
New program model for program partitioning on
NUMA multiprocessor systems

G.-J. Lai
C.Chen

Indexing terms: Program model, NUMA multiprocessor, Partitioning, Scheduling

Abstract: A new program model is presented to
accurately represent parallel programs for
partitioning and scheduling problems. This model
extends the graphic representation of the
macrodataflow by considering the complex
communication options supported by NUMA
systems. The proposed model shows not only task
precedence relations but also data sharing status.
Moreover, a new partitioning method based on
the proposed model is also developed.
Experimental results show that many
conventional partitioning algorithms operate
more efficiently using the proposed model, and
that the proposed algorithm surpasses existing
algorithms.

1 Introduction

Partitioning a program into parallel tasks and schedul-
ing them are essential steps in parallel compilation sys-
tems [1-31. Parallel compilers manipulate partitioning
and scheduling problems according to the information
supplied by program models. Accurate representation
of program models is therefore one of the most impor-
tant issues in parallel compilation systems. Wolski and
Feo [2] stated that macrodataflow model [l] is not ade-
quate for NUMA systems. They provided thorough
details and motivations for a new program model
(memory node model) for NUMA systems. However,
their work still does not precisely characterise programs
for NUMA systems. Their work hypothesised that
communication edges associated with the same memory
location may have no different access latency. This
assumption is true only for multiprocessor systems with
physical memory modules that are uniformly shared by
all processors. The global address space is scattered
over physically separated memory modules for NUMA
multiprocessors with distributed shared memory sys-
tems (for example, the BBN TC-2000 Butterfly). Access
latencies for the same memory location addressed by
different processors are not identical in such NUMA

0 IEE, 1996
IEE Proceedings online no. 19960637
Paper first received 27th June 1995 and in revised form 29th April 1996
The authors are with the National Chiao Tung University, Institute of
Computer Science and Information Engineering, 1001 Ta Hsueh Road,
Hsinchu, Taiwan, Republic of China

systems; only one of these processors is local with
respect to this memory address, all the others are
remote processors. Moreover, Wolski and Feo hypoth-
esised that the earliest starting time of a task is the time
after all of its predecessor tasks finishing data transmis-
sion. So, even after the inecessary data having already
arrived, this task still can not be issued if any one of its
predecessors has not finish the data transmission to
other successors. The memory node model therefore
cannot precisely characterise programs for NUMA
multiprocessor systems.

In this paper, a new program model is offered, and a
new partitioning heuristic based on this model is estab-
lished for evaluating performance improvement. The
proposed model is called the shared communication
resource (SCR) model. It enlarges the macrodataflow
program description to allow employment of partition-
ing heuristics for NUMA systems. It not only indicates
precedence relations but also the status of data sharing
within programs as well as resource contention associ-
ated with system models. A new partitioning algorithm,
referred to as the shortest extended critical path first
(SECPF), is also presented here to demonstrate excel-
lent qualities of the SCR model. It considers the com-
plex communication options, data sharing and resource
contention in the SCR model. Experimental results
show that adoption of the SCR model can achieve
more realistic outcomes for the partitioning problem,
and that parallel partitioned tasks execute well on
NUMA systems.

2 Shared communication resource model

The main idea behind the SCR model is that tasks gen-
erally communicate through some ‘shared’ communica-
tion resources, such as registers, caches (when the tasks
are in the same processor) and shared memories (when
the tasks are in different processors). Therefore, a com-
munication operation is divided into two phases in the
SCR model. In the first, the producer task sends data
to a ‘shared’ communication resource, and in the sec-
ond, the consumer task receives this data from the
‘shared’ communication resource. The ‘shared’ commu-
nication resource is referred to as the shared communi-
cation resource (SCR) node in the SCR model.

Now, we describe the SCR model formally as fol-
lows. A program is represented as a directed acyclic
graph (DAG) based on the SCR model. The DAG is
defined by a tuple G = i(Nt, N,, E, C, T), where Nt is
the set of task nodes, N, is the set of SCR nodes, C is
the set of communication volumes, Tis the set of com-

43 1 IEE Proc-Comput. Digit. Tech., Vol. 143, No. 6, November 1996

putation costs, E is the set of communication edges
which define a partial order or precedence constraints
on NpN,. There is no communication edge between ni
and nj when ni, n j E Nt or ni, n j E N,. The value of cii€ C
is the communication volume occurring along the edge
eii = (ni, nj) E E, either n i E N,, n j E N, or n i E hT,, n j E AT,.
The value z i sT is the computation time for node
ni.Nt, and z, = 0 for all n i E N s . When there is data
dependence between tasks ni, and nj, ni and n j E N,, there
exists a node n , E N , such that two edges (n , n,) and
(iz!, n j) E E. An example of the DAG is shown in
Fig. IC with three tasks nl, n2 and n3.

For the SCR model, we have the following assump-
tions:
(i) A task is an indivisible unit of computation, which
maybe an assigninent statement, a subroutine or even
an entire program.
(ii) Tasks are convex, which means that once task exe-
cution begins, it must continue to completion without
interruption [l].
(iii) Only one task at a time can access data from one
SCR node in this model. Two independent tasks must
therefore access data from the same SCR node in
sequence, making resource contention issue.
(iv) Task execution is triggered by satisfying precedence
constraints and removing resource contentions.
(v) Precedence constraints occur when the execution of
one task must be postponed until the arrival of all nec-
essary data.
(vi) The SCR model includes two kinds of resource
contentions: one in which execution of a task must be
deferred, until the completion of all the tasks scheduled
before it in the same processor; and another that
entails receiving data from immediate predecessors
sequentially, this is a task cannot receive data from all
its predecessors simultaneously.

@ "1 @ "1 @ "1

"2 "3 "2 "3 "2 "3
a b C

Fig. 1
nl , ,.,, n3 task nodes
XI, ..., X, computation times
Y,, ..,, Y, communication volumes
M memory node
S SCR node

Examples of three models

An example of the same program segment repre-
sented according to three models is shown in Fig. 1.
Fig. l a shows the DAG represented by the macrodata-
flow. The DAG represented by the memory node
model is shown in Fig. lb. In memory node model,
each communication is divided into three phases, write,
communicate and read. Two memory nodes are
inserted along each communication edge to represent
the write-communicate-read sequence. These two
memory nodes are merged into one node, if the com-
munication is through shared memories. In Fig. lb ,
data transferred from n1 to n2 and n3 are assumed to

432

pass through the same output port and the system is
supposed to be a shared memory multiprocessor sys-
tem. The representation of the SCR model is shown in
Fig. IC. Communication between two tasks is divided
into two phases, the write phase and the read phase.
Only one SCR node is inserted along the communica-
tion edge to indicate the 'shared' communication
resource. The values within the task nodes indicate
their computation times, and those at the communica-
tion edges are the communication volumes.

Since the memory node model supposes that the
access latencies associated with the same memory node
are identical for the same access direction (i.e. either
write or read operations), it cannot represent complex
communication options such as the case in which two
consumer tasks access the same memory node from dif-
ferent processors, Even if the access latencies associated
with the same memory node could be different in mem-
ory node model, the number of memory node types
increases profusely as the number of access latency
types increases. Consequently, the time complexity of
any algorithms which applies such a model could not
be polynomial. However, SCR model can depict such
kinds of complex communications; if the nodes n2 and
n3 shown in Fig. IC are allocated to different
processors, the communication latencies along the
edges (S, n2) and (S , n3) could be different values.

a b

earliest starting time
t

memory

node model _ - *, SCR model

C

Fig.2
a Memory node
b SCR model
M,, ..., M5 memory nodes
nl , n2 task nodes
S,, ..., S5 SCR nodes
~ critical path

Example of earliest starting time

The memory node model hypothesised that the earli-
est starting time of a task is the time after all of its
predecessor tasks finishing data transmission. There-
fore, n2 cannot start execution, until n1 completes all its
write operations [2] as shown in Fig. 2c. If the commu-
nication latency of each edge is supposed to be 3 cycles/
byte, then, as shown in Fig. 2c, n2 must wait 21(2 x 3
+ 1 x 3 + 1 x 3 + 3 x 3) cycles to start its execution in
the memory node model. If the start time to execute n2
could be advanced, then the critical path of the pro-
gram could be shortened. In the SCR model, a task can
start its execution as soon as precedence constraints

IEE Proc -Comput Digit Tech, Vol 143, No 6, November 1996

and resource contentions affecting it have been
resolved. The earliest start execution time for n2 is
therefore 6(1 x 3 + 1 x 3) cycles after n1 is completed in
SCR model, as depicted in Fig. 2b. The SCR model
thus saves 15 cycles along the critical path when com-
pared with memory node model, and then improves the
resource utilisation.

To summarise, the SCR model has several benefits.
First, the representation is simple, consistent and sys-
tem-independent. Second, it can express complex com-
munication options. Third, it can easily characterise
programs for NUMA systems such as shared local
memories (for example, the BBN Butterfly), the hierar-
chical cluster model (for example, the Cedar system at
the University of Illinois), and even Cache-Coherent
NUMA systems (for example, the DASH at Stanford
and the Alewife at MIT). Fourth, the data sharing
could be shown in the SCR model. For example, a pro-
ducer task sends data to an SCR node only once and
consumer tasks then access this data from this SCR
node sequentially, when these consumers would like to
receive the same data from the same producer. Finally,
SCR model explicitly reveals the memory access con-
tention relationships within programs.

3 SECPF partitioning algorithm

A new partitioning heuristic, SECPF, based on the
SCR model is presented in this section. We only con-
sider the nonbacktracking algorithm here to avoid high
complexity. This means once the partitions have been
generated by some steps in the algorithm, they cannot
be unpartitioned afterwards. The number of partition-
ing steps thus remains polynomial-bounded with
respect to the size of the DAG.

Minimising the parallel execution time for a multi-
processor system with an unbounded number of proc-
essors is the goal of this partitioning algorithm. Here
we suppose that the multiprocessor system is homoge-
neous, and communications between any two tasks are
half-duplex. Each processor element (PE) has a proces-
sor and a coprocessor to deal, respectively, with com-
putation and communication, which allows
computation and communication to be overlapped if
they are independent of each other. Formally, let P =
@,I i = 1, ...,]PI}, IPIS 00, be the set of identical proces-
sors in the multiprocessor system. Let P(n,) be the PE
allocated by n,. Also, parameter q@,, pJ) denotes the
communication latency required to transfer a message
unit from processor p, to processor pl, where p,, pje P.
To simplify the verification of our algorithm, only two
kinds of communication latencies are considered here
to compare existing algorithms with the proposed
algorithm. The set of communication latencies A4 =
{L1, L,}, where L1 = q(’pz, p,) p , ~ P, is the intraproces-
sor communication latency occurring when two tasks
communicate with each other in the same PE, and L, =
q@,, pJ) p,, pJ€ P and i # j , is the interprocessor commu-
nication latency occurring when two tasks communi-
cate with each other through an interconnection
network. System models with more latency types will
be contemplated for future investigations of the advan-
tages of the SCR model.

The initial communication latencies of DAG edges
are considered L,. If a partitioned DAG is modified (a)
by assigning L1 to the edge between any pair of nodes
n, and nb of a partition, where 126 is executed immedi-
ately after n,, and there is a data dependence edge

between n, and nb, or (1)) by adding a zero-weighted
edge between any pair of nodes n, and nb of a parti-
tion, where nb is executed immediately after n,, and
there is no data dependence between n, and nb, then a
‘scheduled DAG’ is obtained.

The ‘earliest starting time’ (est) of node n, est(n) 191,
in a scheduled DAG is defined as the earliest time after
satisfying precedence constraints and removing
resource contention, that node n can begin execution.

The ‘longest completion time’ (Ict) of a node is the
longest execution time from this node to the sink node.
Mathematically, b’ ni E Art U N,,

where succ(n,) is the set of immediate successors of n,.
The ‘extended critical path’ (ecp) of a scheduled

DAG is the longest path from the source node to the
sink node. The ecp length is
ecp(G) = max(est(n) + ‘ T ~ + Zct(n,)),for all n, E Nt UN,

The SECPF algorithm process is to reduce the ecp(G)
by assigning L1 to edges along the ecp; then nodes with
the most uncompleted jobs are issued as soon as possi-
ble. If this ecp is unique, it will reduce the parallel com-
pletion time. SECPF initially assigns a default latency
to all communication edges, then calculates the Zct for
each node bottom up. Nodes with no predecessors are
selected first. Candidates with maximum est and Ict
sums are allocated to existing partitions or to new par-
titions after the est of each candidate in the current
step has been determined; chosen candidate nodes are
then examined. The algorithm repeats this procedure,
until all nodes have been examined. The SECPF
pseudo program is given iis follows:
Algorithm SECPFPartitioning
Input: G = (Nf, N,, E, C, T) and A4 = {L,, L,.].
Output: The partitioned program with the minimal
parallel execution time.
Begin

Assign each communication edge to be L,.
Calculate Ict(n), !f n E Nf U N,.
Select nodes without predecessors as candidates.
Calculate ecp(G)
While there exists some unexamined node
{ Calculate the ests for all candidate nodes.

Choose the candidate node with max(ecp(G)).
Calculate the possiblle ecps for this chosen candi-
date.
If there are possible ecps smaller than the ecp in
the previous step

{Allocate the chosen candidate to the partition
with the minimal possible ecp.}

{Allocate the chosen candidate to a new parti-
tion.}

Set this node to be examined, and update the ecp
in the current step.
Re-select the nodes without unexamined predeces-
sors to be candidates.

else

}
End

433 IEE Proc -Cornput Digit Tech, Vol 143, No 6, November 1996

SECPF algorithm has been implemented on the SCR
model. It is similar to the DSC [3], however, considers
the communication contentions. The SECPF algorithm
deals with task graphs by considering precedence con-
straints and resource contention in the SCR model.
The time complexity for calculating lets is O(lN,I + IN,[
+ IEI). The time complexity for calculating ecp is O(INfl
+ IN,i + 14) at each step, making the time complexity
of SECPF O((lNtI + lN31)(lNtl + IN,I + [El)). Conse-
quently, the complexity of the SECPF is reasonable,
because in [1, 3-51 corresponding complexities are
O(l4(I~,l + 14>>> O(lNtl(INtl + 14>>, O((lNfI + IEDloglNtI)
and o(l~t1210gl~fl).

4 Experimental results

We demonstrated the feasibility of the SECPF for the
SCR model by evaluating 540 randomly generated IF1
[6] program graphs. IF1 is the proposed intermediate
form of SISAL [7]. The IF1 program graph generated
by the SISAL compiler initially is transformed into the
intermediate form of SCR model by a preprocessor.

The size of the graphs varied from a minimum of 100
nodes with 102 edges to a maximum of 150 nodes with
300 edges. The granularity, that is, the ratio of average
remote communication to average computation, varied
from 0.5, 1 to 2. L1 varied from 2, 4 to 8 cycledbyte.
The ratio of L, to L1 varied from 2, 4, 6, 8 to 10. The
communication volume associated with each communi-
cation edge varied randomly from 1 to 96 bytes. The
computation time required for each computation node
varied randomly from 1 to 96 cycles. The data sharing,
which means the probability of consumers accessing
the same data from the same predecessor, varied from
0%, 209’0, 40%, 6O%, 80% to 100%. The performance
improvement is defined as

x 100% e c p (G) before partitioning--ecp(G) after parti t ioning
e c p (G) before parti t ioning

Since DSC [3, 81 generally surpasses existing parti-
tioning algorithms, such as Sarkar’s [l], KB/L [4] and
MCP [5], as shown in [3]; only DSC was implemented
as a basis for comparison of performance improve-
ment. DSC and SECPF were implemented for four
program models to investigate the benefits of the SCR
model. The first program model was the traditional
macrodataflow; the second one was macrodataflow
with consideration of resource contention as in the
SCR model; the third was the memory node model; the
last was the SCR model.

50 -

45 -

2
c

k 40- 6
0
h 35-
E ._

MMD MN
program models

Fig. 3 Average pevformance improvement
Unshaded boxes: DSC
Shaded boxes: SECPF

434

SCR

Fig. 3 shows the average improvement for four mod-
els. ‘MD’ means the original macrodataflow, ‘MMD’
macrodataflow with considering resource contention,
‘ M N memory node model and ‘SCR’ the SCR model.
DSC performed better than the others in macrodata-
flow, but SECPF surpassed the others after adopting
macrodataflow with resource contention considera-
tion. Furthermore, the SECPF algorithm, as shown in
Fig. 3, outdoes the others based on the SCR model.
Adoption of the SCR model can achieve a more realis-
tic outcome than using existing program models for the
partitioning problem in NUMA multiprocessor sys-
tems. Fig. 3 also shows that performance improvement
of both algorithms in MMD model is greater than that
in SCR model. The main reason of the superiority
could be that MMD model did not express data shar-
ing such that the initial ecp(G) before partitioning in
MMD model is greater than that in SCR model. As for
the performance improvement of algorithms in SCR
compared with MN model, the reason of the superior-
ity of SCR model appears that a task can start its exe-
cution as soon as precedence constraints and resource
contentions affecting it have been resolved.

Only the performance of partitioning algorithms
based on SCR model is discussed below, since out-
comes using the SCR model are more realistic than the
others. Fig. 4 shows the impact of granularity on the
partitioning algorithms. In Fig. 4, the symbol ‘X-Y’
means that the value of the granularity is ‘Y’ for ‘X’
algorithm. The performance improvement increases as
granularity increases. The same experimental conse-
quence is also represented in [2]. The impact of data
sharing is also shown in Fig. 4. The performance of
DSC is better than that of SECPF when granularity is
0.5 and data sharing is less than 40%. The performance
of DSC would be worse than that of SECPF if the data
sharing is greater than 20%, when granularity is 1. If
the granularity is greater than 2, then the performance
improvement of SECPF will always be better than
DSCs regardless of data sharing. Notice that the influ-
ence of the communication contention overhead on the
performance increases as the granularity or data shar-
ing increases. Because SECPF takes communication
contention into account, SECPF is superior to DSC as
the granularity or data sharing increases.

0 20 40 60 80 100
d a t a shoring ,’/.,

Fig.4 Improvement in varying data sharing and granularity
-0- DSC-0.5
--0-- D S C - 1
...O... D S C - 1
-0- SECPF - 0.5
- -0- - SECPF - 1
...I3... SECPF - 2

IEE Proc-Comput. Digit. Tech., Vol. 143, No. 6, November 1556

5 Concluding remarks 7 References

An efficient program model for NUMA systems has
been presented in this paper. The representation Of the
SCR model is simple, consistent and system-independ-

contention. Users also can design more efficient parti-
tioning algorithms using the SCR model. Moreover,
the SCR model can express complex communication
options, capture data sharing, and explicitly reveal the
memory access contention relationships. A new parti-

gate the workability of the SCR model. The SECPF
algorithm based on the SCR model is superior to DSC,
as demonstrated by our experimental results.

1 SARKAR, V.: ‘Partitioning and scheduling parallel programs for
multiprocessors’ (MIT Press, Cambridge, MA, 1989)

2 WOLSKI, R.M., and FECI, J.T.: ‘Program partitioning for
NUMA multiprocessor computer systems’, J. Parallel Distrib.

heuristics for scheduling directed acyclic graphs on multiproces-
s o d , J. Parallel Distrib. Cowput., 1992, 16, pp. 276-291
KIM, S.J., and BROWNE, J.C.: ‘A general approach to mapping
of parallel computation upon multiprocessor architectures’. Proc.
ICPP ’88, 1988, pp. 1-8

5 WU, M.Y., and GAJSKI, D.: ‘A programming aid for hypercube
architectures’, J. Supercompu,’., 1988, 2, pp. 349-372

ate form for applicative languages, version 1 .O’. Technical report,
M-170, Lawrence Livermore National Laboratory, CA, July 1985
MCGRAW, J., SKEDZIELEWSKI, S., ALLAN, S., GRIT, D.,
OLDEHOEFT, R., GLAUEIRT, J. DOBES, I., and HOHEN-
SEE, P.: ‘SISAL: stream and iteration in a single-assignment lan-
guage, version 1.2’. Technical report, M-146, Lawrence Livermore
National Laboratorv. CA. 1 March 1985

Cornput., 1993, 19, pp. 203-218 ent’ It can precedence constraints and 3 GERASOULIS, A., and y+vG, T.: ‘A comparison of clustering

4

tioning was here to investi- 6 SKEDZIELEWSKI, S,, and ,GLAUERT, J,: ‘IF1 ~ an interne&-

7

6 Acknowledgments
8 GERASOULIS, A.,-’and ‘YANG, T.: ‘On the granularity and

clustering of directed acyclic task graphs’, ZEEE Trans. Parallel

9 LAI, G.J., and CHEN, c.: ‘A new scheduling strategy for
NUMA multiprocessor systems’. Int. Conf. on Parallel & Distrib-
uted Systems (ICPADS’96), Tokyo, 1996, June, pp. 222-229

This work was supported by the R.O.C. National Sci-
ence Council under the contract NSC85-2221-E009- Distrib. Syst., 1993, 4, pp. 6885-701
038. The authors thank the referees for their useful
comments.

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 6, November 1996 435

