
Available online at www.sciencedirect.com
www.elsevier.com/locate/comcom

Computer Communications 31 (2008) 999–1011
Quick convergecast in ZigBee beacon-enabled tree-based
wireless sensor networks

Meng-Shiuan Pan *, Yu-Chee Tseng

Department of Computer Science, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsin-Chu 30010, Taiwan

Available online 25 December 2007
Abstract

Convergecast is a fundamental operation in wireless sensor networks. Existing convergecast solutions have focused on reducing
latency and energy consumption. However, a good design should be compliant to standards, in addition to considering these factors.
Based on this observation, this paper defines a minimum delay beacon scheduling problem for quick convergecast in ZigBee tree-based
wireless sensor networks and proves that this problem is NP-complete. Our formulation is compliant with the low-power design of IEEE
802.15.4. We then propose optimal solutions for special cases and heuristic algorithms for general cases. Simulation results show that the
proposed algorithms can indeed achieve quick convergecast.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Convergecast; IEEE 802.15.4; Scheduling; Wireless sensor network; ZigBee
1. Introduction

The rapid progress of wireless communication and
embedded micro-sensing MEMS technologies has made
wireless sensor networks (WSNs) possible. A WSN consists
of many inexpensive wireless sensors capable of collecting,
storing, processing environmental information, and com-
municating with neighboring nodes. Applications of WSNs
include wildlife monitoring [3,4], object tracking [16,18],
and dynamic path finding [15,19].

Recently, several WSN platforms have been developed,
such as MICA [6] and Dust Network [2]. For interoperabil-
ity among different systems, standards such as ZigBee [24]
have been developed. In the ZigBee protocol stack, physi-
cal and MAC layer protocols are adopted from the IEEE
802.15.4 standard [13]. ZigBee solves interoperability issues
from the physical layer to the application layer.

ZigBee supports three kinds of networks, namely star,
tree, and mesh networks. A ZigBee coordinator is responsi-
0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2007.12.015

* Corresponding author. Tel.: +886 933243597.
E-mail addresses: mspan@cs.nctu.edu.tw (M.-S. Pan), yctseng@cs.

nctu.edu.tw (Y.-C. Tseng).
ble for initializing, maintaining, and controlling the net-
work. A star network has a coordinator with devices
directly connecting to the coordinator. For tree and mesh
networks, devices can communicate with each other in a
multihop fashion. The network is formed by one ZigBee
coordinator and multiple ZigBee routers. A device can join
a network as an end devices by the associating with the
coordinator or a router. In a tree network, the coordinator
and routers can announce beacons. However, in a mesh
network, regular beacons are not allowed. Beacons are an
important mechanism to support power management.
Therefore, the tree topology is preferred, especially when
energy saving is a desirable feature. To support ZigBee bea-
con-enabled tree networks, the IEEE 802.15 WPAN Task
Group 4 further defines a revision of the IEEE 802.15.4
[14] specification in 2006. One of the major changes is
structure of superframes to support power management.
On the contrary, to our understanding, power management
is still impossible for mesh-based ZigBee networks in the
current specification. Therefore, we will focus on tree-
based, beacon-enabled ZigBee networks in this work.

Considering that data gathering is a major application
of WSNs, convergecast has been investigated in several

mailto:mspan@cs.nctu.edu.tw
mailto:yctseng@cs. nctu.edu.tw
mailto:yctseng@cs. nctu.edu.tw

1000 M.-S. Pan, Y.-C. Tseng / Computer Communications 31 (2008) 999–1011
works [8,9,11,17,20,23]. With the goals of low latency and
low energy consumption, Ref. [20] shows how to connect
sensors as a balanced reporting tree and how to assign
CDMA codes to sensors to diminish interference among
sensors, thus achieving energy efficiency. The work [23]
aims to minimize the overall energy consumption under
the constraint that sensed data should be reported within
specified time. Dynamic programming algorithms are pro-
posed by assuming that sensors can receive multiple pack-
ets at the same time. As can be seen, both [20] and [23] are
based on quite strong assumptions on communication
capability of sensor nodes and they do not fit into the Zig-
Bee specification. In [17], the authors propose an energy-
efficient and low-latency MAC, called DMAC. Sensors
are connected by a tree and stay in sleep state for most
of the time. When sensors change to active state, they are
first set to the receive mode and then to the transmit mode.
DMAC achieves low-latency by staggering wake-up sched-
ules of sensors at the time instant when their children
switch to the transmit mode. Similar to [17], Ref. [11]
arranges wake-up schedule of sensors by taking traffic
loads into account. Each parent periodically broadcasts
an advertisement containing a set of empty slots. Children
nodes request empty slots according to their demands. In
[9], the authors propose a distributed convergecast schedul-
ing algorithm. The basic concept is to connect nodes by a
spanning tree. Then the algorithm reduces the tree to multi-
ple lines. For each line, the algorithm schedules nodes’
transmission times in a bottom-up manner. Ref. [8] pre-
sents a centralized solution to convergecast. The algorithm
divides nodes into many segments such that the transmis-
sion of a node in a segment does not cause interference
to other transmissions in the same segment. The aim is to
increase the degree of parallel transmissions to decrease
latencies. Although these results [8,9,11,17] are designed
for quick convergecast, the solutions are not compliant to
the ZigBee standard for the following two reasons. Firstly,
in these works, nodes’ wake/sleep times are dynamically
changed according to their schedules. However, in a Zig-
Bee beacon-enabled tree network, nodes’ wake/sleep times
must be fixed in the way that each router wakes up twice in
each cycle to receive its children’s packets and to transmit
packets to its parent, respectively. The coordinator (resp.,
an end device) wakes up once to receive its children’s pack-
ets (resp., to transmit packets to its parent). Secondly, the
scheduling of [8,9,11,17] is transmission-based, while ours
are receiving-based. The implication is that the former
may cause a router to be active multiple times per cycle.
This is incompatible with the ZigBee specification.

This paper aims at designing quick convergecast solu-
tions for ZigBee tree-based, beacon-enabled WSNs. This
work is motivated by the following observations. First,
we see that most related works are not compliant to the
ZigBee standard. Second, we believe that tree-based topol-
ogy is more suitable if power management is a main con-
cern in WSNs. The network scenario is shown in Fig. 1.
The network contains one sink (ZigBee coordinator), some
ZigBee routers, and some ZigBee end devices. Each ZigBee
router is responsible for collecting sensed data from end
devices associated with it and relaying incoming data to
the sink. According to specifications, a ZigBee router can
announce a beacon to start a superframe. Each superframe
consists of an active portion followed by an inactive portion.
On receiving its parent router’s beacon, an end device has
to wake up for an active portion to sense the environment
and communicate with its coordinator. However, to avoid
collision with its neighbors, a router should shift its active
portion by a certain amount. Fig. 1 shows a possible allo-
cation of active portions for routers A, B, C, and D. The
collected sensory data of A in the k-th superframe can be
sent to C in the same superframe. However, because the
active portion of B in the k-th superframe appears after
that of C, the collected data of B in the k-th superframe
can only be relayed to C in the (k + 1)-th superframe.
The report delay from B to C is almost the length of one
superframe. The delay can be eliminated if the active por-
tion of B in the k-th superframe appears before that of
C. The delay is not negligible because of the low duty cycle
design of IEEE 802.15.4. For example, in 2.4 GHz PHY,
with 1.56% duty cycle, a superframe can be as long as
251.658 s (with an active portion of 3.93 s). Clearly, for
large-scale WSNs, the convergecast latency could be signif-
icant if the problem is not carefully addressed. The quick
convergecast problem is to schedule the beacons of routers
to minimize the convergecast latency. We prove that this
problem is NP-complete by reducing the 3-CNF-SAT
problem to it. We show two special cases of this problem
where optimal solutions can be found in polynomial time
and propose two heuristic algorithms for general cases.
To the best of our knowledge, this is the first result that
provides convergecast solutions in ZigBee beacon-enabled
tree networks.

The rest of this paper is organized as follows. Section 2
briefly introduces IEEE 802.15.4 and ZigBee. The quick
convergecast problem is formally defined in Section 3. Sec-
tion 4 presents our scheduling solutions. Simulation results
are given in Section 5. Finally, Section 6 concludes this
paper.

2. Overview of IEEE 802.15.4 and ZigBee standards

IEEE 802.15.4 [13] specifies the physical and data link
protocols for low-rate wireless personal area networks

(LR-WPAN). In the physical layer, there are three fre-
quency bands with 27 radio channels. Channel 0 ranges
from 868.0 to 868.6 MHz, which provides a data rate of
20 kbps. Channels 1 to 10 work from 902.0 to 928.0
MHz and each channel provides a data rate of 40 kbps.
Channels 11 to 26 are located from 2.4 to 2.4835 GHz, each
with a data rate of 250 kbps.

IEEE 802.15.4 devices are expected to have limited
power, but need to operate for a longer period of time.
Therefore, energy conservation is a critical issue. Devices
are classified as full function devices (FFDs) and reduced

A

B

C

Sink

ZigBee router (FFD)
ZigBee end device (RFD)
Interference neighbor

k-th superframe

CAP

CAP

Schedule
of A

Schedule
of C

CAP

CAP

Schedule
of B

report

report

CAP
Schedule

of D report
to sink

CAP

report

report

CAP

(k+1)-th superframe

data from
end devices

data from
end devices

data from
end devices

data from
end devices

data from
end devices

data from
end devices

data from
end devices

C

A

B

D

Fig. 1. An example of convergecast in a ZigBee tree-based network.

M.-S. Pan, Y.-C. Tseng / Computer Communications 31 (2008) 999–1011 1001
function devices (RFDs). IEEE 802.15.4 supports star and
peer-to-peer topologies. In each PAN, one device is desig-
nated as the coordinator, which is responsible for maintain-
ing the network. A FFD has the capability of serving as a
coordinator or associating with an existing coordinator/
router and becoming a router. A RFD can only associate
with a coordinator/router and can not have children.

The ZigBee coordinator defines the superframe structure
of a ZigBee network. As shown in Fig. 2(a), the structure of
superframes is controlled by two parameters: beacon order

(BO) and superframe order (SO), which decide the lengths
of a superframe and its active potion, respectively. For a
beacon-enabled network, the setting of BO and SO should
satisfy the relationship 0 6 SO 6 BO 6 14. (A non-bea-
con-enabled network should set BO ¼ SO ¼ 15 to indicate
that superframes do not exist.) Each active portion consists
of 16 equal-length slots, which can be further partitioned
into a contention access period (CAP) and a contention free

period (CFP). The CAP may contain the first i slots, and
the CFP contains the rest of the 16� i slots, where
1 6 i 6 16. Slotted CSMA/CA is used in CAP. FFDs
which require fixed transmission rates can ask for guaran-

tee time slots (GTSs) from the coordinator. A CFP can
support multiple GTSs, and each GTS may contain multi-
ple slots. Note that only the coordinator can allocate
GTSs. After the active portion, devices can go to sleep to
save energy.
In a beacon-enabled star network, a device only needs
to be active for 2�ðBO�SOÞ portion of the time. Changing
the value of ðBO � SOÞ allows us to adjust the on-duty
time of devices. However, for a beacon-enabled tree net-
work, routers have to choose different times to start their
active portions to avoid collision. Once the value of
ðBO� SOÞ is decided, each router can choose from
2BO�SO slots as its active portion. In the revised version
of IEEE 802.15.4 [14], a router can select one active por-
tion as its outgoing superframe, and based on the active
portion selected by its parent, the active portion is called
its incoming superframe (as shown in Fig. 2(b)). In an out-
going/incoming superframe, a router is expected to trans-
mit/receive a beacon to/from its child routers/parent
router. When choosing a slot, neighboring routers’ active
portions (i.e., outgoing superframes) should be shifted
away from each other to avoid interference. This work
is motivated by the observation that the specification does
not clearly define how to choose the locations of routers’
active portions such that the convergecast latency can be
reduced. In our work, we consider two kinds of interfer-
ence between routers. Two routers have direct interference

if they can hear each others’ beacons. Two routers have
indirect interference if they have at least one common
neighbor. Both interferences should be avoided when
choosing routers’ active portions. Table 1 lists possible
choices of ðBO� SOÞ combinations.

0 1 109875 6432 14131211 15

Received
Beacon

Transmitted
Beacon

Inactive

BI = aBaseSuperframeDuration×2BO symbols

Inactive

Received
Beacon

Start Time >SD

0 1 1098765432 14131211 15

SD = aBaseSuperframeDuration×2SO symbols
(Incoming superframe)

SD = aBaseSuperframeDuration×2SO symbols
(Outgoing superframe)

1097 86543210 14131211 15

GTS
1

GTS
2

Beacon Beacon

Inactive

CAP CFP

BI = aBaseSuperframeDuration×2BO symbols

GTS
0

SD = aBaseSuperframeDuration×2SO symbols
(Active)

a

b

Fig. 2. IEEE 802.15.4 superframe structure.

Table 1
Relationship of BO� SO, duty cycle, and the number of active portions in a superframe

BO� SO 0 1 2 3 4 5 6 7 8 P9

Duty cycle (%) 100 50 25 12.5 6.25 3.13 1.56 0.78 0.39 60.195
Number of active portions (slots) 1 2 4 8 16 32 64 128 256 P512

1002 M.-S. Pan, Y.-C. Tseng / Computer Communications 31 (2008) 999–1011
3. The minimum delay beacon scheduling (MDBS) problem

This section formally defines the convergecast problem
in ZigBee networks. Given a ZigBee network, we model
it by a graph G ¼ ðV ;EÞ, where V contains all routers
and the coordinator and E contains all symmetric commu-
nication links between nodes in V. The coordinator also
serves as the sink of the network. End devices can only
associate with routers, but are not included in V. From
G, we can construct an interference graph GI ¼ ðV ;EIÞ,
where edge ði; jÞ 2 EI if there are direct/indirect interfer-
ences between i and j. There is a duty cycle requirement a
for this network. From a and Table 1, we can determine
the most appropriate value of BO� SO. We denote by
k ¼ 2BO�SO the number of active portions (or slots) per bea-
con interval.

The beacon scheduling problem is to find a slot assign-
ment sðiÞ for each router i 2 V , where sðiÞ is an integer
and sðiÞ 2 ½0; k � 1�, such that router i’s active portion is
in slot sðiÞ and sðiÞ 6¼ sðjÞ if ði; jÞ 2 EI. Here, the slot assign-
ment means the position of the outgoing superframe of
each router (the position of the incoming superframe, as
clarified earlier, is determined by the parent of the router).
Motivated by Brook’s theorem [21], which proves that n

colors are sufficient to color any graph with a maximum
degree of n, we would assume that k P DI, where DI is
the maximum degree of GI.
Given a slot assignment for G, the report latency from
node i to node j, where ði; jÞ 2 E, is the number of slots,
denoted by dij, that node i has to wait to relay its collected
sensory data to node j, i.e.,

dij ¼ ðsðjÞ � sðiÞÞmod k: ð1Þ
Note that the report latency from node i to node j

ðdijÞ may not by equal to the report latency from node
j to node i ðdjiÞ. Therefore, we can convert G into a
weighted directed graph GD ¼ ðV ;EDÞ such that each
ði; jÞ 2 E is translated into two directed edges ði; jÞ
and ðj; iÞ such that wðði; jÞÞ ¼ dij and wððj; iÞÞ ¼ dji.
The report latency for each i 2 V to the sink is the
sum of report latencies of the links on the shortest
path from i to the sink in GD. The latency of the con-
vergecast, denoted as LðGÞ, is the maximum of all
nodes’ report latencies.

Definition 1. Given G ¼ ðV ;EÞ, G’s interference graph
GI ¼ ðV ;EIÞ, and k available slots, the minimum delay

beacon scheduling (MDBS) problem is to find an interfer-
ence-free slot assignment sðiÞ for each i 2 V such that the
convergecast latency LðGÞ is minimized.

To prove that the MDBS problem is NP-complete, we
define a decision problem as follows.

Definition 2. Given G ¼ ðV ;EÞ, G’s interference graph
GI ¼ ðV ;EIÞ, k available slots, and a delay constraint d,

2 1

0

2 11 2
x12

x12 x22 x32
x22 x32

t

M.-S. Pan, Y.-C. Tseng / Computer Communications 31 (2008) 999–1011 1003
the bounded delay beacon scheduling (BDBS) problem is to
decide if there exists an interference-free slot assignment
sðiÞ for each i 2 V such that the convergecast latency
LðGÞ 6 d.
Theorem 1. The BDBS problem is NP-complete.
1 2

0 0

1 22 1

0
C1 C2 C3

x11
x11 x31x21x21 x31

Fig. 3. An example of reduction from the 3-CNF-SAT to the BDBS
problem.
Proof. First, given slot assignments for nodes in V, we can
find the report latency of each i 2 V by running a shortest
path algorithm on GD. We can then check if LðGÞ 6 d.
Clearly, this takes polynomial time.

We then prove that the BDBS problem is NP-hard by
reducing the 3 conjunctive normal form satisfiability (3-
CNF-SAT) problem to a special case of the BDBS problem
in polynomial time. Given any 3-CNF formula C, we will
construct the corresponding G and GI. Then we show that
C is satisfiable if and only if there is a slot assignment for
each i 2 V using no more than k ¼ 3 slots such that
LðGÞ 6 4 slots.

Let C ¼ C1 ^ C2 ^ � � � ^ Cm, where clause Cj ¼ xj;1

_xj;2 _ xj;3, 1 6 j 6 m, xj;i 2 fX 1;X 2; . . . ;X ng, and X i 2
fxi;�xig, where xi is a binary variable, 1 6 i 6 n. We first
construct G from C as follows:

1. For each clause Cj, j ¼ 1; 2; . . . ;m, add a vertex Cj in G.
2. For each literal X i, i ¼ 1; 2; . . . ; n, add four vertices xi1,

xi2, �xi1, and �xi2 in G.
3. Add a vertex t as the sink of G.
4. Add edges ðt; xi2Þ and ðt;�xi2Þ to G, for i ¼ 1; 2; . . . ; n.
5. Add edges ðxi1; xi2Þ and ð�xi1;�xi2Þ to G, for i ¼ 1; 2; . . . ; n.
6. For each i ¼ 1; 2; . . . ; n and each j ¼ 1; 2; . . . ;m, add an

edge ðCj; xi1Þ (resp., ðCj;�xi1Þ) to G if xi (resp., �xi) appears
in Cj.

Then we construct GI as follows.

1. Add all vertices and edges in G into GI.
2. Add edges ðxi1;�xi1Þ and ðxi2;�xi2Þ to GI, for i ¼ 1; 2; . . . ; n.
3. Add edges ðCj; xi2Þ and ðCj;�xi2Þ to GI, for i ¼ 1; 2; . . . ; n

and j ¼ 1; 2; . . . ;m.

Then we build a one-to-one mapping from each truth
assignment of C to a slot assignment of G. We establish the
following mapping:

1. Set sðtÞ ¼ 0.
2. Set sðCjÞ ¼ 0, j ¼ 1; 2; . . . ;m.
3. Set sðxi1Þ ¼ 1 and sð�xi2Þ ¼ 1, i ¼ 1; 2; . . . ; n, if xi is true;

otherwise, set sðxi1Þ ¼ 2 and sð�xi2Þ ¼ 2.
4. Set sðxi2Þ ¼ 1 and sð�xi1Þ ¼ 1, i ¼ 1; 2; . . . ; n, if �xi is true;

otherwise, set sðxi2Þ ¼ 2 and sð�xi1Þ ¼ 2.

The above reduction can be computed in polynomial
time. By the above reduction, vertices xi1 or �xi1,
i ¼ 1; 2; . . . ; n, that are assigned to slot 1 (resp., slot 2) will
have a report latency of 2 (resp., 4) and vertices xi2 or �xi2,
i ¼ 1; 2; . . . ; n, that are assigned to slot 1 (resp., slot 2) will
have a report latency of 2 (resp., 1). Hence, for those
vertices xi1, �xi1, xi2, and �xi2, i ¼ 1; 2; . . . ; n, the longest report
latency will be 4.

To prove the if part, we need to show that if C is
satisfiable, there is a slot assignment such that k ¼ 3 and
LðGÞ 6 4. Since C satisfiable, there must exist an assign-
ment such that each clause Cj, j ¼ 1; 2; . . . ;m, is true. If a
clause Cj is true, at least one variable in Cj is true.
According to the reduction, Cj can always find an edge
ðCj; xi1Þ or ðCj;�xi1Þ with wððCj; xi1ÞÞ ¼ 1 or wððCj;�xi1ÞÞ ¼ 1,
where i ¼ 1; 2; . . . ; n. Thus, when C is satisfiable, the
reporting latency for each clause is 3. This achieves
LðGÞ ¼ 4.

For the only if part, if each vertex Cj, j ¼ 1; 2; . . . ;m, can
find at least an edge with weight 1 to one of xi1 and �xi1, for
i ¼ 1; 2; . . . ; n, to achieve a report latency of 3, it must be
that each clause has at least one variable to be true. So
formula C is satisfiable. Otherwise, the report latency of Cj,
j ¼ 1; 2; . . . ;m, will be 6. h

For example, given C ¼ ðx1 _ �x2 _ �x3Þ ^ ð�x1 _ �x2 _ x3Þ^
ðx1 _ x2 _ �x3Þ, Fig. 3 shows the corresponding G. The truth
assignment ðx1; x2; x3Þ ¼ ðT ; F ; T Þ makes C satisfiable.
According to the reduction and the mapping in the above
proof, we can obtain the network G and its slot assignment
as shown in Fig. 3 such that LðGÞ ¼ 4.

4. Algorithms for the MDBS problem

4.1. Optimal solutions for special cases

Optimal solutions can be found for the MDBS problem
in polynomial time for regular linear networks and regular
ring networks, as illustrated in Fig. 4. In such networks,
each vertex is connected to one or two adjacent vertices
and has an interference relation with each neighbor within
h hops from it, where h P 2. In a regular linear network,
we assume that the sink t is at one end of the network.
Clearly, the maximum degree of GI is 2h. We will show that
an optimal solution can be found if the number of slots
k P hþ 1. The slot assignment can be done in a bottom-
up manner. The bottom node is assigned to slot 0. Then,

0 1 2 0
t

1 2 0 1 2 0

1

0 2

3

1

3

2

1

2

0

3

size:11

t

left group right group

l1

r1

r2

1
0

23

12

3

2
0

01

3

size:12

t

left group
right group

l1

r1

r2

a

b

Fig. 4. Examples of optimal slot assignments for regular linear and ring networks ðh ¼ 2Þ. Dotted lines mean interference relations.

1004 M.-S. Pan, Y.-C. Tseng / Computer Communications 31 (2008) 999–1011
for each vertex v, sðvÞ ¼ ðk0 þ 1Þmodk, where k0 is the slot
assigned to v’s child.

Theorem 2. For a regular linear network, if k P hþ 1, the

above slot assignment achieves a report latency of j V j �1,
which is optimal.

Proof. Clearly, the slot assignment is interference-free.
Also the report latency of j V j �1 is clearly the lower
bound. h

For a regular ring network, we first partition vertices
excluding t into left and right groups as illustrated in
Fig. 4(b) such that the left group consists of the sink node
t and bjV j�1

2
c other nodes counting counter clockwise from t,

and the right group consists of those djV j�1
2
e nodes counting

clockwise from t. Now we consider the ring as a spanning
tree with t as the root and left and right groups as two lin-
ear paths. Assuming that bjV j�1

2
cP 2h and k P 2h, the slot

assignment works as follows:

1. The bottom node in the left group is assigned to slot 0.
2. All other nodes in the left group are assigned with slots in a

bottom-up manner. For each node i in the left group, we
let sðiÞ ¼ ðjþ 1Þmod k, where j is the slot of i’s child.

3. Nodes in the right group are assigned with slots in a top-
down manner. For each node i in the right group, we let
sðiÞ ¼ ðj� cÞmodk, where j is the slot assigned to i’s
parent and c is the smallest constant (1 6 c 6 k) that
ensures that sðiÞ is not used by any of its interference
neighbors that have been assigned with slots.

It is not hard to prove the slot assignment is interfer-
ence-free because nodes receives slots sequentially and we
have avoided using the same slots among interfering neigh-
bors. Although this is a greedy approach, we show that c is
equal to 1 in step 3 in most of the cases except when two
special nodes are visited. This gives an asymptotically opti-
mal algorithm, as proved in the following theorem.

Theorem 3. For a regular ring network, assuming that
k P 2h and bjV j�1

2 cP 2h, the above slot assignment achieves

a report latency LðGÞ ¼ bjV j�1
2 c þ h, which is optimal within a

factor of 1.5.
Proof. We first identify three nodes on the ring (refer to
Fig. 4(b)):

� l1: the bottom node in the left group.
� r1: the first node in the right group.
� r2: the node that is h hops from l1 counting counter

clockwise.

The report latency of each node can be analyzed as
follows. The parent of node x is denoted by parðxÞ.

A1. For each node i in the left group except the sink t, the
latency from i to parðiÞ is 1.

A2. The latency from r1 to t is h.
A3. For each node i next to r1 in the right group but

before r2 (counting clockwise), the latency from i to
parðiÞ is 1.

A4. The latency from r2 to parðr2Þ is 1 if the ring size is
even; otherwise, the latency is 2.

A5. For each node i in the right group that is a
descendant of r2, the report latency from i to parðiÞ
is 1.

It is not hard to prove that A1, A2, and A3 are true. To
see A4 and A5, we make the following observations. The
function pariðxÞ is to apply i times the parðÞ function on
node x. Note that par0ðxÞ means x itself.

M.-S. Pan, Y.-C. Tseng / Computer Co
O1. When the ring size is even, the equality
sðpari�1ðl1ÞÞ ¼ sðpariðr2ÞÞ holds for i ¼ 1; 2; . . . ;
bjV j�1

2
c � h� 1. More specifically, this means that (i)

l1 and parðr2Þ will receive the same slot, (ii) parðl1Þ
and par2ðr2Þ will receive the same slot, etc. This can
be proved by induction by showing that the i-th
descendant of t in the right group will be assigned
the same slot as the ðhþ i� 1Þ-th descendant of t in
the left group (the induction can go in a top-down
manner). This property implies that when assigning
a slot to r2 in step 3, c ¼ 1 in case that the ring size
is even. Further, r2 and its descendants will be
sequentially assigned to slots k � 1, k � 2, . . ., k � h,
which implies that c ¼ 1 when doing the assignments
in step 3. So properties A4 and A5 hold for the case
of an even ring.

O2. When the ring size is odd, the equality

sðpariðl1ÞÞ ¼ sðpariðr2ÞÞ holds for i ¼ 1; 2; . . . ;

bjV j�1
2
c � h. This means that (i) parðl1Þ and parðr2Þ will

receive the same slot, and (ii) par2ðl1Þ and par2ðr2Þ
will receive the same slot, etc. Again, this can be
proved by induction as in O1. This property implies
that c ¼ 2 when assigning a slot to r2 in step 3, and
c ¼ 1 when assigning slots to descendants of r2. So
properties A4 and A5 hold for the case of an odd
ring.

The equality of slot assignments pointed out in O1 and
O2 is illustrated in Fig. 4(b) by those numbers in gray
nodes. In summary, the report latency of the left group is
bjV j�1

2 c. When the ring size is even, the report latency of
the right group is the number of nodes in this group, jV j2 ,
plus the extra latency h� 1 incurred at r1. So
LðGÞ ¼ jV j2 þ h� 1 ¼ bjV j�1

2 c þ h. When the ring size is
odd, the report latency of right group is the number
of nodes in this group, jV j�1

2 , plus the extra latency h� 1
incurred at r1 and the extra latency 1 incurred at r2. So
LðGÞ ¼ bjV j�1

2 c þ h.
A lower bound on the report latency of this problem

is the maximum number of nodes in each group
excluding t. Applying bjV j�1

2 c as a lower bound and
using the fact that bjV j�1

2 cP 2h, LðGÞ will be smaller
than 1:5� bjV j�1

2 c, which implies the algorithm is opti-
mal within a factor of 1.5. Note that the condition
bjV j�1

2 cP 2h is to guarantee that t will not locate within
h hops from r2. Otherwise, the observation O2 will not
hold. h
4.2. A centralized tree-based assignment scheme

Given G ¼ ðV ;EÞ, GI ¼ ðV ;EIÞ, and k, we propose a
centralized slot assignment heuristic algorithm. Our algo-
rithm is composed of the following three phases:
phase 1. From G, we first construct a BFS tree T rooted at
sink t.
phase 2. We traverse vertices of T in a bottom-up manner.
For these vertices in depth d, we first sort them
according to their degrees in GI in a descending
order. Then we sequentially traverse these vertices
in that order. For each vertex v in depth d visited,
we compute a temporary slot number tðvÞ for v as
follows.

1. If v is a leaf node, we set tðvÞ to the minimal non-neg-
ative integer l such that for each vertex u that has been
visited and ðu; vÞ 2 EI, (tðuÞmodk) 6¼ l.

2. If v is an in-tree node, let m be the maximum of the
numbers that have been assigned to v’s children, i.e.,
m ¼ maxftðchildðvÞÞg, where childðvÞ is the set of v’s
children. We then set tðvÞ to the minimal non-negative
integer l > m such that for each vertex u that has been
visited and ðu; vÞ 2 EI, (tðuÞmodk) 6¼ ðlmodkÞ.

After every vertex v is visited, we make the assignment
sðvÞ ¼ tðvÞmodk.

mmunications 31 (2008) 999–1011 1005
phase 3. In this phase, vertices are traversed sequentially
from t in a top-down manner. When each
vertex v is visited, we try to greedily find a new slot
l such that (sðparðvÞÞ � l)modk < ðsðparðvÞÞ�
sðvÞÞmod k, such that l 6¼ sðuÞ for each
ðu; vÞ 2 EI, if possible. Then we reassign sðvÞ ¼ l.

Note that in phase 2, a node with a higher degree
means that it has more interference neighbors, implying
that it has less slots to use. Therefore, it has to be
assigned to a slot earlier. Also note that, the number
tðvÞ is not a modulus number. However, in step 2 of phase
2, we did check that if tðvÞ is converted to a slot number,
no interference will occur. Intuitively, this is a temporary
slot assignment that will incur the least latency to v’s chil-
dren. At the end, tðvÞ is converted to a slot assignment
sðvÞ. Phase 3 is a greedy approach to further reduce the
report latency of routers. For example, Fig. 5(a) shows
the slot assignment after phase 2. Fig. 5(b) indicates that
B, C, and D can find another slots and their report laten-
cies are decreased. This phase can reduce LðGÞ in some
cases.

The computational complexity of this algorithm is
analyzed below. In phase 1, the complexity of construct-
ing a BFS tree is Oðj V j þ j E jÞ. In phase 2, the cost of
sorting is at most Oðj V j2Þ and the computational cost to
compute tðvÞ for each vertex v is bounded by OðkDIÞ,
where DI is the degree of GI. So the time complexity
of phase 2 is Oðj V j2 þ kDI j V jÞ. Phase 3 performs a
similar procedure as phase 2, so its time complexity is
also OðkDI j V jÞ. Overall, the time complexity is
Oðj V j2 þ kDI j V jÞ.

4.3. A distributed assignment scheme

In this section, we propose a distributed slot assignment
algorithm. Each node has to compute its direct as well as
indirect interference neighbors in a distributed manner.
To achieve this, we will refer to the heterogeneity approach

a b

5 1 0

0

6

5 4 3

3

6

E
EI

t

A B C

D

t

A B C

D

Fig. 5. (a) Slot assignment after phase 2. (b) Slot compacting by phase 3.

1006 M.-S. Pan, Y.-C. Tseng / Computer Communications 31 (2008) 999–1011
in [22], which adopts power control to achieve this goal.
Assuming routers’ default transmission range is r, interfer-
ence neighbors must locate within range 2r. From time-to-
time, each router will boost its transmission power to dou-
ble its default transmission range and send HELLO pack-
ets to its neighbor routers. Each HELLO packet further
contains sender’s (1) depth,1 (2) the location of outgoing
superframe (i.e., slot), and (3) number of interference
neighbors. Note that all other packets are transmitted by
the default power level. When booting up, each router
will broadcast HELLO packets claiming that its depth
and slot are NULL. After joining the network and choos-
ing a slot, the HELLO packets will carry the node’s depth
and slot information. The algorithm is triggered by the sink
t setting sðtÞ ¼ k � 1 and then broadcasting its beacon. A
router v 6¼ t that receives a beacon will decide its slot as
follows.

1. Node v sends an association request to the beacon
sender.

2. If v fails to associate with the beacon sender, it stops the
procedure and waits for other beacons.

3. If v successfully associates with a parent node parðvÞ, it
computes the smallest positive integer l such that
ðsðparðvÞÞ � lÞmodk 6¼ sðuÞ for all ðu; vÞ 2 EI and
sðuÞ 6¼ NULL. Then v chooses sðvÞ ¼ ðsðparðvÞÞ� lÞ
modk as its slot.

4. Then, v broadcasts HELLOs including its slot assign-
ment sðvÞ for a time period twait. If it finds that
sðvÞ ¼ sðuÞ for any ðu; vÞ 2 EI, v has to change to a
new slot if one of the following rules is satisfied and goes
back to step 3.
(a) Node u has more interference neighbors than v.
(b) Node u and v have the same number of interference

neighbors but the depth of u is lower than v, i.e., u is
closer to the sink than v.

(c) Node u and v have the same number of interference
neighbors and they are at the same depth but the u’s
ID is smaller than v’s.
1 The depth of a node is the length of the tree path from the root to the
node. The root node is at depth zero.
5. After twait, v can finalize its slot selection and broadcast
its beacons.

In this distributed algorithm, slots are assigned to rou-
ters, ideally, in a top-down manner. However, due to trans-
mission latency, some routers at lower levels may find slots
earlier than those at higher levels. Also note that the time
twait is to avoid possible collision on slot assignments due
to packet loss.

5. Simulation results

This section presents our simulation results. We first
assume that the size of sensory data is negligible and that
all routers generate reports at the same time, and com-
pare the performances of different convergecast algo-
rithms. Then we simulate more realistic scenarios where
the size of sensory data is not negligible and routers need
to generate reports periodically or passively driven by
events randomly appearing in certain regions in the sens-
ing field. More specifically, sensors generate reports
according to certain application specifications. Devices
all run ZigBee and IEEE 802.15.4 protocols to communi-
cate with each other. Routers can aggregate child sen-
sors’ reports and report to their parents directly. Each
router has a fix-size buffer. When a router’s buffer over-
flows, this router will not accept further incoming frames.
We also measure the goodput of the network, which is
defined as the ratio of sensors’ reports successfully
received by the sink. Some parameters used in our simu-
lation are listed in Table 2.

5.1. Comparison of different convergecast algorithms

We compare the proposed slot assignment algorithms
against a random slot assignment (denoted by RAN)
scheme and a greedy slot assignment (denoted by GDY)
scheme. In RAN, the slot assignment starts from the sink
and each router, after associating with a parent router, sim-
ply chooses any slot which has not been used by any of its
interference neighbors. In GDY, routers are given a
sequence number in a top-down manner. The sink sets its
slot to k � 1. Then the slot assignment continues in
sequence. For a node i, it will try to find a slot
sðiÞ ¼ sðjÞ � l modk, where j is the predecessor of i and l

is the smallest integer letting sðiÞ is the slot which does
not assign to any of i’s interference neighbors. In the sim-
ulations, routers are randomly distributed in a circular
region of a radius r and a sink is placed in the center.
Our centralized tree-based scheme and distributed slot
assignment scheme are denoted as CTB and DSA, respec-
tively. We compare the report latency LðGÞ (in terms of
slots).

Fig. 6 shows some slot assignment results of CTB and
DSA when r = 35 m and k ¼ 64. Devices are randomly dis-
tributed. The transmission range of routers is set to 20 m.
In this case, CTB performs better than DSA.

Table 2
Simulation parameters

Parameter Value

Length of a frame’s header and tail 18 Bytes
Length of a sensor’s report 16 Bytes
Beacon length 18 Bytes
Maximum length of a frame 127 Bytes
Bit rate 250 kbps
Symbol rate 62.5 k symbols/s
aBaseSuperframeDuration 960 symbols
aUnitBackoffPeriod 20 symbols
aCCATime 8 symbols
MacMinBE 3
aMaxBE 5
MacMaxCSMABackoffs 4
Maximum number of retransmissions 3

2 Currently, there are some platforms which are equipped with larger
RAMs. For example, Jennic JN5121 [5] has a 96 KB RAM and
CC2420DBK [1] has a 32 KB RAM.

3 There are sixteen mini-slots per active portion (slot).

M.-S. Pan, Y.-C. Tseng / Computer Communications 31 (2008) 999–1011 1007
Next, we observe the impact of different r, CR (number
of routers), and T R (transmission distance). Fig. 7(a) shows
the impact of r when k ¼ 64, T R ¼ 25 m, and
CR ¼ 3� ðr=10Þ2. CTB performs the best. DSA performs
slightly worse than CTB, but still significantly outperforms
RAN and GDY. It can be seen that RAN and GRY could
result in very long convergecast latency. Both CTB and
DSA are quite insensitive to the network size. But this is
not the case for RAN and GDY. Fig. 7(b) shows the
impact of T R when CR ¼ 300, r ¼ 100 m, and k ¼ 64. Since
a larger transmission range implies higher interference
among routers, the report latencies of CTB and DSA will
increase linearly as T R increases. The report latency of
RAN also increases when T R ¼ 17–21 m because of the
increased interference. After T R P 22 m, the latency of
RAN decreases because that the network diameter is
reduced. Basically, GDY behaves the same as CTB and
DSA. But when the transmission range is larger, the report
latency slightly becomes small.

Fig. 7(c) shows the impact of CR when r ¼ 100 m,
T R ¼ 20 m, and k ¼ 128. As a larger CR means a higher net-
work density and thus more interference, the report laten-
cies of CTB and DSA increase as CR increases. Since the
network diameter is bounded, the report latency of RAN
is also bounded. GDY is sensitive to the number of routers
when there are less routers. This is because that each router
can own a slot and the report latency increases proportion-
ally to the number of routers. With r ¼ 100 m, CR ¼ 300,
and T R ¼ 20 m, Fig. 7(d) shows the impact of routers’ duty
cycle. Note that a lower duty cycle means a larger number
of available slots. Interestingly, we see that the report laten-
cies of CTB, DSA, and GDY are independent of the num-
ber of slots. Contrarily, with a random assignment, RAN
even incurs a higher report latency as there are more free-
dom in slot selection.

5.2. Periodical reporting scenarios

Next, we assume that sensors are instructed to report
their data in a periodically manner. We set r ¼ 100 m,
T R ¼ 20 m, and CR ¼ 300 with 6000 randomly placed sen-
sors associated to these routers, and we further restrict a
router can accept at most 30 sensors. BO � SO is fixed to
six, so k ¼ 2BO�SO ¼ 64. Since the earlier simulations show
that CTB and DSA perform quite close, we will use only
CTB to assign routers’ slots. Sensors are required to gener-
ate a report every 251.66 s (the length of one beacon inter-
val when BO ¼ 14). We set the buffer size of each router is
10 KB.2 We allocate two mini-slots for each child router of
the sink as the GTS slot.3

Since ðBO� SOÞ is fixed, a small BO implies a smaller
slot size (and thus a smaller unit size of LðGÞ). So, a smaller
slot size seemingly implies higher contention among sen-
sors if they all intend to report to their parents simulta-
neously. In fact, a smaller BO does not hurt the overall
reporting times of sensors if we can properly divide sensors
into groups. For example, in Fig. 8, when BO ¼ 14, all sen-
sors of a router can report in every superframe. When
BO ¼ 13, if we divide sensors into two groups, then they
can report alternately in odd and even superframes. Simi-
larly, when BO ¼ 12, four groups of sensors can report
alternately. Since the length of superframes are reduced
proportionally, the report intervals of sensors actually
remain the same in these cases. In the following experi-
ments, we groups sensors according to their parents’ IDs.
A sensor belongs to group m if the modulus of its parent’s
ID is m.

Fig. 9 shows the theoretical and actual report latencies
under different BOs. Note that a report may be delayed
due to buffer constraint. As can be seen, the actual latency
does not always favor a smaller BO. Our results show that
BO ¼ 10–12 performs better. Fig. 9(b) shows the goodput
of sensory reports, channel utilization at the sink, and the
number of dropped frames at the sink. When BO ¼ 14,
although there is no frames being dropped at the sink,
the goodput is still low. This is because a lot of collisions
happen inside the network, causing many sensory reports
being dropped at intermediate levels (a frame is dropped
after exceeding its retransmission limit). Fig. 10 shows a
log of the numbers of frames received by a sink’s child rou-
ter when BO ¼ 14. We can see that more than half of the
active portion is wasted. Overall, BO ¼ 10 produces the
best goodput and a shorter report latency.

Some previous works can be also integrated in this peri-
odical reporting scenario, such as the adaptive GTS alloca-
tion mechanism in [12] and the aggregation algorithms for
WSNs in [7,10]. Fig. 11 shows an experiment that routers
can compress reports from sensors with a rate cr when
BO ¼ 10. If a router receives n reports and each report’s
size is 16 Bytes (as in Table 2), it can compress the size
to 16� n� ð1� crÞ. The report latencies decrease when
the cr becomes larger. By compressing the report data,

0

 50

 100

 150

 200

 250

 300

11010090807060504030

A
ve

ra
ge

 L
(G

)

Network radius (m)

CTB
DSA
RAN
GDY

0

 50

 100

 150

 200

 250

 300

 17 18 19 20 21 22 23 24 25 26

A
ve

ra
ge

 L
(G

)

Transmission range (m)

CTB
DSA
RAN
GDY

a b

0

 100

 200

 300

 400

 500

 600

 700

 200 300 400 500 600 700 800 900

A
ve

ra
ge

 L
(G

)

Number of ZigBee routers

CTB
DSA
RAN
GDY

0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

0.0980.1950.390.781.56

A
ve

ra
ge

 L
(G

)

Network duty cycle (%)

CTB
DSA
RAN
GDY

c d

Fig. 7. Comparison of report latencies under different configurations.

L(G)=22

k = 64 k = 64

L(G)=19

Fig. 6. Slot assignment examples by CTB and DSA.

1008 M.-S. Pan, Y.-C. Tseng / Computer Communications 31 (2008) 999–1011
the goodput can up to 98% and the report can arrive to the
sink more quickly.

5.3. Event-driven reporting scenarios

In the following, we assume that sensors’ reporting
activities are triggered by events occurred at random loca-
tions in the network with a rate k. The sensing range of
each sensors is 3 m and each event is a disk of a radius
of 5 m. A sensor can detect an event if its sensing range
overlaps with the disk of that event. Each router has an
1 KB buffer. When a sensor detects an event, it only tries
to report that event once. All other settings are the same
as those in Section 5.2.

Fig. 12 shows the simulation results when k = 1/5s, 1/
15s, and 1/30s. From Fig. 12(a), we can observe that when

0

 20

 40

 60

 80

 100

 120

 140

 160

141312111098

L(
G

)
x

sl
ot

-s
iz

e
(in

 s
ec

on
ds

)

BO

Theoretical
Actual

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

141312111098
0

1

2

3

4

5

6

7

8

9

 10

G
oo

dp
ut

 o
r

ch
an

ne
l u

til
iz

at
io

n
(%

)

N
um

be
r

of
 d

ro
pp

ed
 fr

am
es

BO

Goodput
Channel utilization

The number of dropped frames

a b

Fig. 9. Simulations considering buffer limitation and contention effects: (a) Theoretical vs. actual report latencies and (b) goodput, channel utilization, and
number of dropped frames.

Report (Beacon) interval: 251.66 s Report (Beacon) interval: 251.66 s

Active portion:
3.932 s

Active portion:
3.932 s

Active portion:
3.932 s

time (s)

N
um

be
r o

f f
ra

m
es

 re
ce

iv
ed

0

5

10

15

20

25

30

134 135 136 137 138 139 385 386 387 388 389 390 391 636 637 638 639 640 641 642 643

Fig. 10. A log of the number of frames received by a sink’s child router when BO ¼ 14.

BO=13
of groups = 2

beacon beacon

 group 0 report

beacon

...

n th superframe (n+4)th superframe

beacon

(n+1)th superframe (n+2)th superframe

beacon

(n+3)th superframe

 group 1 report group 0 report group 1 report

beacon beacon

 group 0
report

beacon

...

n th
superframe

beacon

(n+1)th
superframe

beacon

 group 1
report

(n+2)th
superframe

(n+3)th
superframe

(n+4)th
superframe

(n+5)th
superframe

(n+6)th
superframe

(n+7)th
superframe

(n+8)th
superframe

beaconbeacon beaconbeacon

 group 2
report

 group 3
report

 group 0
report

 group 1
report

 group 2
report

 group 3
report

BO=12
of groups = 4

BO=14
of groups = 1

beacon beacon

all sensors report

beacon

...

n th superframe (n+2)th superframe(n+1)th superframe

all sensors report

Fig. 8. An example of report scheduling under different values of BO.

M.-S. Pan, Y.-C. Tseng / Computer Communications 31 (2008) 999–1011 1009
BO is small, the report latency can not achieve to the the-
oretical value. This is because that an active portion is too
small to accommodate all reports from sensors, thus
lengthening the report latency. When BO becomes larger,
the theoretical and actual curves would meet. However,
the good put will degrade, as shown in Fig. 12(b). This is
because reports are likely to be dropped due to buffer over-
flow. How to determine a proper BO, which can contain
most of the reports and guarantee low latency, is an impor-
tant design issue for such scenarios.
6. Conclusions

In this paper, we have defined a new minimum delay
beacon scheduling (MDBS) problem for convergecast with
the restrictions that the beacon scheduling must be compli-
ant to the ZigBee standard. We prove the MDBS problem
is NP-complete and propose optimal solutions for special
cases and two heuristic algorithms for general cases. Simu-
lation results indicate the performance of our heuristic
algorithms decrease only when the number of interference

0

 20

 40

 60

 80

 100

 120

 140

 160

9070503010

L(
G

)
x

sl
ot

-s
iz

e
(in

 s
ec

on
ds

)

Compression rate (%)

Theoretical
Actual

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

9070503010
0

 0.5

1

 1.5

2

G
oo

dp
ut

 o
r

ch
an

ne
l u

til
iz

at
io

n
(%

)

N
um

be
r

of
 d

ro
pp

ed
 fr

am
es

Compression rate (%)

Goodput
Channel utilization

Number of dropped frames

a b

Fig. 11. Simulations considering data compression: (a) Theoretical vs. actual report latencies and (b) goodput, channel utilization, and number of dropped
frames.

0

5

 10

 15

 20

 25

 30

 35

 40

7 8 9 10 11 12

L(
G

)
x

sl
ot

-s
iz

e
(in

 s
ec

on
d)

BO

Theoretical
Actual(λ=1/5s)

Actual(λ=1/15s)
Actual(λ=1/30s)

0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

7 8 9 10 11 12

G
oo

dp
ut

 (
%

)

BO

λ=1/5s
λ=1/15s
λ=1/30s

a b

Fig. 12. Simulation results of event-driven scenarios: (a) theoretical vs. actual report latencies and (b) goodput.

1010 M.-S. Pan, Y.-C. Tseng / Computer Communications 31 (2008) 999–1011
neighbors is increased. Compared to the random slot
assignment and greedy slot assignment scheme, our heuris-
tic algorithms can effectively schedule the ZigBee routers’
beacon times to achieve quick convergecast. In the future,
it deserves to consider extending this work to an asynchro-
nous sleep scheduling to support energy-efficient converge-
cast in ZigBee mesh networks.
Acknowledgements

Y.-C. Tseng’s research is co-sponsored by Taiwan MoE
ATU Program, by NSC Grants 93-2752-E-007-001-PAE,
96-2623-7-009-002-ET, 95-2221-E-009-058-MY3, 95-2221-
E-009-060-MY3, 95-2219-E-009-007, 95-2218-E-009-209,
and 94-2219-E-007-009, by Realtek Semiconductor Corp.,
by MOEA under Grant No. 94-EC-17-A-04-S1-044, by
ITRI, Taiwan, by Microsoft Corp., and by Intel Corp.
References

[1] Chipcon CC2420DBK. Available from: <http://www.chipcon.com/>.
[2] Dust network Inc. Available from: <http://dust-inc.com/flash-

index.shtml>.
[3] Design and construction of a wildfire instrumentation system using
networked sensors. Available from: <http://firebug.sourceforge.net/>.

[4] Habitat monitoring on great duck island. Available from: <http://
www.greatduckisland.net/technology.php>.

[5] Jennic JN5121. Available from: <http://www.jennic.com/>.
[6] Motes, smart dust sensors, wireless sensor networks. Available from:

<http://www.xbow.com/>.
[7] S.-J. Baek, G. de Veciana, X. Su, Minimizing energy consumption in

large-scale sensor networks through distributed data compression and
hierarchical aggregation, IEEE Journal on Selected Areas in Com-
munications 22 (6) (2004) 1130–1140.

[8] H. Choi, J. Wang, E.A. Hughes, Scheduling on sensor hybrid
network, in: Proceedings of IEEE International Conference on
Computer Communications and Networks (ICCCN), San Diego,
USA, 2005.

[9] S. Gandham, Y. Zhang, Q. Huang, Distributed minimal time
convergecast scheduling in wireless sensor networks, in: Proceedings
of IEEE International Conference on Distributed Computing Systems
(ICDCS), Lisboa, Portugal, 2006.

[10] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, J.
Heidemann. An evaluation of multiresolution storage for sensor
networks, in: Proceedings of ACM International Conference on
Embedded Networked Sensor Systems (SenSys), Los Angeles,
USA, 2003.

[11] B. Hohlt, L. Doherty, E. Brewer, Flexible power scheduling for sensor
networks, in: Proceedings of ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN), Berkeley,
USA, 2004.

http://www.chipcon.com/
http://dust-inc.com/flash-index.shtml
http://dust-inc.com/flash-index.shtml
http://firebug.sourceforge.net/
http://www.greatduckisland.net/technology.php
http://www.greatduckisland.net/technology.php
http://www.jennic.com/
http://www.xbow.com/

M.-S. Pan, Y.-C. Tseng / Computer Communications 31 (2008) 999–1011 1011
[12] Y.-K. Huang, A.-C. Pang, T.-W. Kuo, AGA: adaptive GTS
allocation with low latency and fairness considerations for IEEE
802.15.4, in: Proceedings of IEEE International Conference on
Communications (ICC), Istanbul, Turkey, 2006.

[13] IEEE standard for information technology – telecommunications and
information exchange between systems – local and metropolitan area
networks specific requirements part 15.4: wireless medium access
control (MAC) and physical layer (PHY) specifications for low-rate
wireless personal area networks (LR-WPANs), 2003.

[14] IEEE standard for information technology – telecommunications and
information exchange between systems – local and metropolitan area
networks specific requirements part 15.4: wireless medium access
control (MAC) and physical layer (PHY) specifications for low-rate
wireless personal area networks (LR-WPANs) (revision of IEEE Std
802.15.4-2003), 2006.

[15] Q. Li, M. DeRosa, D. Rus, Distributed algorithm for guiding
navigation across a sensor network, in: Proceedings of ACM
International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), Maryland, USA, 2003.

[16] C.-Y. Lin, W.-C. Peng, Y.-C. Tseng, Efficient in-network moving
object tracking in wireless sensor networks, IEEE Transactions on
Mobile Computing 5 (8) (2006) 1044–1056.
[17] G. Lu, B. Krishnamachari, C.S. Raghavendra, An adaptive energy-
efficient and low-latency MAC for data gathering in wireless sensor
networks, in: Proceedings of IEEE International Parallel and
Distributed Processing Symposium (IPDPS), New Mexico, USA,
2004.

[18] Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, C.-F. Huang, Location tracking
in a wireless sensor network by mobile agents and its data fusion
strategies, The Computer Journal 47 (4) (2004) 448–460.

[19] Y.-C. Tseng, M.-S. Pan, Y.-Y. Tsai, Wireless sensor networks for
emergency navigation, IEEE Computer 39 (7) (2006) 55–62.

[20] S. Upadhyayula, V. Annamalai, S.K.S. Gupta, A low-latency and
energy-efficient algorithm for convergecast in wireless sensor net-
works, in: Proceedings of IEEE Global Telecommunications Confer-
ence (Globecom), San Francisco, USA, 2003.

[21] D.B. West, Introduction to Graph Theory, Prentice Hall, 2001.
[22] M. Yarvis, N. Kushalnagar, H. Singh, A. Rangarajan, Y. Liu, S.

Singh, Exploiting heterogeneity in sensor networks, in: Proceedings of
IEEE INFOCOM, Miami, USA, 2005.

[23] Y. Yu, B. Krishnamachari, V.K. Prasanna, Energy-latency tradeoffs
for data gathering in wireless sensor networks, in: Proceedings of
IEEE INFOCOM, Hong Kong, 2004.

[24] ZigBee specification version 2006, ZigBee document 064112, 2006.

	Quick convergecast in ZigBee beacon-enabled tree-based wireless sensor networks
	Introduction
	Overview of IEEE 802.15.4 and ZigBee standards
	The minimum delay beacon scheduling (MDBS) problem
	Algorithms for the MDBS problem
	Optimal solutions for special cases
	A centralized tree-based assignment scheme
	A distributed assignment scheme

	Simulation results
	Comparison of different convergecast algorithms
	Periodical reporting scenarios
	Event-driven reporting scenarios

	Conclusions
	Acknowledgements
	References

