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Abstract

It is common to apply damage-sensitive features from vibration responses of a structure to assess structural damage. Few damage identification
algorithms have focused on the material variation and measurement noise. For engineering practices, the material variation could be caused by
many reasons and there always exists a certain level noise in measurement; those facts may affect the features that are used for structure monitoring
and also lead to inaccurate assessment.

In this research the authors have proposed a model to assess the statistical structural damage of a beam structure. The modal curvature-
base feature was used to identify crack locations. The statistical damage databases were built by applying the Latin hypercube sampling
method in Monte Carlo simulation. By mapping features of noised modal frequency to the statistical damage database, the damage probabilities
among various crack depths were estimated; the statistical significance of damage level was examined by the t-test. Simulated beams and their
experimental modal analysis data demonstrated the assessment procedures. The authors concluded that the proposed algorithm was robust and
able to identify the damage of a free–free beam with uniform mass density and stiffness variations incorporated with noise in measured frequency.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Structure health monitoring has been receiving increasing
interest in both academic research and industry applications
for several decades [3]. An extensive literature review for
1975–1996 by Doebling et al. [5] was made at the Los Alamos
National Laboratory (LANL). The review focused on methods
and data required for detecting, locating, and characterizing
structure damage by examining the changes in various types
of measured structure responses. The report also summarized
the state of the art of structural health monitoring technology
and the applications of various damage identification methods
for different types of structure. But almost none of the
several hundred cited references took any statistical approach
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to access the damaged systems [18]. Another comprehensive
updated literature review for 1996–2001 by Sohn et al.
was also published by LANL [18]. The authors of the
updated report mentioned that due to the observations of
environment variability and operational conditions for long-
term monitoring, the authors believe that structure health
monitoring is fundamentally a statistical pattern recognition
problem.

Sikorsky et al. [16] reported that there were 3.8% and
3.2% variations in first and second modal frequencies under
40 ◦C temperature variation over a 24 month observation for
a bridge in Coachella Valley, California. Ko et al. [10] also
recorded 12 month data from the cable stayed Ting-Kau bridge
in Hong Kong and concluded that a 2.01%–16.67% modal
frequency change occurred for the first 11 modes on about
50 ◦C temperature variation, and also that the frequencies
were decreased with increased temperature. Xia et al. [21]
had constructed a reinforced concrete slab to investigate the
correlations between vibration parameters and environment
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conditions. Data collected over 24 months showed there
were 30 ◦C temperature and 65% humidity changes, and
the frequencies had about 3%–10% variations. The results
also show that the frequencies decreased and damping ratio
increased with the increased temperature and humidity. Other
research also showed the same conclusion that the frequencies
decreased as temperatures increased [4,14,17].

When the environmental variability or operating conditions
are an important issue, they will affect the damage-sensitive
features and may mask out real damage state and lead
to inaccurate assessment. Xia et al. [21] advised that
the vibration properties should be corrected to the same
environmental conditions for structures in undamaged and
damaged states. The same suggestion by Sohn et al. [18]
was to carry out the data normalization so that the signal
changes caused by variations can be separated from structural
changes. Doebling and Farrar [6] are pioneers in examining
the statistical significance of damage identification results
using data collected on the I-40 highway bridge. Xia and
Hao [20] assumed the prior model and measure data fit for
the Gaussian distribution and proposed a two-stage statistical
identification algorithm. By taking the statistical operation
of a second-order Taylor’s expansion on the model updating
equation, the authors estimated the probability of damage
existence by comparing the statistical distribution of element
stiffness between undamaged and damaged states. Furukawa
and Otsuka [9] removed the Gaussian distribution assumption
on variability and measurement noise, and then identified
the possible damage of elements by the frequency response
function changes from the intact state deterministically. Then,
they adopted the hypothesis test based on the bootstrap
resampling technique [7] to exclude the undamaged elements
from the damaged element candidates. By the iterative zoom-in
process, satisfactory results will be obtained within 3 iterations
for a large simulated system with 10% noise.

A closed-form derivation of a statistical damage identifica-
tion algorithm has many good aspects. However, for a complex
system there may be difficulties, one example being to derive
the distribution types of element stiffness for significant veri-
fication [20]. Instead, the fast development of computer hard-
ware has made the use of computation intensive algorithms
possible. Due to the uncertainty of related analysis of complex
systems, the Monte Carlo technique [15] was the simplest and
most widely employed method. With the modification to Monte
Carlo techniques, the Latin hypercube sampling (LHS) [11,19]
provided an efficient way of sampling variables with distribu-
tions by assuming that all the variables are independent of each
other. Although the efficiency differed in various applications,
some research reported that it saved more than 50% of computer
effort [12]. Besides, compared to rederivation of a rigorous sta-
tistical damage identification algorithm, there is less effort spent
and it is more intuitive to incorporate the well-developed deter-
ministic damage identification algorithm with a Monte Carlo
based simulation technique.

In this research, the authors have assumed that the
environmental variability caused the stiffness and mass
variation on the entire beam uniformly, and noise in the
measured frequency was assumed. The authors build up the
statistical damage reference database that was incorporated
with various property variations and damage states by
applying the LHS techniques. Then, they assess the statistical
significance by applying the vibration features of an unknown
damaged state and the t-test [8] to identify its damage locations.
At last, the damage probability among the possible severity was
estimated by mapping the vibration features to the statistical
damage database. Demonstration examples showed that the
approach was able to identify the damage of a beam structure
with uniform mass and stiffness variations and incorporated
with noise polluted measured frequency.

2. Simulated beam model and experimental modal analysis
(EMA)

An accurate prior model is essential for the supervised
damage assessment algorithm [18]. The following sections
focus on the correctness of simulated model when compared
to the EMA of real sample beams. The error or uncertainty of
the finite element prior model can be included in the statistical
model by assigning the variances of stiffness and mass directly.

2.1. Simulation of cracked beam

Cracked beam modeling will deal with the cracked zone
and the intact zone. Thick shell elements [22] were used for
the intact zone. For the cracked zone, the authors applied
thick shell elements combined with a degenerated quarter point
singularity formulation [2]. The simulation results are accurate
in frequencies and mode shapes among sample beams. The
mean error of modal frequencies was under 0.3% and the
maximum error was under 0.8% for the lowest three modes. The
modal assurance criterion (MAC) [1] was used to measure the
accuracy of mode shapes between analytical and experimental
models. When the MAC is close to 1.0, the results have a good
correlation, and they are uncorrelated when the MAC is close to
0.0. By combining the calculations of different mode shapes of
analytical and experimental data, we can construct the MAC in
matrix form. From the calculation, we found that the diagonal
terms in MAC matrix were all larger than 0.997, and the off-
diagonal terms were all under 0.064 for the lowest three modes
for all sample beams.

2.2. Configurations of cracked beam samples

The sample beams are all rectangular-sectioned mild steel
bar, 600 mm (L)×16 mm (W )×16 mm (H) in size and divided
into two categories. The first group was for intact beams, named
S. The other group was for damaged beams, named from A
to N. All the damaged beams were manufactured with a high-
accuracy wire-cut to produce an artificial slot with a specific
crack location and depth. Beam-M was a multiple-crack beam;
all other beams were single-crack beams. The configuration of
the sample beams can be found in Table 1.
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Table 1
Configurations of sample beams

Sample no. Sample name 1st crack (location, depth) (in mm) 2nd crack (location, depth) (in mm)

1 A (131.0, 6.0) None
2 B (131.0, 8.0) None
3 C (131.0, 10.0) None
4 D (187.0, 6.0) None
5 E (187.0, 8.0) None
6 F (187.0, 10.0) None
7 N (243.0, 3.0) None
8 G (243.0, 6.0) None
9 H (243.0, 8.0) None

10 I (243.0, 10.0) None
11 J (300.0, 6.0) None
12 K (300.0, 8.0) None
13 L (300.0, 10.0) None
14 M (131.0, 8.0) (243.0, 10.0)
15 S Intact beam (without damage)
2.3. Experimental modal analysis of cracked beam

A PC-based data acquisition system was used for modal test
experiments. The system consists of a PC, an AD/DA module,
accelerometers, a hammer, and power amplifiers. The sampling
rate was 2000 Hz, with 1.25 Hz resolution, with a fixed sensor
at ends of sample beam; 12–18 locations were selected for
hammer impact, and each location takes 15 impacts on average.
For the simulation of the free–free boundary condition, two
rubber strings was used to suspend the sample beams. After
the modal data were collected, STAR R© modal analysis software
was used for modal analysis to identify the modal parameters.
We should recall that for practical engineering the “fixed
response” method of EMA should change to “fixed impact” to
save the labor work.

3. Dynamic characteristics of cracked beam with related to
damage location and its extents

A beam with a crack will reduce its stiffness when compared
with a beam in the intact state. Its frequencies will be
reduced; the mode shapes and curvature mode shapes will
be changed, too. When the system mass density or Young’s
modulus of the entirely structure is varied for certain reason,
its frequencies will change too, but there will be no effect
on the mode shapes and curvature mode shapes. By selecting
appropriate features from vibration responses, we can detect the
damage location and identify its severity. The simulation and
experimental results shown in the following sections supported
these conclusions.

3.1. Definition of the LDI

The previous researchers Pandey et al. [13] introduced
the application of curvature mode shape for the detection of
damage location. In the research, the authors defined another
index for crack location detection, named the LDI (Location
Detect Index). For an Euler–Bernoulli beam, the strain energy
(Ui ) of an intact beam with respect to mode shape i (φi ) can be
expressed as

Ui =
1
2

∫ l

0
EI

(
∂2φi (x)

∂x2

)
dx (1)

where EI, l are the section rigidity and the length of beam. For
an infinitesimal length dx located at x j along the beam’s axis,
the strain energy of length dx can be expressed by ui j ,

ui j =
1
2

EI(x j )

(
∂2φi (x j )

∂x2

)2

dx . (2)

The authors define the energy fraction with respect to total
energy of entire beam Ui as Fi j ,

Fi j = ui j/Ui (3)∫ l

0
Fi j = 1.0. (4)

For the same operation, for a cracked beam, we have

U∗

i =
1
2

∫ l

0
EI

(
∂2φ∗

i (x)

∂x2

)2

dx (5)

u∗

i j =
1
2

EI(x j )

(
∂2φ∗

i (x j )

∂x2

)
dx (6)

F∗

i j = u∗

i j/U∗

i (7)∫ l

0
F∗

i j = 1.0 (8)

where U∗

i , u∗

i j , φ∗

i , and F∗

i j are strain energy, strain energy of
infinitesimal length dx , mode shape i and energy fraction of
cracked beam, respectively.

Let δκi j be the temporary feature for location detection; it
can be expressed as follows:

δκi j = F∗

i j − Fi j . (9)



912 R.-J. Lin, F.-P. Cheng / Engineering Structures 30 (2008) 909–929
By the normalization operation, we have the location’s
discrimination feature LDI as follows:

LDI(x j ) = δκi j

/{
1
2

EI(x j )

}

=

(
∂2φ∗

i (x j )

∂x2

)2/
U∗

i −

(
∂2φi (x j )

∂x2

)2/
Ui . (10)

When we plot the LDI along beam axis, we will have the
curve of the LDI curve.

By reviewing the simulation results, we found that a sharp
peak indicated the location of cracks. The deeper crack depth
made the peak of the LDI curve sharper. From the experimental
modal analysis (EMA) results we also found that the sharp
peaks were located closed to the crack location for different
modes and the deeper crack depths made the peak sharper for
LDI curves. The LDI works well on both the simulation and
experimental modal analysis data.

3.2. Definition of FCI curve

The authors define the frequency change as a specific point
on the FCI (Frequency Change Index) curve. It can be expressed
as

FCI(∆ fi,damaged) =
f j,intact − f j,damaged

f j,intact
∗ 100 (%) (11)

where f j,intact and f j,damaged are the frequency of mode j for
the intact and damaged beam respectively. Each FCI curve
was made by a frequency change due to a constant crack
depth moving along the beam axis. The specific point on each
FCI curve represents a damage state (certain crack depth and
location) of the cracked beam. We observed that the deeper
crack depth made the larger amplitude on the FCI curve, and if
the damage is located at the node of the curvature mode shape,
there will be no frequency changes in the FCI. We have also
found that the simulation results were consistent with the EMA.

3.3. FCI for depth identification of single-crack beam for a
property-invariant system with noise-free measurement

When we have the noise-free measured frequency from the
EMA for a property-invariant structure system, the table lookup
process was adopted for damage severity estimation. From the
schematic figures illustrated in Fig. 1, after the crack location
is identified by the LDI, we can identify the unknown crack
depth by applying linear interpolation between two FCI curves.
These FCI curves were above and below the EMA’s on the
specific crack location from the simulation database. The linear
interpolation for unknown crack depth (βx ) is shown below, and
is illustrated in Fig. 2.

βx = βl +
∆ fx − ∆ fl

∆ fu − ∆ fl
∗ (βu − βl) (12)

where ∆ fx was calculated by Eq. (11) from the EMA measured
frequencies ( fx ) for an unknown damage state, ∆ fu and
Fig. 1. Crack depth assessment for property invariant beam structure.

∆ fl were points on FCI curves that were also calculated by
Eq. (11) on the above frequency ( fu) and below frequency
( fl) compared with the EMA measured frequencies ( fx ), and
βu and βl were crack depths with respect to ∆ fu and ∆ fl
respectively. By inserting Eq. (11) into Eq. (12), we obtain Eq.
(13) as follows:

βx = βl +
fx − fl

fu − fl
∗ (βu − βl). (13)

3.4. FCI for depth identification of multiple-crack beam for a
property-invariant system with noise-free measurement

The LDI curve can be applied to the multiple cracks case
directly. However, the authors should do a little modification
for depth identification of multiple cracks case due to the
frequencies change were affected by all the cracks in the beam.
A 2-crack beam is discussed for demonstration.

Once we have the crack locations from the LDI curve, we
should build up an FCI database of varied depths based on these
known locations. On comparing the noise-free frequencies from
EMA with the frequencies of an intact beam from simulation,
the FCI curves among different modes on the specific cracked
configuration can be obtained. We can plot the contour lines
of frequency change on each mode as shown in Fig. 3. Then
the crack depths were identified by the intersection of two FCI
contour lines as shown in Fig. 4. We should notice that when
the number of cracks is larger than two, with the same FCI
database, we could always apply a suitable mathematical tool
to determine all the depths simultaneously.

3.5. Stiffness and mass density variant effects on LDI and FCI

In order to clarify the effect of material property variation
on the LDI and FCI, the authors prepared a simulated cracked
beam (Beam-I, crack located 243 mm, depth 10 mm) with
a series combinations of different levels of mass density and
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Fig. 2. Crack depth assessment for property invariant beam structure.

Young’s modulus variance that ranged from ±80% to ±120%
of their mean value.

Due to the stiffness and mass variation affecting the
structure in a uniform way along the entire beam structure,
the mode shape changed insignificantly on the variations, and
the algorithm for crack location identification was held for the
property variant systems. From the observation, we found that
the LDI indicated the crack location clearly among various
variation scenarios. The LDI works well and is robust for
systems with uniform material property variations. Then, by
reviewing the results again, we found that the FCI changed
approximately ±20% when compared to the no variant system.
Hence, we should take into account the influences of property
variations when applying the FCI for severity assessment. In
the research, the authors represent these effects by statistical
FCI databases, which were generated by LHS sampling in
Monte Carlo simulation on a beam with certain damage states
incorporated with different level variances of mass density and
Young’s modulus.

3.6. Estimation of crack depth probability for variant systems
with noised measured frequency

The severity identification process discussed in Sections 3.3
and 3.4 were for the property-invariant structure system and
noise-free measured modal frequency. When the system mass
density and stiffness were varied, the FCI simulation databases
needed to extend. Basically, in the invariant system, for a
specific damage state of structure, its frequency change was
a certain value only; it will map to a certain and confirmed
point on the FCI curve as shown in Fig. 2. But for a property-
variant system, for a specific damage state, the property
variations will cause the change of frequency varied; then the
corresponding point on FCI curve will be “smeared” as shown
in Fig. 5. Usually we use a distribution function to describe
the smearing, for example, by a Gaussian distribution; and
the noise-polluted measured modal frequency could also be
described in a Gaussian distribution manner.
Fig. 3. FCI contour lines due to multiple crack existence: (a) contour line of
mode I (b) contour line of mode J.

Since the FCI curve possesses a probability distribution
characteristic in variant systems, the results of identification
will also display the presence of a probability distribution.
As shown in Fig. 5, in the statistical damage database, every
point on the FCI curve was accompanied with a Gaussian
distribution; when we applied the measured frequency by EMA
in a probability distribution to find the unknown crack depths,
we found that the probability distribution with mean value
fx was overlapped with several Gaussian distribution curves
which represented different damage states (crack depth). Each
overlapping represented the probability on these damage states.
Hence, for a single noise-polluted measured frequency by
EMA, we will have several possible crack depths with their
probability. By collecting all the probabilities along various
crack depths, the identified results will present a probability
distribution curve.

Due to the measured frequency being noise polluted,
we may represent its measured modal frequency by a
probability distribution function. Assume that the material
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property variation is independent of measurement noise. Each
probability (Pi ) at damage state i (crack depth) can be
calculated by the following equation:

Pi =

∫ f b

f a
pi ( f )∗ pEMA( fx )d f (14)

where fx was calculated by the mean of measured frequency,
and pi ( f ) was the probability distribution function of the modal
frequency in the simulation database for damage state i (crack
depth), and the pEMA( fx ) was the probability distribution
function of the measured frequency with noise, and the
upper bound and lower bound frequency f b, f a, should be
determined by confidence level and the statistical t-test [8]
that we discuss later in this section. Both of the pi ( f ) and
pEMA( fx ) were defined by the Gaussian distribution function
G( f ) as below.

G( f ) =
1

σ
√

2π
exp

[
−

1
2

(
f − µ

σ

)2
]

. (15)

The statistical t-test was used to assess the statistical
significance of damage-sensitive features of EMA with the
data in the simulated damage database. As stated above in this
section, the upper and lower bound frequency of the probability
function in Eq. (14) should be determined by confidence level
and the statistical t-test. As described in Ref. [8], assigning two
samples the population size n1 and n2 with sample mean X1
and X2 and standard deviation S1 and S2, a test statistic Z can
be defined as Eq. (16) to describe the hypothesis X1 − X2 = α,

Z =
X1 − X2 − α√

S2
1

n1
+

S2
2

n2

(16)

∣∣X1 − X2
∣∣ ≤ 0 (17)

where n1, n2 should be large enough to invoke the central
limit theory to satisfy the normal distribution assumption and
α is an arbitrary constant, assumed to be 0.0 in this research.
The authors then set up the hypothesis to test the statistical
significance by Eq. (17). By solving Eq. (16), we can then state
that there was approximately 99% confidence level of truth, if
|Z | 5 3.0.

After we have assigned the confidence level to 99%, the
upper and lower bound frequency of Eq. (14) can be determined
by measuring the distance between the mean of the EMA data
and the simulated database, which should not exceed three
times the root sum squared of the standard deviations of EMA
data and those from the simulated databases.

We may notice that the all the discussion above adopted
the figure in the single-crack case; however, the algorithm
described was suitable both for multiple-crack and single-crack
examples. However, the statistical FCI was a function of one
crack depth for the single crack; for the multiple-crack case the
statistical FCI was a function of many depths at the specific
locations identified.
Fig. 4. To determine crack depths by the intersection of two FCI contour lines.

Fig. 5. Crack depth assessment for property variant system.

4. Procedures for crack detection and identification

Three major steps in the process flowchart shown as Fig. 6
and the procedures are described as follows.

4.1. Crack location detection

When we had prepared the modal frequency and mode shape
of damaged beam from EMA and the modal frequencies and
mode shapes of intact beam from simulation, by analyzing
the peak response of LDI, we can identify crack location by
Eq. (10).

4.2. Generate simulated statistical FCI database

Since we had obtained the crack locations of the damaged
beam, building up the damage severity database should be
followed. For the property-variant system, we need to describe
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Fig. 6. Flowchart of crack assessment procedures of beam structure.
the property variation in the form of mean and standard
deviation of a Gaussian distribution. By using the LHS
sampling technique [11,19], we shall have a minimum number
of useful samples that are incorporated with various E∗, ρ∗

and ξ∗

i . E∗ and ρ∗ were specific variation values of stiffness
and mass density randomly selected by LHS sampling, and
the ξ∗

i denoted the specific depth of cracks from a series of
possible crack depths. By assigning each set that composed of
ξ∗

i with E∗ and ρ∗ for finite element normal mode analysis
repeatedly, we could generate the simulated statistical FCI
databases represented by its modal frequency and variation
among various crack depths. The above process is called Monte
Carlo simulation.

The same procedures were used for the property-invariant
system to generate a simulated FCI database, except that for
the deterministic system, there was no need to do Monte Carlo
simulation due to the stiffness (E) and mass properties (ρ)

that were all fixed with no variance. It required only doing
the deterministic normal mode analysis for one set of specific
crack depths (ξ∗

i ) among the possible crack depths to build the
database.

4.3. Identify crack depth

For the variant system, by assigning confidence level to
approximate 99%, then the statistical significance of the
damage level was examined by t-test, and the upper and lower
bounds of integration in Eq. (14) were then determined. Since
we have built the simulated statistical FCI databases for a
property-variant system, we can map the noised measured
frequency by EMA to the data of simulated databases that were
both represented in Gaussian distribution form, then the crack
depths were assessed by probability.

5. Demonstration examples

The damaged beam (Beam-I) was used to demonstrate the
assessment of a single-crack beam with different measurement
resolution. A single shallow depth cracked beam (Beam-N)
was also used to test the capability of the proposed method.
A multiple-crack example was represented by a two-crack
beam (Beam-M); the assessment process was demonstrated as
follows:

5.1. Crack location detect of Beam-I

From the finite element normal mode analysis and EMA
data, we have the three lowest mode shapes of the damaged
beam and intact beam. The crack location can be detected by
applying the LDI by Eq. (10) in Section 3.1. By reviewing
the results in Fig. 7(a), we found that the crack was located
at 245 mm by the peak of LDI curve of mode 1 and 3; by mode
2 the crack was located at 235 mm. When compared to the real
crack location 243 mm, the averaged absolute error was 1.64%.

5.2. Crack depth identification of Beam-I for property non-
variant system

As discussed in Section 4 and the procedures shown in
Fig. 6, for a property non-variant system, we had built the
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Fig. 7. Crack location detect by LDI curve (a) Beam-I, meas. resol. 10 mm (b)
Beam-I, meas. resol. 50 mm (c) Beam-N, meas. resol. 10 mm.
simulated FCI database according to the crack location 245 mm
that was determined in the previous section. Then the unknown
crack depth can be identified by Eq. (13). Since we had the
EMA measured frequencies that were 193.43 Hz, 602.38 Hz
and 1210.66 Hz for the lowest three modes, by the interpolating
process as shown in Fig. 8, we have crack depth 10.02 mm,
10.26 mm and 9.66 mm for the three lowest modes respectively.
The errors were +0.2%, +2.6% and −3.4% for the three modes
and the averaged absolute error was 2.07%.

5.3. Crack depth identification of Beam-I for property variant
system

For a property-variant system, refer to procedures described
in Section 4 and procedures shown in Fig. 6, we need to build
the simulated statistical FCI database according to the crack
location found in Section 5.1. In order to build the statistics
database, we assumed the variations of mass density & Young’s
modulus were ±2%, ±5% and ±10% of its mean value. By
sensitivity analysis, 300 samples were used for LHS sampling.
The typical data from Monte Carlo simulation results on certain
crack depth with different level of variations for different modes
are shown in Table 2. Each set of mean with standard deviation
represented a probability distribution on a point (crack depth)
of statistical FCI curve as shown in Fig. 5.

Although the experiments were controlled in the labora-
tory, there still was variability in the experimental data. For
the study of noised measured frequency effects, the authors as-
sumed that we have noise on the measured frequencies. The
variations of noised frequency were assumed as ±2%, ±5% and
±10% of measured frequency incorporated with ±2%, ±5%
and ±10% material variations. With Eq. (14) we could assess
the probability of specific severity by mapping the measured
frequency to each of the probability distribution curves of the
statistical FCI database. By changing to different depths in se-
quence, we have probabilities at all depths.

The interpreted probability distributions of crack depth on
material variations and varied noise level measured frequency
are shown in Fig. 11. We have observed that from mode 1
results (1st row in Fig. 11), for 2% and 5% material variation,
the maximum probability of crack depth occurred at 10.0 mm
for 0%, 2%, 5% and 10% measured frequency noise, and
for 10% material variation, the maximum probability of crack
depth occurred at 10.25 mm for 0%, 2%, 5% and 10% noise
in the measured frequency. From mode 2 data (2nd row in
Fig. 11), only results for 2% and 5% material variation with
measured frequency noise less than 2% can be identified; the
maximum probability of depth occurred at 10.25 mm. From
data for mode 3 (3rd row in Fig. 11), only the results of the
material variation and noised measured frequency both less than
2% can be identified; the maximum probability of crack depth
occurred at 9.75 mm.

By reviewing Fig. 11 again, we found data in the first
mode; the crack depth has a distinct peak and the narrowest
spread of its probability distribution. This means that the lowest
mode has less scattering on severity identification. We have
also found that both the larger material variation and the
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Table 2
Monte Carlo simulation results among various crack depths (Beam-I)

Depth of crack (mm) Variant level of mass
density & Young’s modulus
(in % of mean)

Mode-1 (Hz) Mode-2 (Hz) Mode-3 (Hz)

Frequency Standard deviation Frequency Standard deviation Frequency Standard deviation

9.00 2 205.20 2.93 613.3 8.75 1217.0 17.35
5 205.30 7.35 613.6 21.96 1217.0 43.57

10 205.70 14.89 614.8 44.50 1220.0 88.29

9.50 2 200.10 2.85 609.0 8.69 1211.0 17.28
5 200.30 7.17 609.3 21.81 1212.0 43.38

10 200.60 14.52 610.5 44.19 1215.0 87.91

9.75 2 197.30 2.81 606.6 8.65 1209.0 17.24
5 197.40 7.06 606.9 21.72 1209.0 43.28

10 197.80 14.31 608.1 44.02 1212.0 87.70

10.00 2 194.30 2.77 604.2 8.62 1206.0 17.19
5 194.40 6.96 604.6 21.64 1206.0 43.17

10 194.80 14.10 605.7 43.85 1209.0 87.49

10.25 2 190.90 2.72 601.6 8.58 1202.0 17.15
5 191.00 6.84 601.90 21.54 1203.0 43.06

10 191.40 13.85 603.10 43.66 1205.0 87.25

10.50 2 187.30 2.67 598.9 8.54 1199.0 17.10
5 187.40 6.71 599.3 21.45 1200.0 42.94

10 187.80 13.59 600.4 43.46 1202.0 87.01

11.00 2 179.40 2.56 593.3 8.46 1192.0 17.00
5 179.50 6.42 593.7 21.25 1193.0 42.68

10 179.80 13.02 594.8 43.06 1195.0 86.50
larger noise level of the measured frequency will make the
probability distribution wider on severity and the reliability will
be decreasing on the depths which had been identified.

5.4. The measurement resolution effects on assessment results

The above example was based on the assumption that we
have the appropriate number of measurements; the authors took
10 mm as the spacing between measurement points near the
crack zone and 50–75 mm on the others: 18 impact locations
in total. In this section, in order to test for the effectiveness of
the proposed algorithm, the measurement spacing was extended
to 50–75 mm for the entire beam: 12 impact locations in to-
tal. According to the result of EMA and finite element normal
mode analysis, the crack location can be detected as shown in
Fig. 7(b). From the peak of LDI curve of mode 1 and 2 we
found that the crack was located at 225 mm (−7.4% error).
From mode 3 we have the crack located at 125 mm (−48.6% er-
ror). Mode 3 data lost its accuracy and it cannot be used for fur-
ther identification on depth. With compared to the results of 18-
impact measurement resolution (1.64% error), we have less ac-
curacy of crack location due to the larger measurement spacing.

For the property-invariant system, we took mode 1 and mode
2 results (crack location 225 mm) as the basis to generate the
FCI database. With the same procedures described in the above
example, by the interpolating process as shown in Fig. 9, the
crack depth was identified by FCI: we have 10.26 mm (+2.60%
error), 8.50 mm (−15.0% error) in crack depth for the first
and second mode respectively. Compared to the results of the
above 18-impact measurement resolution example, its averaged
absolute error of the lowest three modes (2.07%) shows that
we have less accurate results on crack location. Besides, due to
the FCI database being based on crack location 225 mm, the
location was very close to one of the nodes of curvature mode
shape 3; hence we have a poor result when applying mode 3
data for crack assessment.

For the property-variant system with noised measurement,
the statistical FCI database was also based on mode 1 and
mode 2 results. For various property variation and different
levels of measurement noise, the crack depth was determined
by the highest probability. The assessed probability distribution
is shown in Fig. 12. From mode 1 results (1st row in
Fig. 12), for 2%, 5%, 10% and material variation, the maximum
probability of crack depth occurred at 10.25 mm for all
levels of measurement noise. From mode 2 data (2nd row in
Fig. 12), only results for 2% and 5% material variation with
measurement noise less than 2% can be identified for crack
depth; its maximum probability occurred at 8.50 mm. From
mode 3 data (3rd row in Fig. 12), there was no clear indication
for crack depth due to the crack location used for statistical FCI
database being very close to one of the nodes of curvature mode
shape 3. Compared to the results of the 18-impact measurement
resolution example, with 0.83% error for mode 1 and 2.5% error
for mode 2 and 3, we have less accurate results on crack depth
identification.

By reviewing Fig. 12, we have the same conclusion as with
the example of 18-impact measurement resolution: the result
from first mode has a distinct peak and the narrowest spread
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Fig. 8. Crack depth identification by FCI (Beam-I, meas. resol. 10 mm, crk.
loc. 243 mm, depth 10 mm) (a) mode 1 (b) mode 2 (c) mode 3.

of its probability distribution on severity. The higher the mode
used in assessment, the larger the material variation or the larger
Fig. 9. Crack depth identification by FCI (Beam-I, meas. resol. 50 mm, crk.
loc. 243 mm, depth 10 mm) (a) mode 1 (b) mode 2 (c) mode 3.

the noise level of the measured frequency will make the error
larger, the probability lower and the distribution wider.
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Fig. 10. Crack depth identification by FCI (Beam-N, meas. resol. 10 mm, crk.
loc. 243 mm, depth 3 mm) (a) mode 1 (b) mode 2 (c) mode 3.
5.5. The shallow crack depth example (Beam-N case)

It is always challenging work to identify a small depth crack
in a structure. A sample beam, named as Beam-N, was designed
to complete the study. For the convenience of comparing with
the Beam-I example, a cracked beam was manufactured by a
wild-cut with the same crack location 243 mm but a smaller
crack depth 3 mm.

According to the finite element normal mode analysis result
and EMA data (by 10 mm measurement resolution near the
crack, 18-impact example), the crack location can be detected
as shown in Fig. 7(c). From the peak of LDI curve of mode 1
and 2, we found that the crack was located at 225 mm (−7.41%
error) and from mode 3 we have the crack located at 245 mm
(+0.82% error). The averaged absolute error was 5.21%;
compared to the results of Beam-I we have larger error for a
small crack depth beam example in crack location detection.

For the identification of shallow-depth cracked beam in the
property-invariant system, the authors took the average of mode
1 and mode 2 results (averaged crack location 232 mm) as the
basis to generate the FCI database. With the same procedures
as Beam-I, we had the EMA measured frequencies 231.78 Hz,
639.68 Hz and 1248.47 Hz for the lowest three modes; by
the interpolating process as shown in Fig. 10, the crack depth
was identified by FCI as 3.09 mm (+3.0% error), 2.60 mm
(−13.3% error), and 4.63 mm (+54.3% error) for mode 1,
mode 2 and mode 3, respectively; only the mode 1 result was
acceptable in accuracy. However, the small denominator (crack
depth 3.0 mm) made the large relative error. If we take a look
at its absolute error, 0.09 mm, 0.40 mm, 1.63 mm for mode 1,
2 and 3, compared to the result for Beam-I, 0.02 mm, 0.26 mm
and 0.34 mm, they were at the same error level except for mode
3. But, due to the large denominator (crack depth 10.0 mm) we
will have smaller absolute error for Beam-I.

For the crack depth identification of the property-variant
system with noised measured frequency, the statistical FCI
database was based on mode 1 and mode 2 results (crack
location 232 mm). The results of probability distribution
assessment are shown in Fig. 13. We have observed that
only the crack depth can be identified, by mode 1 under 2%
material variations with no measurement noise, and the crack
depth is identified as 3.20 mm (+6.67% error) by the highest
probability. Compared to the results of Beam-I (10 mm crack
depth), its crack depth was 0.83% error for mode 1 and 2.5%
error for modes 2 and 3; we have less accurate results on
crack depth identification. We have found that first-mode result
for Beam-N does not have a sharp peak and a narrow spread
of its probability distribution. The probability distribution for
mode 1 has the same shape as the higher mode with higher
measurement noise in Figs. 11 and 12.

5.6. The multiple-crack example (Beam-M case)

The assessment of the above examples was all based on
the single-crack configuration. Multiple cracks may exist in
structure systems. In this section, the multiple-crack sample
(named Beam-M) was adopted to test for the effectiveness of



920 R.-J. Lin, F.-P. Cheng / Engineering Structures 30 (2008) 909–929
(a) 2% material variation, mode 1. (b) 5% material variation, mode 1. (c) 10% material variation, mode 1.

(d) 2% material variation, mode 2. (e) 5% material variation, mode 2. (f) 10% material variation, mode 2.

(g) 2% material variation, mode 3. (h) 5% material variation, mode 3. (i) 10% material variation, mode 3.

Fig. 11. Probability distribution of Beam-I among varied crack depth (meas. resol. 10 mm; 1st column for 2%, 2nd column for 5%, 3rd column for 10% material
variation and 1st row for mode 1 data, 2nd row for mode 2 data, 3rd row for mode 3 data respectively).
the proposed algorithm. For convenient comparison with Beam-
I, the authors made an extra crack on Beam-I; it was also
manufactured by wild-cut at a new crack location 131 mm with
the crack depth 8 mm. Beam-M then has two cracks on its
configuration; the first crack is located at 131 mm, with depth
8 mm, and the second crack is located at 243 mm, with depth
10 mm.

According to the finite element normal mode analysis result
and EMA data, the cracks’ location can be detected as shown
in Fig. 14. From the peak of LDI curve of the mode1 and
3; we found the cracks were located at 135 mm (+3.05%
error) and 245 mm (+0.82% error), and there were different
sensitivities on the peak of LDI for various modes. The
averaged absolute error of the multiple-crack case was equal
to +1.94%. Compared to Beam-I case (1.64% error), we have
the same error level in crack location detection.

We applied the identified multiple-crack location by LDI
for FCI database generation (crack locations 135 mm and
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(a) 2% material variation, mode 1. (b) 5% material variation, mode 1. (c) 10% material variation, mode 1.

(d) 2% material variation, mode 2. (e) 5% material variation, mode 2. (f) 10% material variation, mode 2.

(g) 2% material variation, mode 3. (h) 5% material variation, mode 3. (i) 10% material variation, mode 3.

Fig. 12. Probability distribution of Beam-I among varied crack depth (meas. resol. 50 mm; 1st column for 2%, 2nd column for 5%, 3rd column for 10% material
variation and 1st row for mode 1 data, 2nd row for mode 2 data, 3rd row for mode 3 data respectively).
245 mm). From EMA we have the first three modal frequencies
191.25 Hz, 574.83 Hz and 1079.46 Hz of Beam-M, and also
from finite element analysis for the no-damage beam (Beam-
S); its modal frequencies were 234.19 Hz, 642.53 Hz and
1251.1 Hz. We have frequency changes of 18.34%, 10.54%,
13.72% for the three modes, respectively. We need 2 sets
of FCI curves to identify the depths due to the frequency
change dominated by multiple cracks simultaneously. A little
modification is needed in comparison to the single-crack case:
we should first plot the contour lines of the frequency change
on each mode, as shown in Fig. 15. Then by the intersection
operation of two contour lines from different modes, as shown
in Fig. 16, the crack depths were identified as 8.00 mm (0.0%
error) and 9.90 mm (+1.00% error) by the first and second
mode or by the first and third mode. The averaged absolute
error for the depths of multiple cracks was equal to 0.50%. With
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(a) 2% material variation, mode 1. (b) 5% material variation, mode 1. (c) 10% material variation, mode 1.

(d) 2% material variation, mode 2. (e) 5% material variation, mode 2. (f) 10% material variation, mode 2.

(g) 2% material variation, mode 3. (h) 5% material variation, mode 3. (i) 10% material variation, mode 3.

Fig. 13. Probability distribution of Beam-N among varied crack depth (crk. loc. 243 mm, depth 3 mm, meas. resol. 50 mm; 1st column for 2%, 2nd column for 5%,
3rd column for 10% material variation and 1st row for mode 1 data, 2nd row for mode 2 data, 3rd row for mode 3 data respectively).
compared to the results of Beam-I (2.07%), we also have the
same error level on depth identification for the multiple-crack
case for the invariant system.

For the variant system with noised measurement, the
statistical FCI database was also based on the cracks located at
135 mm and 245 mm that were detected by peak LDI. Various
property variation and different level measurement noise were
applied, and the crack depths were determined by the highest
probability. As mentioned above, due to the frequency change
being dominated by multiple cracks simultaneously, we will
determine all the depths at the same time. The probability of
identified crack depths was represented by its brightness; the
higher the probability, the brighter it was, and vice versa. A
red point in the figure indicated the highest probability on the
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Fig. 14. Multiple-crack location detected by LDI (crk-1 loc.131 mm, crk-1 dep.
8 mm, crk-2 loc.243 mm, crk-2 dep. 10 mm).
depths. The assessed probability distributions of depths are
shown in Figs. 17–19 for modes 1, 2 and 3 respectively. The
identified depths and averaged absolutely error are listed in
Table 3.

Results from mode 1 as shown in the 1st column (2%
material variation) and the 2nd column (5% material variation)
in Fig. 17, its maximum probability of cracks’ depth occurred at
8.50 mm and 9.90 mm for all levels of measurement noise. The
maximum probability of cracks’ depth occurred at 7.57 mm and
10.15 mm for all levels of measurement noise for 10% material
variation as shown in the 3rd column in Fig. 17. In the 1st row
of Table 3, we have found that their averaged absolute errors
were ranged from 3.44% to 3.63% for mode 1. Compared to
the Beam-I single-crack case (0.83% error for mode 1), we have
acceptable error on the crack depth identified.

From mode 2 results, for 2% material variation (1st column
in Fig. 18), the maximum probability of crack depth occurred
at 7.50 mm and 10.77 mm for 0% and 2% measurement noise,
and the crack depth occurred at 8.25 mm and 9.47 mm for 5%
and 10% measurement noise. For 5% material variation (2nd
Fig. 15. FCI contour lines due to multiple-crack existence: (a) mode 1 (18.34%), (b) mode 2 (10.54%), (c) mode 3 (13.72%).
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Fig. 16. Crack depths Identification by the intersection of two FCI contour lines
(a) by mode 1 and 2 (b) by mode 1 and 3.

column in Fig. 18), the maximum probability of crack depth
occurred at 8.25 mm and 9.47 mm for all levels of measurement
noise. For 10% material variation (3rd column in Fig. 18), the
maximum probability of crack depth occurred at 8.25 mm and
10.33 mm for all levels of measurement noise. In the 2nd row
of Table 3, we found that their averaged absolute errors were
ranged from 3.21% to 6.98% for mode 2. With compared to
the Beam-I single-crack case (2.50% error for mode 2), we also
have acceptable error on the crack depths identified.

From mode 3 results, for 2% material variation (1st column
in Fig. 19), the maximum probability of crack depth occurred at
7.75 mm and 10.33 mm for all levels of measurement noise. For
5% material variation (2nd column in Fig. 19), the maximum
probability of crack depth occurred at 8.50 mm and 9.03 mm
for 0%, 2%, and 5% measurement noise, and it occurred
at 8.25 mm and 9.47 mm for 10% measurement noise. For
10% material variation (3rd column in Fig. 19), the maximum
probability of crack depth occurred at 7.00 mm and 11.63 mm
for all levels of measurement noise. In the 3rd row of Table 3,
we found that their averaged absolute errors were ranged from
3.21% to 14.40% for mode 3. With compared to the Beam-I
single-crack case (2.50% error for mode 3), we have the larger
error on the crack depth identified.

Looking at Figs. 17–19, we have the same conclusion that
the result from the lower mode, the lower material variant
and the lower noise in measurement will have the brightest
(sharpest) peak and the narrowest spread of its probability
distribution on crack depth identification.

6. Conclusions and discussions

From the presented research, we have conclusions as
follows:

(1) A damage assessment algorithm was developed for a beam
with single and multiple cracks in a uniform mass density
and Young’s modulus variations system incorporated with
different level noise in the measured modal frequency. The
effects on measurement resolution and the shallow-depth
crack were also investigated.

(2) Due to the material variation of the beams were
varied uniformly across the entire beam, the LDI for
crack location detection was held for both the property-
variant and property-invariant systems. For the middle-
depth single-crack beam (Beam-I, 10/16 depth of structure)
we have the averaged absolute error 1.64% on the basis of
measurement resolution 1/60 in beam length near the crack
zone and 5/60–7.5/60 on the others, there were 18 impact
locations in total.

(3) The crack depth was determined by the FCI or the statistical
FCI database. For the middle-depth single-crack beam
(Beam-I) with appropriate measurement spacing, we have
the averaged absolute error 2.07% for the invariant system
and 1.94% error for variant system with material variation,
and measurement noise less than 10%.

(4) For practical applications, the “fixed response” method of
EMA should be change to “fixed impact” to save labor
work. It would be adequate to use a non-uniform spacing
between measurement points and apply 1%–2% spacing in
beam length close to the crack, and 8%–13% in spacing for
the others. To increase the spacing from 1/60 (Beam-I) to
5/60 (Beam-N) in beam length on the crack zone, the error
will be increased to 4.52 times in crack location detection,
to 4.25 times in crack depth for the property-invariant
system, and to 4.51 times in depth for the property-variant
system.

(5) For the shallow crack depth single-crack example (Beam-N,
3/16 depth of structure), the LDI works well for location
detection. Compared to the result of the middle-depth
single-cracked beam (Beam-I, 10/16 depth of structure),
the error will be increased to 3.18 times in location
detection, and to 5.82 times in depth identification for the
property-invariant system by mode 1 and mode 2 data, and
to 3.44 times for the property-variant system by mode 1 data
under 2% material variations with no measurement noise.
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Fig. 17. Probability distribution (mode 1, crk.-1 loc. 243 mm, dep. 8 mm, crk.-2 loc. 243 mm, dep. 10 mm; 1st, 2nd and 3rd column for material variation 2%, 5%
and 10% respectively; 1st, 2nd, 3rd and 4th row for measurement noise 0%, 2%, 5% and 10% respectively).
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Fig. 18. Probability distribution (mode 2, crk.-1 loc. 243 mm, dep. 8 mm, crk.-2 loc. 243 mm, dep. 10 mm; 1st, 2nd and 3rd column for material variation 2%, 5%
and 10% respectively; 1st, 2nd, 3rd and 4th row for measurement noise 0%, 2%, 5% and 10% respectively).
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Fig. 19. Probability distribution (mode 3, crk.-1 loc. 243 mm, dep. 8 mm, crk.-2 loc. 243 mm, dep. 10 mm; 1st, 2nd and 3rd column for material variation 2%, 5%
and 10% respectively; 1st, 2nd, 3rd and 4th row for measurement noise 0%, 2%, 5% and 10% respectively).
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Table 3
Peak probability among material variation with different level measurement noise

Mode no. EMA measure noise Material variation (Mass density & Young’s modulus)
σ = ±2%µ σ = ±5%µ σ = ±10%µ

Depth (mm) Avg. err. of 2-crks
(%)

Depth (mm) Avg. err. of 2-crks
(%)

Depth (mm) Avg. err. of
2-crks (%)

Crk-1 Crk-2 Crk-1 Crk-2 Crk-1 Crk-2

1 0%µ 8.50 9.90 3.63 8.50 9.90 3.63 7.57 10.15 3.44
±2%µ 8.50 9.90 3.63 8.50 9.90 3.63 7.57 10.15 3.44
±5%µ 8.50 9.90 3.63 8.50 9.90 3.63 7.57 10.15 3.44
±10%µ 8.50 9.90 3.63 8.50 9.90 3.63 7.57 10.15 3.44

2 0%µ 7.50 10.77 6.98 8.25 9.47 4.21 8.25 10.33 3.21
±2%µ 7.50 10.77 6.98 8.25 9.47 4.21 8.25 10.33 3.21
±5%µ 8.25 9.47 4.21 8.25 9.47 4.21 8.25 10.33 3.21
±10%µ 8.25 9.47 4.21 8.25 9.47 4.21 8.25 10.33 3.21

3 0%µ 7.75 10.33 3.21 8.50 9.03 7.98 7.00 11.63 14.40
±2%µ 7.75 10.33 3.21 8.50 9.03 7.98 7.00 11.63 14.40
±5%µ 7.75 10.33 3.21 8.50 9.03 7.98 7.00 11.63 14.40
±10%µ 7.75 10.33 3.21 8.25 9.47 4.21 7.00 11.63 14.40
(6) The LDI works well for the location detection of the
multiple-crack example (Beam-M case). We have the
averaged absolute error 1.94% based on 18 impact location
measurements. The FCI and statistical FCI database works
well too: we have the averaged absolute error 0.50% for the
invariant system and about 3.28% error for a system with
material variation, and measurement noise less than 10%.

(7) For an unknown damage system with property-variant
and noised frequency measurements, we should apply the
lower mode for crack depth assessment to achieve a better
solution. By applying the lower modal data, we should
have the higher probability and confirmation in the severity
identification.

(8) The pre-set resolution of FCI and statistical FCI database
will affect the accuracy of depth identification. In the
research, for the single-crack case the resolution ranged
from 2.5% to 6.7% in beam depth, and from 0.30%
to 2.5% for the multiple-crack case; it should be
adjusted appropriately by specific requirements or by the
engineering practice.

(9) In the paper, the authors have modeled the beams in
free–free boundary conditions. Further studies are required
for structure members in systems that are not in the same
boundary condition.
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