
行政院國家科學委員會補助專題研究計畫期中報告 
※※※※※※※※※※※※※※※※※※※※※※※※※ 
※                       ※ 
※ 單 晶 片 無 線 多 媒 體 資 訊 家 電 之 ※ 
※             設計與製作(3/3)              ※ 
※                     ※ 
※   子計劃四  : 單晶片無線多媒體通訊系統    ※ 
※     ※ 
※※※※※※※※※※※※※※※※※※※※※※※※※ 

 
計畫類別：□個別型計畫  þ整合型計畫 

計畫編號：NSC 90-2218-E 009-014 

執行期間： 90年 8月 1日至 91年 7月 31日 
 

計畫主持人： 蔣迪豪 交通大學電子工程系所  副教授 
 
 
 
 
 
 
 
 
本成果報告包括以下應繳交之附件： 
□赴國外出差或研習心得報告一份 
□赴大陸地區出差或研習心得報告一份 
□出席國際學術會議心得報告及發表之論文各一份 

□國際合作研究計畫國外研究報告書一份 
 
 
執行單位：國立交通大學電子工程系所 
 
 

中 華 民 國 九十一 年 十 月 二十二 日 



 1

行政院國家科學委員會專題研究計畫期中報告 
單晶片無線多媒體資訊家電之設計與製作(2/3) 
子計劃四 : 單晶片無線多媒體通訊系統 

Improved Error Resilient Encoding and Decoding Using MPEG-4 
計畫編號：NSC 90-2218-E 009-014 

執行期限：90年 8月 1日至 91年 7月 31日 
主持人：蔣迪豪 交通大學電子工程系所 副教授 

計畫參與人員：王士豪、蘇子良、黃名彥、王俊能 交通大學電子工程系所 研究生 
 
一、摘要 
本計畫從事基於 MPEG-4 視訊壓縮標

準之壓縮與解壓縮器在抗噪性與錯誤回復
力方面和即時性之研究。在壓縮器方面，
我們提出一個視訊內容自動 Intra 更新的
方法。藉由傳輸頻道的錯誤對於視訊位元
資料的影響之統計特性，我們可以使在解
壓縮端有效地控制錯誤資料在可回復的視
訊畫面之間傳遞間隔。在解壓縮器方面，
我們考慮MPEG-4視訊壓縮標準在語法與
語意上的特徵，提出防止解壓縮器遇到錯
誤位元資料時當機的方法，並以計算機與
特定的頻道錯誤模型來模擬檢視其效能。
除此，為了改善影像品質，我們也對回復
的影像給予簡單的錯誤補償。同時，為了
完成在 ARM 平台上即時性的壓縮與解壓
縮器, 我們也採用一些快速的演算法與高
效率的記憶體存取方法來改善壓縮與解壓
縮器執行效能。結合以上技術以及效能最
佳化之壓縮與解壓縮器，將促使這
MPEG-4 壓縮與解壓縮器可被應用於單晶
片無線多媒體資訊家電等應用。 

關鍵詞：  

MPEG-4，視訊，自動 Intra更新，錯誤回
復力，抗噪性，錯誤補償，快速(反)餘弦
轉換，快速動態偵測。 

Abstract 
MPEG-4 video coding standard provides 

applications for both Internet and mobile links. 
This article describes several error resilient 
techniques for MPEG-4 video coding under 
communications disruptions and quality 
degradation. At the encoding side, we utilize the 
adaptive intra refreshment (AIR) technique to 
make bitstream robust. The adaptive intra 
refreshment periodically refreshes part of 
reference pictures by selecting intra mode for 
certain macroblocks (MB). This will break the 
correlations to the previous reference picture 

that may propagate errors that is often referred 
to as “drift”. At the decoder side, the first thing 
we do is to make the decoder resilient to any 
error and can finish decoding although the 
incoming bitstream is erroneous. We utilize error 
resilience tools provided by the MPEG-4 
standard including resynchronize marker, data 
partitioning, reverse variable length code. 
Additionally, simple error concealment 
algorithms are applied to each recovered frames 
of improving the picture quality for playback. 
For SoC project, our MPEG-4 encoder and 
decoder  are ported onto Linux platform that can 
be run on ARM-9 device. 

Keywords:  

MPEG-4, Video, MPEG-4 Encoder/Decoder, 
Multimedia, Error Resilience, Error 
Concealment, Auto Intra Refreshment (AIR), 
Robustness, Crash-proof, fast DCT/IDCT, fast 
motion estimation. 

1. Introduction 
MPEG-4 video coding standard is developed 

to provide users a new level of performance for 
video transmission in various applications such 
as Internet streaming and mobile multimedia 
applications. For these applications, both device 
complexity and channel bandwidth are limited. 
For hand-held devices, the encoding process of 
video should be as simple as possible to 
minimize power consumption. For the 
bandwidth constrained or mobile channels, the 
decoding process should be reliable and robust 
enough to deal with random error, burst error or 
packet losses. This report describes the 
improvement on both sides of encoding and 
decoding processes. For the encoding side, 
selective prediction of motion vector field and 
integer fast DCT/IDCT are implemented to 
reduce the complexity of motion est imation. On 
the other hand, a trustworthy decoder with error 
resilience ability is necessary for recovering 



 2

erroneous or lost data during transmission. In 
addition, the error resilient decoder has been 
sped up with fast IDCT and improved bitstream 
access.  

 

2. Optimized MPEG-4 Simple Profile 

Encoder 
In [9], we speed up the MPEG-4 Simple 

Profile encoder based on the underlying 
optimization approaches, which can be divided 
into the following three categories.  
a. Remove the unused procedures, parameters, 

and data structures from the code bases for 
the reduction of code size. For example, 
some of code bases, which provide identical 
functionalities, can be merged and some of 
the allocated buffers are not used for a 
Simple Profile decoder. Consequently, we 
can just retain the least needed modules and 
code bases of the Simple Profile  by the 
MPEG-4 visual specification.  

b. Rewrite the code bases for saving the 
execution time and code sizes. For example, 
we remove the unnecessary data movement 
and conditional jumps at the reference code 
base. In additional, we avoid from using the 
arithmetic operations including division (/) 
and modulation (%) in the code bases. In 
addition, we rewrite the procedure for 
motion compensation by reducing the data 
movement and reuse of the data in the 
register.  

c. Use existing fast algorithms for the 
computational burden modules .  
Accounting for the computational 
complexity found by profiling, we replace 
DCT and IDCT with fast algorithms with 
negligible degradation of picture quality. 
Also, the fast MVFAST in MPEG document 
N4554 is used to reduce the computational 
load of motion es timation. 

 

3. Optimized MPEG-4 Decoder with 

Error Resilience and Concealment 
Similar to the speedup approaches used in the 
encoder, for example, the same fast IDCT is 
employed with the negligible degradation of 
picture quality. In addition, we improve the 
bitstream access method by adding a buffer of 
size 4 kilobytes for intermediately storing the 
input bitstream, and by rewriting the bit fetching 
from the buffer.  
2. Porting onto Linux and ARM-9 device 

To realize the real-time MPEG-4 software 
encoder and decoder on the ARM-9 device that 
employs the Linux kernel, the MPEG-4 
reference software is used as the basis. This is 
because the MPEG-4 reference software that can 
work on the Unix environment also works well 
within Linux environment.  

To demonstrate the performance of our codec 
under Linux environment, we also we also build 
a player that can directly play the YUV video 
sequences on Linux. The basic block diagram is 
shown as in Figure 1. Our goals are to create a 
MPEG-4 encoder that can encode the input 
YUV video sequences into MPEG-4 Simple 
Profile bitstream. And to create a real-time 
decoder that can receive MPEG-4 video 
bistreams from the files. With the bitstreams, our 
proposed decoder reconstructs the vide sequence 
and outputs the result on a device monitor.  

For SoC project, since the demo board with 
ARM-9 processor and wireless communication 
tools is still in development. Before the 
integration into the real demo board, we are 
developing the realtime MPEG-4 encoder and 
decoder  in parallel. The development plat for 
both the MPEG-4 encoder and decoder are 
StrongARM 1110 device [10], which supports 
the same environment such as the Linux-based 

Table I. The test conditions used for simulations 
on the X-Pilot MA-1000 system. 

QCIF (176x144) CIF (352x288) 
Resolution Akiyo, 

Foreman 
Akiyo, 

Foreman 
Frame rate 10 Hz 
Sample bit 

rates 
64kbps 256kbps 

Objective 
measure of 

results 
PSNR vs. bit rate 

Period of I 
frames 

One I frame at beginning 

QP values  Decided by VM5+ rate control 
MV range  +/-32 

 

YUV Video
Sequences

Encoder Bitstreams
 

(a) Encoder  

BitstreamsDecoderBufferPlayer  

(b) Decoder 

Figure 1. Block diagram of our demo system. 



 3

O.S. and I/O as that is used on ARM-9 demo 
board. In our decoder, the constructed image can 
be also shown in the monitor via the player 
under Linux environment. Our next steps are to 
improve the encoding and decoding rates of our 
MPEG-4 software encoder and decoder based on 
the optimized tools and special instruction sets 
provided on ARM Linux platform, to simulate 
the error robustness of the MPEG-4 software 
encoder and decoder online under the real 
transmission environment,  and to enhance the 
visual quality of the reconstructed video. 

 

4. Experiment Results 
We simulate the improved MPEG-4 Simple 
Profile video encoder [9] and decoder with error 
resilience capabilities, which are still in 
development. Both encoder and decoder are 
running on ARM Linux platform, where is now 
built on the X-Pliot MA-1000 Table-PC by 
AboCom system, Inc [10]. The X-Plio MA-1000 
Table-PC uses Intel StrongARM 1110 CPU (the 
maximum working frequency is 206 MHz), 
32/64/128 MB Memory SDRAM on-board, 
16/32MB Flash ROM, and Crystal Clear 10.4" 
TFT (SVGA) with build-in Touch Screen. The 
test sequences and bitstreams are stored at IBM 
Microdrive. To execute the encoder and decoder, 
the complier and linker on ARM Linux platform 
are used. 
The testing conditions are summarized at the 
Table I. To demonstrate the influence of the 
motion estimation on the overall encoding rates, 
the large search range of 32 and test sequences 
with various object moving are used. In these 
simulations for showing the overall execution 
performance, the bitstream corruption is not 
considered. 

The Table II shows the simulation results 

using the testing conditions in Table I on the 
X-Pilot MA-1000 system. The results can be 
analyzed with the following four factors 
including the sequence, picture resolution, 
encoding/decoding rate, and the picture quality.  

For the various sequences, the fast motion 
sequence like Foreman is slower than the slow 
motion sequence like Akiyo in both encoding  
and decoding rates. This is due to the fast 
motion sequences need to take more 
computation in motion compensation module.  

For various picture resolutions of the same 
sequence, the sequences in QCIF format have 
almost four times of encoding rate than those in 
CIF format. As to the decoding rate, the speedup 
is larger than 4 times as the resolution of the 
sequence is decreased from CIF to QCIF. It’s 
interesting that for the Foreman sequence, the 
speedup of the QCIF sequence over the CIF 
sequence is larger than 4 times, which may be 
caused by less memory movement and bitstream 
fetching in small resolution sequence.  

As to the encoding and decoding rates, all 
simulations show that both the preliminary 
encoder and decoder, which do not afford the 
real-time processing, require advanced 
improvement on the speed. According to the 
profiling of function timing for the individual 
module, the most computational burden modules 
in the encoder cover motion estimation and 
bitstream I/O. The motion estimation module 
MVFAST in the MPEG-4 reference are not as 
fast as it’s expected. For the decoder, the most 
time-consuming modules include bitstream I/O 
and YUV display. Especially, the YUV player 
on the ARM Linux platform occupies lots of the 
CPU time, which takes 20 milliseconds to 
display each frame in QCIF resolution. To 
realize a real-time encoder and decoder, we’re 
searching for another fast algorithms to reduce 

Table II. The simulation results for various testing conditions on the X-Pilot MA-1000 system. The 
overall decoder execution time includes the time to display all reconstructed frame on the monitor. 

 
Sequence name Akiyo Akiyo Foreman Foreman 

Resolution CIF (352x288) QCIF (176x144) CIF (352x288) QCIF (176x144) 
Bistream Size (bytes) 279161 79791 320738 80281 

Encoder Execution Time (sec) 551.5 138.4 676.9 166.8 
Encoding Rate (fps) 0.18 0.72 0.15 0.6 

Decoder Execution Time (sec) 32 9 94 16 
Decoding Rate (fps) 3.125 11.11 1.06 6.25 

Average PSNR (Y) 42.90 41.29 33.06 31.54 

Average PSNR (U) 45.29 43.06 38.51 37.45 

Average PSNR (V) 46.47 44.14 39.53 37.49 

 



 4

complexity of these time burden modules. In 
addition, we will employ the optimized tools and 
special instruction sets that are provided for the 
ARM device and Linux platform for speeding up 
the current encoder and decoder. 

In the optimized decoder, the error resilience 
capabilities and crash proof implementation are 
completed. After the error resilient techniques 
were accomplished into the  MPEG-4 reference 
software, as shown in Figure 2, we can decode 
all the IVOPs and PVOPs even under BER of 
value 10-5 and complete decoding successfully. 
Where the testing sequences, Foreman and 
Coastguard of CIF format, are encoded at 512 or 
768 kilobits/sec. The frame rate is 30 frames per 
second (fps) and each GOV has 60 frames where 
an I-picture is followed by 59 P-pictures. For 
each bitstream, each VP has 500 bits. In this 
report, we take care of all PVOPs, which can 
improve the decoder based on the approaches 
similar to those adopted for IVOPs [8]. 
Especially, we will take care of the error drifting 
problem when the inter prediction is used for 
PVOPs. Thus, the AIR technique will cope with 
the drifting problem by interrupting the error 
propagation using Intra coding mode for PVOPS 
automatically. Additionally, a simple scheme of 
error concealment is adopted for the better visual 
quality. 

5. Conclusion 
We have proposed the optimized MPEG-4 

video encoder and decoder. Both the encoder 
and decoder that could snot reach the real-time 
stage will be further improved. In addition, the 
video decoder of crash-proof and error resilience 
can successfully recover most of the corrupted 
VOPs under error-prone conditions. The next 
steps for the error resilient decoder are to 
strengthen error robustness, recovery and 
concealment. 

It is the most important that combines the 
adaptive intra refreshment encoder with error 
resilience decoder, we believe the new results 
will be more interesting. 

For the demo system on Linux platform, the 
future work is to optimize the elementary 
functions in speed and to integrate the real-time 
encoder and decoder into Linux-based platform 
the ARM-9 device. 

6. References 
[1] A. Dagiuklas and M.Ghanbari, “Packet video  

transmission in an ATM network using 
forced frame refreshment, “ 1996 

[2] L. Favalli, C. Fraschini, A. Mecocci, “A low 
refresh-rate video sequences compression 
technique using quadtrees and adaptive 
spatial sampling, ” 1997 

[3] E. Steinbach, N. Farber, B. Girod, ”Standard 
compatible extension of H.263 for robust 
video transmission in mobile environment, ” 
1997 

[4] J. Y. Liao and J. Vilasenor, “Adaptive intra 
block update for robust transmission of 
H.263”, 2000. 

[5]  Y. Wang, S. Wenger, J. Wen, and A. K. 
Katsaggelos, “Error resilient video voding 
techniques, ” IEEE Signal processing 
Magazine, 2000 

[6]  R. Talluri, “Error resilient video coding in 
the ISO MPEG-4 standard, ” IEEE 
Communications magazine, June, 1998. 

[7] D.-S. Luis, P. Fernando, “Error resilience 
and concealment performance for MPEG-4 
frame-based video coding, ” Signal 
Processing: Image Communication 14, 1999 

[8] Y.-L. Lee, C.-N. Wang, and Tihao Chiang, 
“An MPEG-4 error resilient decoder, “  in 
Proc. of WCE 2001. 

[9] S-H Wang, C.-N. Wang, Tihao Chiang, and 
H. Sun,  “AHG report on editorial 
convergence of MPEG-4 reference software 
“  in ISO/IEC JTC1/SC29/WG11, m8884, 
2002 

[10] AboCom Systems, Inc., 

les@ms3.abocom.com.tw 

31.5

32

32.5

33

33.5

0.00E+00 2.50E-06 5.00E-06 7.50E-06 1.00E-05

BER

A
ve

ra
ge

 Y
 C

om
p

on
en

t P
S

N
R

 (d
B

) 512k_error

 
(a)Foreman_CIF 

28.5

29

29.5

30

30.5

31

31.5

32

0.00E+00 2.50E-06 5.00E-06 7.50E-06 1.00E-05

BER

A
ve

ra
ge

 Y
 C

om
p

on
en

t P
S

N
R

 (d
B

)

512k_error 768k_error

 
(b) Coastguard_CIF 

Figure 2. Picture quality of the Y component 
under various BERs for the recovered video 
sequences. 


