, and z, = 0 for all n i E N s .  When there is data 
dependence between tasks ni, and nj, ni and n j E  N,, there 
exists a node n , E N ,  such that two edges ( n ,  n,) and 
(iz!, n j ) E  E. An example of the DAG is shown in 
Fig. IC with three tasks nl,  n2 and n3. 

For the SCR model, we have the following assump- 
tions: 
(i) A task is an indivisible unit of computation, which 
maybe an assigninent statement, a subroutine or even 
an entire program. 
(ii) Tasks are convex, which means that once task exe- 
cution begins, it must continue to completion without 
interruption [l]. 
(iii) Only one task at a time can access data from one 
SCR node in this model. Two independent tasks must 
therefore access data from the same SCR node in 
sequence, making resource contention issue. 
(iv) Task execution is triggered by satisfying precedence 
constraints and removing resource contentions. 
(v) Precedence constraints occur when the execution of 
one task must be postponed until the arrival of all nec- 
essary data. 
(vi) The SCR model includes two kinds of resource 
contentions: one in which execution of a task must be 
deferred, until the completion of all the tasks scheduled 
before it in the same processor; and another that 
entails receiving data from immediate predecessors 
sequentially, this is a task cannot receive data from all 
its predecessors simultaneously. 

@ "1 @ "1 @ "1 

"2 "3 "2 "3 "2 "3 
a b C 

Fig. 1 
nl ,  ,.,, n3 task nodes 
XI, ..., X, computation times 
Y,, ..,, Y, communication volumes 
M memory node 
S SCR node 

Examples of three models 

An example of the same program segment repre- 
sented according to three models is shown in Fig. 1. 
Fig. l a  shows the DAG represented by the macrodata- 
flow. The DAG represented by the memory node 
model is shown in Fig. lb. In memory node model, 
each communication is divided into three phases, write, 
communicate and read. Two memory nodes are 
inserted along each communication edge to represent 
the write-communicate-read sequence. These two 
memory nodes are merged into one node, if the com- 
munication is through shared memories. In Fig. lb ,  
data transferred from n1 to n2 and n3 are assumed to 
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pass through the same output port and the system is 
supposed to be a shared memory multiprocessor sys- 
tem. The representation of the SCR model is shown in 
Fig. IC. Communication between two tasks is divided 
into two phases, the write phase and the read phase. 
Only one SCR node is inserted along the communica- 
tion edge to indicate the 'shared' communication 
resource. The values within the task nodes indicate 
their computation times, and those at the communica- 
tion edges are the communication volumes. 

Since the memory node model supposes that the 
access latencies associated with the same memory node 
are identical for the same access direction (i.e. either 
write or read operations), it cannot represent complex 
communication options such as the case in which two 
consumer tasks access the same memory node from dif- 
ferent processors, Even if the access latencies associated 
with the same memory node could be different in mem- 
ory node model, the number of memory node types 
increases profusely as the number of access latency 
types increases. Consequently, the time complexity of 
any algorithms which applies such a model could not 
be polynomial. However, SCR model can depict such 
kinds of complex communications; if the nodes n2 and 
n3 shown in Fig. IC  are allocated to different 
processors, the communication latencies along the 
edges (S,  n2) and (S ,  n3) could be different values. 

a b 

earliest starting time 
t 

memory 

node model _ -  *, SCR model 

C 

Fig.2 
a Memory node 
b SCR model 
M,, ..., M5 memory nodes 
nl ,  n2 task nodes 
S,, ..., S5 SCR nodes 
~ critical path 

Example of earliest starting time 

The memory node model hypothesised that the earli- 
est starting time of a task is the time after all of its 
predecessor tasks finishing data transmission. There- 
fore, n2 cannot start execution, until n1 completes all its 
write operations [2] as shown in Fig. 2c. If the commu- 
nication latency of each edge is supposed to be 3 cycles/ 
byte, then, as shown in Fig. 2c, n2 must wait 21(2 x 3 
+ 1 x 3 + 1 x 3 + 3 x 3) cycles to start its execution in 
the memory node model. If the start time to execute n2 
could be advanced, then the critical path of the pro- 
gram could be shortened. In the SCR model, a task can 
start its execution as soon as precedence constraints 
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and resource contentions affecting it have been 
resolved. The earliest start execution time for n2 is 
therefore 6(1 x 3 + 1 x 3 )  cycles after n1 is completed in 
SCR model, as depicted in Fig. 2b. The SCR model 
thus saves 15 cycles along the critical path when com- 
pared with memory node model, and then improves the 
resource utilisation. 

To summarise, the SCR model has several benefits. 
First, the representation is simple, consistent and sys- 
tem-independent. Second, it can express complex com- 
munication options. Third, it can easily characterise 
programs for NUMA systems such as shared local 
memories (for example, the BBN Butterfly), the hierar- 
chical cluster model (for example, the Cedar system at 
the University of Illinois), and even Cache-Coherent 
NUMA systems (for example, the DASH at Stanford 
and the Alewife at MIT). Fourth, the data sharing 
could be shown in the SCR model. For example, a pro- 
ducer task sends data to an SCR node only once and 
consumer tasks then access this data from this SCR 
node sequentially, when these consumers would like to 
receive the same data from the same producer. Finally, 
SCR model explicitly reveals the memory access con- 
tention relationships within programs. 

3 SECPF partitioning algorithm 

A new partitioning heuristic, SECPF, based on the 
SCR model is presented in this section. We only con- 
sider the nonbacktracking algorithm here to avoid high 
complexity. This means once the partitions have been 
generated by some steps in the algorithm, they cannot 
be unpartitioned afterwards. The number of partition- 
ing steps thus remains polynomial-bounded with 
respect to the size of the DAG. 

Minimising the parallel execution time for a multi- 
processor system with an unbounded number of proc- 
essors is the goal of this partitioning algorithm. Here 
we suppose that the multiprocessor system is homoge- 
neous, and communications between any two tasks are 
half-duplex. Each processor element (PE) has a proces- 
sor and a coprocessor to deal, respectively, with com- 
putation and communication, which allows 
computation and communication to be overlapped if 
they are independent of each other. Formally, let P = 
@,I i = 1, ...,]PI}, IPIS 00, be the set of identical proces- 
sors in the multiprocessor system. Let P(n,) be the PE 
allocated by n,. Also, parameter q@,, pJ) denotes the 
communication latency required to transfer a message 
unit from processor p, to processor pl, where p,, pje P. 
To simplify the verification of our algorithm, only two 
kinds of communication latencies are considered here 
to compare existing algorithms with the proposed 
algorithm. The set of communication latencies A4 = 
{L1,  L,}, where L1 = q(’pz, p,) p , ~  P, is the intraproces- 
sor communication latency occurring when two tasks 
communicate with each other in the same PE, and L, = 
q@,, pJ) p,, pJ€ P and i # j ,  is the interprocessor commu- 
nication latency occurring when two tasks communi- 
cate with each other through an interconnection 
network. System models with more latency types will 
be contemplated for future investigations of the advan- 
tages of the SCR model. 

The initial communication latencies of DAG edges 
are considered L,. If a partitioned DAG is modified (a) 
by assigning L1 to the edge between any pair of nodes 
n, and nb of a partition, where 126 is executed immedi- 
ately after n,, and there is a data dependence edge 

between n, and nb, or (1)) by adding a zero-weighted 
edge between any pair of nodes n, and nb of a parti- 
tion, where nb is executed immediately after n,, and 
there is no data dependence between n, and nb, then a 
‘scheduled DAG’ is obtained. 

The ‘earliest starting time’ (est) of node n, est(n) 191, 
in a scheduled DAG is defined as the earliest time after 
satisfying precedence constraints and removing 
resource contention, that node n can begin execution. 

The ‘longest completion time’ (Ict) of a node is the 
longest execution time from this node to the sink node. 
Mathematically, b’ ni E Art U N,, 

where succ(n,) is the set of immediate successors of n,. 
The ‘extended critical path’ (ecp) of a scheduled 

DAG is the longest path from the source node to the 
sink node. The ecp length is 
ecp(G) = max(est(n) + ‘ T ~  + Zct(n,)),for all n, E Nt UN, 

The SECPF algorithm process is to reduce the ecp(G) 
by assigning L1 to edges along the ecp; then nodes with 
the most uncompleted jobs are issued as soon as possi- 
ble. If this ecp is unique, it will reduce the parallel com- 
pletion time. SECPF initially assigns a default latency 
to all communication edges, then calculates the Zct for 
each node bottom up. Nodes with no predecessors are 
selected first. Candidates with maximum est and Ict 
sums are allocated to existing partitions or to new par- 
titions after the est of each candidate in the current 
step has been determined; chosen candidate nodes are 
then examined. The algorithm repeats this procedure, 
until all nodes have been examined. The SECPF 
pseudo program is given iis follows: 
Algorithm SECPFPartitioning 
Input: G = (Nf, N,, E, C, T) and A4 = {L,,  L,.]. 
Output: The partitioned program with the minimal 
parallel execution time. 
Begin 

Assign each communication edge to be L,. 
Calculate Ict(n), !f n E Nf U N,. 
Select nodes without predecessors as candidates. 
Calculate ecp(G) 
While there exists some unexamined node 
{ Calculate the ests for all candidate nodes. 

Choose the candidate node with max(ecp(G)). 
Calculate the possiblle ecps for this chosen candi- 
date. 
If there are possible ecps smaller than the ecp in 
the previous step 

{Allocate the chosen candidate to the partition 
with the minimal possible ecp.} 

{Allocate the chosen candidate to a new parti- 
tion.} 

Set this node to be examined, and update the ecp 
in the current step. 
Re-select the nodes without unexamined predeces- 
sors to be candidates. 

else 

} 
End 
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SECPF algorithm has been implemented on the SCR 
model. It is similar to the DSC [3],  however, considers 
the communication contentions. The SECPF algorithm 
deals with task graphs by considering precedence con- 
straints and resource contention in the SCR model. 
The time complexity for calculating lets is O(lN,I + IN,[ 
+ IEI). The time complexity for calculating ecp is O(INfl 
+ IN,i + 14) at each step, making the time complexity 
of SECPF O((lNtI + lN31)(lNtl + IN,I + [El)). Conse- 
quently, the complexity of the SECPF is reasonable, 
because in [ 1, 3-51 corresponding complexities are 
O(l4(I~,l + 14>>> O(lNtl(INtl + 14>>, O((lNfI + IEDloglNtI) 
and o(l~t1210gl~fl). 

4 Experimental results 

We demonstrated the feasibility of the SECPF for the 
SCR model by evaluating 540 randomly generated IF1 
[6] program graphs. IF1 is the proposed intermediate 
form of SISAL [7]. The IF1 program graph generated 
by the SISAL compiler initially is transformed into the 
intermediate form of SCR model by a preprocessor. 

The size of the graphs varied from a minimum of 100 
nodes with 102 edges to a maximum of 150 nodes with 
300 edges. The granularity, that is, the ratio of average 
remote communication to average computation, varied 
from 0.5, 1 to 2. L1 varied from 2, 4 to 8 cycledbyte. 
The ratio of L, to L1 varied from 2, 4, 6, 8 to 10. The 
communication volume associated with each communi- 
cation edge varied randomly from 1 to 96 bytes. The 
computation time required for each computation node 
varied randomly from 1 to 96 cycles. The data sharing, 
which means the probability of consumers accessing 
the same data from the same predecessor, varied from 
0%, 209’0, 40%, 6O%, 80% to 100%. The performance 
improvement is defined as 

x 100% e c p ( G )  before partitioning--ecp(G) after parti t ioning 
e c p ( G )  before parti t ioning 

Since DSC [3, 81 generally surpasses existing parti- 
tioning algorithms, such as Sarkar’s [l], KB/L [4] and 
MCP [5], as shown in [3]; only DSC was implemented 
as a basis for comparison of performance improve- 
ment. DSC and SECPF were implemented for four 
program models to investigate the benefits of the SCR 
model. The first program model was the traditional 
macrodataflow; the second one was macrodataflow 
with consideration of resource contention as in the 
SCR model; the third was the memory node model; the 
last was the SCR model. 

50 - 

45 - 

2 
c 

k 40-  6 
0 
h 35- 
E ._ 

MMD MN 
program models  

Fig. 3 Average pevformance improvement 
Unshaded boxes: DSC 
Shaded boxes: SECPF 
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SCR 

Fig. 3 shows the average improvement for four mod- 
els. ‘MD’ means the original macrodataflow, ‘MMD’ 
macrodataflow with considering resource contention, 
‘ M N  memory node model and ‘SCR’ the SCR model. 
DSC performed better than the others in macrodata- 
flow, but SECPF surpassed the others after adopting 
macrodataflow with resource contention considera- 
tion. Furthermore, the SECPF algorithm, as shown in 
Fig. 3, outdoes the others based on the SCR model. 
Adoption of the SCR model can achieve a more realis- 
tic outcome than using existing program models for the 
partitioning problem in NUMA multiprocessor sys- 
tems. Fig. 3 also shows that performance improvement 
of both algorithms in MMD model is greater than that 
in SCR model. The main reason of the superiority 
could be that MMD model did not express data shar- 
ing such that the initial ecp(G) before partitioning in 
MMD model is greater than that in SCR model. As for 
the performance improvement of algorithms in SCR 
compared with MN model, the reason of the superior- 
ity of SCR model appears that a task can start its exe- 
cution as soon as precedence constraints and resource 
contentions affecting it have been resolved. 

Only the performance of partitioning algorithms 
based on SCR model is discussed below, since out- 
comes using the SCR model are more realistic than the 
others. Fig. 4 shows the impact of granularity on the 
partitioning algorithms. In Fig. 4, the symbol ‘X-Y’ 
means that the value of the granularity is ‘Y’ for ‘X’ 
algorithm. The performance improvement increases as 
granularity increases. The same experimental conse- 
quence is also represented in [2]. The impact of data 
sharing is also shown in Fig. 4. The performance of 
DSC is better than that of SECPF when granularity is 
0.5 and data sharing is less than 40%. The performance 
of DSC would be worse than that of SECPF if the data 
sharing is greater than 20%, when granularity is 1. If 
the granularity is greater than 2, then the performance 
improvement of SECPF will always be better than 
DSCs regardless of data sharing. Notice that the influ- 
ence of the communication contention overhead on the 
performance increases as the granularity or data shar- 
ing increases. Because SECPF takes communication 
contention into account, SECPF is superior to DSC as 
the granularity or data sharing increases. 

0 20 40 60 80 100 
d a t a  shoring ,’/., 

Fig.4 Improvement in varying data sharing and granularity 
-0- DSC-0.5 
--0-- D S C - 1  
...O... D S C - 1  
-0- SECPF - 0.5 
- -0- - SECPF - 1 
...I3... SECPF - 2 
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5 Concluding remarks 7 References 

An efficient program model for NUMA systems has 
been presented in this paper. The representation Of the 
SCR model is simple, consistent and system-independ- 

contention. Users also can design more efficient parti- 
tioning algorithms using the SCR model. Moreover, 
the SCR model can express complex communication 
options, capture data sharing, and explicitly reveal the 
memory access contention relationships. A new parti- 

gate the workability of the SCR model. The SECPF 
algorithm based on the SCR model is superior to DSC, 
as demonstrated by our experimental results. 
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