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Abstract Macro_Structure_CMAC (MS_CMAC) is a variational CMAC neural network
that is designed for modeling smooth functional mappings. The MS_CMAC learning strategy
involves constructing virtual grid-distributed data points from random-distributed training
data points, and then using the virtual data points to train a tree structure network that is
composed of one-dimensional CMAC nodes. A disadvantage of the MS_CMAC is that the
prediction errors near the boundary area might sometimes be unexpectedly large. Another
disadvantage of the MS_CMAC is that generating virtual grid-distributed data points gener-
ally takes a long computational time. Therefore, this study develops an improved model by
integrating an unsupervised fuzzy neural network (UFN) into the MS_CMAC to initialize
systematically the virtual grid-distributed data points. Additionally, a new error feedback
ratio function is adopted to speed up the MS_CMAC training. Several numerical problems
are considered to test the improved MS_CMAC. The computed results indicate that a sim-
plified UFN model can produce good initial values of the virtual grid-distributed data points
to aggrandize MS_CMAC training. The MS_CMAC prediction is also improved by using
the initialized virtual grid-distributed data points.

Keywords Virtual grid-distributed data points · A tree structure network · UFN

1 Introduction

The CMAC (cerebellar model articulation controller) [1] is a fast-learning artificial neural
network. It is used mainly in the control domain [2,3] and also applied to other fields such
as civil engineering and web searching recently [4–6]. The MS_CMAC (macro structure
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CMAC) neural network [4] is a variational/modular CMAC model that is designed for mod-
eling smooth functional mappings. The feature of the MS_CMAC is a tree structure network
composed of one-dimensional CMAC nodes, and the MS_CMAC implements a dimensional
reduction technique to substantially decrease the number of training instances required.

The principle of CMAC is simple. Each input pattern is assigned to a certain amount
of weights; the CMAC output is the sum of the assigned weights; and the weights of the
neighborhood input patterns mostly overlap. The initial version of CMAC adopts a constant
basis function to perform locally weighted approximations of functions. According to the
constant basis function, the prediction error of a training instance is evenly distributed to
the assigned weights, and the CMAC output is generally a linear approximation in a local
zone. Studies of CMAC have focused on developing high-order CMAC learning algorithms
to improve CMAC prediction especially for the smooth functional mapping problems. For
example, Lane et al. [7] proposed using a B-Spline receptive field function to replace the
constant basis function, and Chiang and Lin [8] applied a Gaussian function as the basis
function for the CMAC.

Developing a modular CMAC model is another strategy for improving CMAC prediction
for smooth functional mapping problems. For example, Lin and Li [9] proposed a two-level
tree structure network that was composed of small CMACs, and Hung and Jan [4] developed
a tree structure network that was composed of one-dimensional CMAC nodes. Although the
two modular CMAC models use the similar network structures, the advantages of the two
CMAC models are entirely different. Lin and Li’s CMAC model emphasizes the use of a small
computer memory to solve high-dimensional problems because the other CMAC models for
solving the problems generally require an extremely large computer memory. Hung and Jan’s
CMAC model, MS_CMAC, focuses on reducing the number of training instances required.
The principle of the MS_CMAC is to decompose a multi-variable problem into several sim-
ple one-variable sub-problems. A set of constant space grid-distributed data points enable
the MS_CMAC to use a quadratic weight transforming scheme [10] to generate smoothed
weight functions under a single learning cycle.

The main advantage of the MS_CMAC is that it uses only a few training instances to predict
with high accuracy because of to the dimensional reduction technique and the grid-distrib-
uted training data points. However, the grid-distributed training data points are not always
available in practical applications. To overcome this flaw, Jan et al. [11] developed an inverse
training scheme to supplement the MS_CMAC to construct virtual constant space grid-dis-
tributed data points from random-distributed training instances. The essentiality of the inverse
training scheme is an optimization approach that uses a first-order heuristic method to update
the virtual grid-distributed data points for minimizing the prediction errors of the random-
distributed training instances. Jan et al. further indicated that a ratio 3:1 of random-distributed
training instances to virtual grid-distributed data points is the minimum requirement for the
inverse training scheme.

The training algorithm of MS_CMAC has greatly advanced recently [10,11]. However,
MS_CMAC applications suffer from several shortcoming. First, the prediction errors near the
boundary area might sometimes be unexpectedly large. Second, generating virtual grid-dis-
tributed data points generally takes a long computational time. Therefore, this study develops
an improved MS_CMAC neural network by integrating a simplified UFN model (unsuper-
vised fuzzy neural network) into the MS_CMAC. Additionally, a new error feedback ratio
function is adopted to speed up MS_CMAC training. In the new model, the simplified UFN
model mainly produces initial values of virtual grid-distributed data points, and the new
error feedback ratio function is used to replace the linear error feedback ratio function in
the original MS_CMAC. In the following sections, Sect. 2 gives a brief introduction for

123



Improved MS_CMAC Neural Networks 165

MS_CMAC, Sect. 3 explains the improved MS_CMAC, Sect. 4 adopts several numerical
cases to test the learning performance of the improved MS_CMAC, and Sect. 5 draws con-
clusions.

2 Review MS_CMAC

2.1 Tree Structure Network

This section uses an example to explain the computation of the MS_CMAC. Figure 1 shows
a grid system with 3 × 4 grid-distributed data points. In Fig. 1, the circles denote virtual
data points, the rectangles indicate temporary data points, and the triangle represents a tar-
get data point. First, three one-dimensional CMACs are utilized to model three x-direc-
tion line domains (i.e., F(x, y1), F(x, y2) and F(x, y3)) by the virtual data points. Second,
the corresponding outputs of the three temporary data points are calculated by the three
one-dimensional CMACs. Third, another one-dimensional CMAC is utilized to model a
y-direction line domain (F(x0, y)) by the temporary data points. Fourth, the correspond-
ing output of the target data point is calculated by the last one-dimensional CMAC. The
aforementioned computation can be accomplished using a two-level tree structure network
composed of four one-dimensional CMAC nodes (root and three leaves), and is shown in
Fig. 2. The root CMAC is adopted to model F(x0, y), and leaf CMACs are adopted to model
F(x, y1), F(x, y2), F(x, y3). Therefore, y-variable is called the active parameter of the root
CMAC, and the x-variable is called the active parameter of the leaf CMAC. The grid-dis-
tributed data points are used as training instances for leaf CMACs; the temporary data points
are used as training and testing instances for root CMAC and leaf CMACs, respectively;
and the target data point is used as testing instance for root CMAC. The modular CMAC
begins from leaf CMACs and proceeds to root CMAC. Restated, the MS_CMAC is based
on a grid data system. If the numbers of gridlines in n directions are given byp1, p2, …, and
pn , respectively, then the MS_CMAC is a n-level tree structure network that is composed

of
(∑n−1

j=1
∏ j

i=1 pi

)
+ 1 one dimensional CMAC nodes, and each CMAC node in the i th

(1 ≤ i ≤ n − 1) level has pi children nodes.

2.2 Training

The MS_CMAC has two levels of weights. The first level weights are a set of virtual grid-
distributed data points, and the second level weights are spline weight functions in CMAC
nodes. An inverse training scheme is employed to generate the first level weights, and a qua-
dratic weight transforming scheme is adopted to calculate the second level weights. Notably,
if the MS_CMAC is based on a constant space grid system, then the MS_CMAC predictions
are smooth everywhere.

2.2.1 Inverse Training Scheme

The inverse training scheme is employed to generate the constant space virtual grid-dis-
tributed data points (first level weights) from the random-distributed training data points.
Basically, the grid-system can be arbitrarily determined by users. However, the ratio of
random-distributed training data points to virtual data points had better exceed three. The
computation of the inverse training is similar to an optimization computing, where a
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Fig. 1 Illustrate dimensional reduction technique of MS_CMAC

first-order heuristic method is adopted to update the virtual data points for minimizing
the prediction errors of random-distributed training data points. The heuristic method as-
sumes that a positive/negative error in the random-distributed training instance indicates a
positive/negative updating for near virtual data points, and the error feedback ratios are lin-
early inverse proportion to the distance between the training instances and the virtual data
points. Therefore, the virtual grid-distributed data points are updated by following equations

GY (n+1)
i = GY (n)

i + α(GXi , TX j ) × (T Y j − Yc) (1)

α(GXi , TX j ) =
(

1 − Dis(GXi ,TX j )

rmax
if Dis(GXi , TX j ) < rmax

0 else
(2)
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Fig. 2 Two-level tree structure of MS_CMAC for 3 × 4 grid system

Dis(GXi , TX j ) =
√

(gx1 − t x1)2 + (gx2 − t x2)2 + · · · (3)

where GY (n)
i is the value of a virtual grid-state data point at the nth training iteration, GXi

is the position vector of the i th virtual data point, TX j is the position vector of j th train-
ing instance, T Y j is the corresponding value of TX j , Yc is the corresponding output of
MS_CMAC, α(GXi , TX) is a first-order error feedback ratio function, gx1, gx2, … are
elements of GXi , t x1, t x2, . . . are elements of TX j , and rmax is a threshold value defined as

rmax =
√

n
( g

2

)2
.

2.2.2 Quadratic Weight Transforming Scheme

The quadratic weight transforming scheme [10] is a specific learning algorithm for one-
dimensional CMAC nodes of the MS_CMAC. The output formula of an original one-dimen-
sional CMAC is the summation of g connective weights, and is defined as follows

y(xi ) =
g−1∑
j=0

wi+ j (4)

where y is the output function, xi is the input variable, wi+ j is the addressing weight, and
g is an integer which is called the generalization size. In each one-dimensional CMAC
node, the Hanmin distance between two connective virtual training data points is set to g,
which also represents the data point density. If a training data points (xk, yk) is given for a
one-dimensional CMAC node, then the addressing weights can be calculated as following

w(k−1)×g+ j = yk

g
for j = 0, 1, 2, . . ., g − 1 (5)
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Equations (4) and (5) produce a step-state weight function and a multi-linear approximation
for the one-dimensional CMAC node. To smoothen CMAC outputs, a set of quadratic splines
( fk(i) = aki2 + bki + ck) is proposed to replace the step-state weight function by satisfying
the following equations

∫ k×g

(k−1)×g
fk(i)di = yk (6)

fk−1(xk) = fk(xk) (7)

f ′
k−1(xk) = f ′

k(xk) (8)

where xk is the location of a virtual training data point, f ′
k(i) is the first-order differential of

fk(i), Eq. (6) ensures that the CMAC prediction and virtual training data points fit well, and
Eqs. (7) and (8) ensure that the CMAC prediction is smooth. As a result, the coefficients of
the spline functions can be determined using linear algebra.

After the weight transformation is finished, a more complicated output formula that resem-
bled to the numerical integration method of Simpon’s rule is proposed to replace the original
output formula. The new formula is defined as follows

y(xi ) = 1

3

g−2∑
j=0, j= j+2

[
f (xi+ j ) + 4 f (xi+1+ j ) + f (xi+2+ j )

]
(9)

3 Improved MS_CMAC

3.1 Influence of the Initial First Level Weights

In most neural networks, good network weights are generally difficult to define. However,
the MS_CMAC does not have the problem. The first level weights of the MS_CMAC are
the desired values that corresponded to the location of the grid-distributed data points. The
second weights of the MS_CMAC are calculated from the first level weighs. Restated, the
MS_CMAC has only a set of optimal weights when it handles a problem. A simple test is per-
formed to elucidate the above opinion. Table 1 shows the learning results of an MS_CMAC
that model a three-variable function (sin(x) sin(2y) sin(3z)) using three sets (A, B and C) of
initial grid-distributed data points, where 648 random-distributed training data points and a
6-6-6 grid system (216 virtual grid-distributed data points) with constant spaces are used. The
A set of initial grid-distributed data points is calculated by adding −25% to 25% variances
to the desired values, the B set of initial grid-distributed data points is calculated by adding
−50% to 50% variances to the desired values, and the C set of initial grid-distributed data
points is calculated by adding −100% to 100% variances to the desired values. As indicated
from Table 1, the correlation coefficients that link the initial first level weights to the desired
values are 0.8821, 0.7181 and 0.404 for the A, B and C sets of data, respectively. After the
inverse training, the three correlation coefficients are raised to 0.9869, 0.9785, and 0.9207.
The results reveal that the MS_CMAC training is better as the initial values of the virtual
grid-distributed data points are closer to the desired values. Moreover, the numbers of learn-
ing cycle are 92, 148, and 248 by for the A, B and C sets of data, respectively. The good
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Table 1 Learning result of an MS_CMAC to model a function by using three sets of initial grid-distributed
data points

Initial values A set B set C set

Correlation coefficients that link the Before inverse training 0.8821 0.7181 0.4040
first level weight to the desired values

After inverse training 0.9869 0.9785 0.9207

Number of learning cycle 92 148 248
RMSE in learning phase Before inverse training 0.1127 0.2134 0.4421

After inverse training 0.0121 0.0125 0.0129

Note: RMSE = Root Mean Square Error

initial virtual grid-distributed data points also reduce the computational time in MS_CMAC
training.

3.2 Improved Model

3.2.1 UFN Model

The original MS_CMAC generally randomly initialize its first level weights. The randomly
generated values, however, almost certainly cannot be close to the desired values. Therefore,
a method for systematically initializing the first level weights of the MS_CMAC is worth
developing. Herein, a simplified UFN model (unsupervised neural network) is proposed for
the MS_CMAC to initialize systematically virtual grid-distributed data points. The UFN can
be considered as a nonlinear interpolation approach which uses local information near the
target point to produce a prediction [12]. The prediction phase of the UFN is very simple.
Basically, the UFN uses the following three steps to generate predictions: (1) find past cases
that resemble the new problem by applying a competing algorithm; (2) establish a fuzzy set
to represent the relationship between the similar cases and the new problem by applying a
fuzzy membership function; and (3) generate a prediction based on the fuzzy set by applying a
defuzzification formula. Additionally, the UFN model has a self-organized learning algorithm
that selects systematically its working parameters. The self-organized learning algorithm has
two parts. One part is called the weight adjusting process which uses a mathematical opti-
mization algorithm to refine the weights in the competing algorithm. The other part is called
the correlation analysis which uses a statistic method to calculate the threshold values of
the fuzzy membership function. In this study, the weight adjusting process is not considered
because the performance of the weight adjusting process depends on the high density of the
training data.

3.2.2 Flow Chart of the Improved MS_CMAC

Figure 3 shows the flow chart of the improved MS_CMAC which is established by integrating
a simplified UFN with an original type of MS_CMAC. The gray boxes are the new processes,
which are described as follows.

Competing process identifies the degree of difference between the virtual grid-distrib-
uted data points and the training instances. The UFN uses a weighted Euclidean distance as
index to identify the degree of difference between two data points. However, the improved
MS_CMAC simply uses the Euclidean distance as index of the degree of difference. The
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Fig. 3 Flow chart of the improved MS_CMAC

reason is that the weighted Euclidean distance is difficult to define when an MS_CMAC
handle the low density of the training data. The formula for the Euclidean distance between
a virtual data point and a training data point is defined as follows

di j = ∣∣G Xi − T X j
∣∣ =

∑
k

(gxk − t xk)
2 (10)

where di j denotes the difference degree between a grid data point and a training instance,
and other symbols have defined in the previous section. In principle, small di j indicates the
sign of high similarity.
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Fuzzy process generates fuzzy sets to represent the relationships between grid-distributed
data points and training instances. The UFN uses a quasi-Z type membership function in
its fuzzy process. In this study, the improved MS_CMAC still uses the quasi-Z membership
function. The quasi-Z membership function is defined as follows

µ(di j , Rmax, Rmin) =

⎧⎪⎪⎨
⎪⎪⎩

0 if di j > Rmax
Rmax Rmin − Rmindi j

(Rmax − Rmin)di j
if Rmax ≥ di j ≥ Rmin

1 if Rmin > di j

(11)

where Rmin and Rmax are the bounds of the fuzzy membership function. Rmin is generally a
small value to avoid computer run-off error, and Rmax can be calculated by the self-organized
learning.

Defuzzification process initializes grid-distributed data points (GYi
(0)) by synthesizing

the output of the training instances (TY j ) according to the fuzzy sets that are calculated from
the fuzzy process. The UFN proposed the center of gravity method, COG, and mean of max-
ima method, MOM, for different situations. The improved MS_CMAC uses only the COG
method because of its simplicity. The COG method is defined as follows

GY (0)
i =

∑
j µ(di j )T Y j∑

j µ(di j )
(12)

Correlation analysis an assistant process that is used to determine systematically the value
of Rmax in Eq. (11). First, a two-column matrix (A) that is composed of all possible combi-
nation of output pairs from training instances is constructed. Each row vector of the matrix
A should satisfy the following constraint

(A[k, 1], A[k, 2]) = (T Yi , T Y j ) for di j < t and i < j

where t is an arbitrary real number. Then, the correlation coefficient between column 1 and
column 2 of the matrix A is calculated. The computational formula is defined as follows

Cor(A(t)) =
∑

k(A[k, 1] − A1)(A[k, 2] − A2)

nSA1SA2
(13)

where SA1 and SA2 are the standard errors of column 1 and column 2 of matrix A, respectively,
and A1 and A2 are the average values of column 1 and column 2 of matrix A, respectively.
Finally, a line search algorithm is adopted to find the value of Rmax that satisfies the following
constraint equation

Cor(A(Rmax)) = 0.8 (14)

3.2.3 Second-order Error Feedback Ratio Function

The original type MS_CMAC uses a heuristic method to construct virtual grid-distributed
data points, and the heuristic method is based on a linear error feedback ratio function. For
further speeding up the inverse training of MS_CMAC, a second-order error feedback ratio
function is proposed to replace Eq. (2), and is defined as follows

α′(GXi , TX j ) =
(

1 −
(

Dis(GXi ,TX j )

rmax

)2
if Dis(GXi , TX j ) < rmax

0 else
(15)
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Basically, it is difficult to demonstrate that the second-order error feedback ratio function has
better convergence capability than the linear error feedback ratio function by mathematical
method. In the following section, an attempt is made to use the test results to explain the
convergence capability of the second-order error feedback ratio function.

4 Numerical Case Studies

This section discusses three new types (I, II and III) of MS_CMAC for modeling smooth
functional mapping problems, and uses the original MS_CMAC as a reference model. Type
I model uses the randomly initialized first-level weights and a second-order error feedback
ratio function in its training phases, the type II model implements the systematically initial-
ized first-level weights by UFN and the original error feedback ratio function in its training
phases, and the type III model uses the systematically initialized first-level weights and the
second-order error feedback ratio function in its training phases.

4.1 Case I

This case is a three-variable smooth function, which has been discussed in the authors’
previous research [10,11]. The three-variable function is defined as follows

F1(x1, x2, x3) = sin(x1π) sin(2x2π) sin(3x3π) for

0 ≤ x1, x2, x3 ≤ 1

A grid system with five constant grid spaces in each direction was selected for an MS_CMAC
to model the function, and the gridline locations in each direction were defined as follows

x1, x2, x3 : {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
Therefore, 216 (6 × 6 × 6) virtual grid-distributed data points were necessary for the
MS_CMAC prediction. According to the grid system, a three-level tree structure network
with six branches in each level was adopted for the MS_CMAC to model the function. The
active parameters for level 1–3 were set as x1, x2, and x3, respectively, and the generalization
sizes, g, were set to 40 for all one-dimensional CMAC nodes. As a result, the learning domain
was decomposed into 8 × 106 (403 × 5 × 5 × 5) data points by the MS_CMAC.

About 648 random-distributed data points were selected as training instance for the inverse
training of MS_CMAC to construct 216 virtual grid-distributed data points. Another 1,000
random-distributed data points were selected as testing instances for verifying the improved
MS_CMACs. Table 2 shows the computing results in case I. As indicated from Table 2, the
correlation coefficient that links the initial first level weights (virtual grid-distributed data
points) to their desired values is −0.0063 in the original model and type I MS_CMAC. How-
ever, the correlation coefficient that links the initial first level weights to their desired values is
increased to 0.8467 in type II and III MS_CMAC. Comparing the learning speeds of the four
type MS_CMACs, the learning is converged after 210, 161, 105 and 74 learning cycles in the
original model, the type I, II, and III, respectively. The results indicate that the second-order
error feedback ratio function substantially reduces the learning time of the inverse training of
the MS_CMAC, independently of how the first level weights are initialized. Moreover, the
initialized first level weights that are systematically generated by the UFN also accelerate
the learning convergence of MS_CMAC. Comparing the prediction accuracies of the four
types MS_CMAC, the prediction errors are 0.0581, 0.0587, 0.0190 and 0.0178 in original
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Table 2 Computing results of four types of MS_CMAC in case I

Types Original model I II III

Correlation coefficients Before inverse −0.0063 −0.0063 0.8467 0.8467
that link the first level training
weight to the desired
values

After inverse 0.9053 0.9138 0.9921 0.9932
training

Number of learning cycle/learning 210/29 s (–) 161/23 s (23.3%) 105/15 s (50%) 74/10 s (64.8%)
time (time reducing)

RMSE in learning (improvement) 0.0167 (–) 0.0161 (3.6%) 0.0117 (29.9%) 0.0114 (31.7%)

RMSE in prediction (improvement) 0.0581 (–) 0.0587 (−1.0%) 0.0190 (67.3%) 0.0178 (69.4%)

Note: RMSE = Root Mean Square Error

-0.8
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0.0

0.4

0.8

0.0 0.1 0.2 0.3 0.4 0.5

Distance from a data point to the nearest boundary

rorre noitciderP

Original model
New type III

Fig. 4 Comparing the prediction errors of case I predicted by the original model and new type III MS_CMAC

model, type I, II, and III, respectively. The results reveal that the prediction improvement
made by the MS_CMAC depends mainly on the systematically initialized first level weights.
Furthermore, Fig. 4 shows the prediction errors of the 1,000 testing instances, where the
vertical-axis denotes the prediction error and the horizontal-axis represent the distance from
a testing instance to its nearest boundary of the learning domain. Clearly, the predictions of
the testing instances near the boundary area are greatly improved.

4.2 Case II

This case is a four-variable smooth function, and has been discussed in references [9,11].
The four-variable function is defined as follows

F2(x1, x2, x3, x4) = x1 + sin(x1π) cos(x2π) sin(3x3π)�sin2(x4π) − 1�
for −1 ≤ x1, x2, x3, x4 ≤ 1
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Table 3 Computing results of improved MS_CMAC in case II

Types Original model I II III

Correlation coefficients
that link the first level
weight to the desired
values

Before Inverse
training

0.0351 0.0351 0.8334 0.8334

After inverse
training

0.9650 0.9670 0.9887 0.9899

Number of learning cycle/learning 326/ 202 s (–) 261/ 423 s 196/ 318 s 144/ 233 s

time(time reducing) (19.9%) (39.9%) (55.8%)

RMSE in learning (improvement) 0.0142 (–) 0.0135 (4.9%) 0.0131 (7.7%) 0.0126 (11.3%)

RMSE in prediction (improvement) 0.0474 (–) 0.0429 (9.5%) 0.0309 (34.8%) 0.0280 (40.9%)

Note: RMSE = Root Mean Square Error

A grid system with four constant grid spaces in the x1 and x3 directions, five constant grid
spaces in the x2 direction, and eight constant grid spaces in the x4 direction was selected for
the MS_CMAC to model the function. The gridline locations in each direction were defined
as follows

x1, x3 : {−1,−0.5, 0, 0.5, 1}
x2 : {−1,−0.6,−0.2, 0.2, 0.6, 1}
x4 : {0,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1}

Therefore, 1,350 (5 × 6 × 5 × 9) virtual grid-distributed data points were necessary for the
MS_CMAC prediction. According to the grid system, a four-level tree structure network
was employed for MS_CMAC to model the function. The active parameters were set to
x1, x2, x3 and x4 for level 1, 2, 3 and 4, respectively. Thus, the numbers of branches from
level 1 to 3 were five, six, and five, respectively, and the generalization sizes (g) were set to
40 for all one-dimensional CMAC nodes. As a result, the learning domain is decomposed
into 1.6384 × 109(404 × 4 × 5 × 4 × 8) data points by the MS_CMAC.

About 4,050 random-distributed data points were selected as training instance for the
inverse training of MS_CMAC to construct 1,350 virtual grid-distributed data points. Another
5,000 random-distributed data points were selected as testing instances for verifying the
improved MS_CMACs. Table 3 shows the computed results in the case II. As indicated from
Table 3, the correlation coefficient that links the initial first level weights (virtual grid-distrib-
uted data points) to their desired values is 0.0351 in the original model and type I MS_CMAC.
However, the correlation coefficient that links the initial first level weights to their desired
values are increased to 0.8334 in type II and III MS_CMAC. Comparing the learning speeds
of the four type MS_CMACs, the learning is converged after 326, 261, 196 and 144 learning
cycles in original model, type I, II, and III, respectively. Comparing the prediction accuracies
of the four types MS_CMAC, the prediction errors are 0.0474, 0.0429, 0.0309 and 0.028
in original model, type I, II, and III, respectively. Furthermore, Fig. 5 shows the prediction
errors of the 5,000 testing instances, where the vertical-axis denotes the prediction error and
the horizontal-axis represent the distance from a testing instance to its nearest boundary of
the learning domain. Clearly, the predictions of the testing instances near the boundary area
are greatly improved.
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Fig. 5 Comparing the prediction errors of case II predicted by the original model and new type III MS_CMAC

4.3 Case III

This case is a four-variable continuous function, and has been also discussed in references
[9,12]. The four-variable function is defined as follows

F3(x1, x2, x3, x4)= (ln (x1x2 + x3x4) + ln (x1x3 + x2x4))
2 for 0.1 ≤ x1, x2, x3, x4 ≤ 3.1

A grid system with four constant grid spaces in each direction was selected for the MS_CMAC
to model the function, and the locations of gridlines in each direction are defined as follows

x1, x2, x3, x4 : {0.1, 0.85, 1.6, 2.35, 3.1}
Therefore, 625 (5 × 5 × 5 × 5) virtual grid-distributed data points were necessary for the
MS_CMAC prediction. According to the grid system, a four-level tree structure network with
five branches in each level was employed for MS_CMAC. The active parameters for level
1–4 were set to x1, x2, x3 and x4, respectively, and the generalization sizes, g, were set to 40
for all one-dimensional CMAC nodes. As a result, the learning domain is decomposed into
6.5336 × 108(404 × 4 × 4 × 4 × 4) data points by the MS_CMAC.

About 1,875 random-distributed data points were selected as training instance for the
inverse training of MS_CMAC to construct 625 virtual grid-distributed data points. Another
2,000 random-distributed data points were selected as testing instances for verifying the
improved MS_CMACs. Table 4 shows the computed results in the case III. As indicated
from Table 4, the correlation coefficient that links the initial first level weights (virtual grid-
distributed data points) to their desired values is 0.0478 in the original model and type I
MS_CMAC. However, the correlation coefficient that links the initial first level weights to
their desired values are increased to 0.971 in type II and III MS_CMAC. Comparing the learn-
ing speeds of the four type MS_CMACs, the learning is converged after 318, 251, 102 and 77
learning cycles in original model, type I, II, and III, respectively. Comparing the prediction
accuracies of the four types MS_CMAC, the prediction errors are 0.1393, 0.1380, 0.1194
and 0.1169 in original model, type I, II, and III, respectively. Furthermore, Fig. 6 shows the
prediction errors of the 5,000 testing instances, where vertical-axis denotes prediction error
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Table 4 Computing results of improved MS_CMAC in case III

Types Original model I II III

Correlation coefficient
of the first level weight
to the desired values

Before inverse
training

0.0478 0.0478 0.9710 0.9710

After inverse
training

0.9490 0.9490 0.9743 0.9742

Number of learning cycle/learning time 318/ 1822 s (–) 251/ 1438 s 102/ 584 s 77/ 441 s

(time reducing) (21.1%) (67.9%) (75.8%)

RMSE in learning (improvement) 0.1393 (–) 0.1380 (9.3%) 0.1194 (14.3%) 0.1169 (16.1%)

RMSE in prediction (improvement) 0.4461 (–) 0.4111 (7.8%) 0.2849 (36.1%) 0.2759 (38.2%)

Note: RMSE = Root Mean Square Error
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Fig. 6 Comparing the prediction errors of case III predicted by the original model and new type III MS_CMAC

and horizontal-axis represent the distance from a testing instance to its nearest boundary of
the learning domain. Clearly, the predictions of testing instances near the boundary area are
greatly improved.

5 Conclusion

This study integrates the simplified UFN model into the MS_CMAC to initialize systemat-
ically the first level weights of MS_CMAC to improve the prediction accuracy and accelerate
the learning convergence. A second-order error feedback ratio function is also
proposed for the MS_CMAC to speed up the learning convergence. Three numerical cases
were considered to test the improved MS_CMAC. The testing results reveal that the improved
MS_CMAC has obviously improvement in the learning phase. The improved MS_CMAC
has a 11.3–31.7% lower learning error and a 55.8–75.8% lower learning time than that of
the original MS_CMAC in the testing cases. The testing results also show that the improved
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MS_CMAC exhibits much greater predictive accuracy than that of the original MS_CMAC.
The improved MS_CMAC has a 38.2–69.4% lower prediction error than that of the original
MS_CMAC in the testing cases. Moreover, the improvement of MS_CMAC prediction is
very clear when the testing instances located in the area near the boundary of the learning
domain.
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