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The formation of the nanocrystals (NCs) by using the sol-gel spin-coating method at various
annealing temperatures had been studied. The film started to form the islands at 600 °C annealing,
and finally transferred into NCs at 900 °C. A model was proposed to explain the transformation of
thin film. The morphology of sol-gel thin film at 600 °C annealing was varied and had higher
interfacial energy. The crystallized process at 900 °C annealing could minimize the energy. The
retention for 900 °C annealed sample exhibited less than 30% charge loss after 10° s at 125 °C
measurement. © 2008 American Institute of Physics. [DOI: 10.1063/1.2904626]

The conventional floating gate (FG) nonvolatile
memory"? (NVM) suffers from a charge loss problem as the
feature size of the device continues to shrink.” A discrete
nanocrystal (NC) memory was then proposed as a replace-
ment of the conventional FG memory.4 The NC memory is
expected efficiently to preserve the trapped charge due to the
discrete charge storage node, while also demonstrate excel-
lent features such as fast program/erase sgeeds, low pro-
graming potentials, and high endurance.”™ We have pro-
posed a sol-gel spin-coating method”' to fabricate the
charge trapping film or NC for the memory, and this ap-
proach is relatively cheap, simple, and can be fabricated in a
normal atmospheric pressure instead of high-vacuum system.

The crystallization of transferring the charge trapping
thin film into the NC phase during thermal annealing is de-
pendent on the sol-gel composition, preparation solvent, and
annealing temperature. The formation of coexisting hatnium
silicate and zirconium silicate NC memory has been previ-
ously published.'o In general, the NC formation is related to
the solid phase segregation induced seeding effect.'’ How-
ever, the effect of annealing temperature that controls the
formation of NC, degree of crystallization, interfacial energy,
and charge retention in the sol-gel derived memory is still
unclear.

Prior to various annealing treatments, the sol-gel thin
film was deposited by the spin-coating method from the pre-
cursors of zirconium tetrachloride, hafnium tetrachloride,
and silicon tetrachloride. The above precursor was dissolved
in ethanol, and a suitable amount of hydrochloric acid serv-
ing as the catalyst for hydrolysis and condensation was
added into the solution. The molar ratio for ZrCl,, HfCl,,
SiCly, and ethanol in the sol-gel solution was 1:1:1:1000.
After preparation, the solution was stirred for 0.5 h and then
spin coated onto the Si substrate by using a Tokyo Electron
Limited (TEL) system (Clean Track Model-MKS). After thin
film deposition, these samples were subjected to rapid ther-
mal annealing (RTA) treatment at various temperatures for
60 s under an O, ambient to form the NCs.

The fabrication of sol-gel spin-coating NC memory was
started with local oxidation of Si process on a p-type (100)
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silicon substrate. A 10 nm tunneling oxide film was ther-
mally grown at 925 °C in a furnace. The sol-gel film was
then formed through spin coating and RTA process men-
tioned above. The 20 nm blocking oxide was deposited by
plasma enhanced chemical-vapor deposition tetraethylortho-
silicate, followed by a 200-nm-thick poly-Si gate was depos-
ited. Finally, gate pattering, source/drain (S/D) implanting,
and the rest of the subsequent metal-oxide-semiconductor
processes were used to fabricate the NC-NVM devices.

The cross-sectional high resolution transmission electron
microscope (TEM) images of the sol-gel derived thin films
that annealed at 400, 600, and 900 °C are illustrated in
Fig. 1. The sample in Fig. 1(a) after 400 °C RTA exhibits a
continuous and smooth film. This observation suggests the
annealing at 400 °C has no effect on the film’s morphology.
As to the sample annealed at 600 °C, Fig. 1(b) reveals the
morphology of thin film is discontinuous and uneven. The
sol-gel film is gradually transferred into islands (in inset). If
the annealing temperature is elevated to 900 °C, the film
illustrated in Fig. 1(c) is complete transferred into NCs. The
crystal size is estimated to be 6—10 nm. Literature has pro-
posed the spinodal decomposition effect'? to explain the an-
nealing effect for formation of zirconium silicate. We infer
that the darker NCs in Fig. 1(c) are formed from the high-
molecular-weight hafnium silicate, and the bright NCs are
from the low-molecular-weight zirconium silicate.'”

The nature of the chemical bonding for the transforma-
tion of thin film into NC was characterized by using x-ray
photoelectron spectroscopy (XPS) analysis. Figure 2 pro-
vides a comparison of the XPS results for (a) Si 2p, (b) Zr
3d, (c) Hf 4f, and (d) O 1s bonding for samples annealed at
different temperatures. Figure 2(a) shows the increasing of
binding energy of Si 2p from 100.40 eV (400 °C RTA) to
100.95 eV (900 °C RTA) with annealing temperature. This
observation relates to the oxidization of the Si atom toward
blueshift. Both binding energies of Zr 3d and Hf 4f shown in
Figs. 3(b) and 3(c) exhibit the shifting to the higher energies
upon increasing the annealing temperature. This observation
suggests that the oxygen atoms of Zr—O and Hf-O bonds
reacted with their nearby Si atoms, forming hafnium and
zirconium silicate.”® As to the O 1s spectra in Fig. 3(d), each
peak can be deconvoluted into two peaks, i.e., the higher and

© 2008 American Institute of Physics
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FIG. 1. Cross-sectional TEM micrographs of the thin film transformation
after (a) 400 °C, (b) 600 °C, and (c) 900 °C annealing.

lower energy peaks, which are respectively attributed to the
Si0, and metal-rich silicate."* If the annealing temperature is
increased, the intensity ratio of lower energy peak to higher
energy peak is increased. This result indicates the hafnium
and zirconium silicates were toward the bonding of metal-
rich silicate. This finding is also consistent with the observa-
tion of Hf 4f and Zr 3d spectra.

Figure 3(a) shows the interfacial tension (interfacial en-
ergy per unit area) of the hafnium and zirconium silicates as
a function of annealing temperature.15 As Fig. 3(a) depicted,
the interfacial energy abruptly increases from 400 to 600 °C
RTA, and then slightly decreases from 600 to 1050 °C. As
Fig. 1(a) mentioned, the surface at 400 °C RTA is still
smooth and possesses the lowest energy. The surface mor-
phology of 600 °C RTA sample is rough in Fig. 1(b), imply-
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FIG. 2. (a) Si 2p, (b) Zr 3d, (c) Hf 4f, and (d) O 1s XPS spectra of the
sol-gel thin films after different annealing temperatures.

ing that the surface is unstable and in higher energy state. At
900 °C RTA, the interfacial energy is decreased in compari-
son with 600 °C RTA due to the formation of NC. We pro-
posed a model in Fig. 3(b) to describe the observed transfor-
mation phenomenon on the sol-gel film. The sol-gel film is
continuous and smooth as deposited and retains the same
morphology at 400 °C annealing. It becomes unstable at
600 °C annealing, and phase change is then observed in or-
der to reduce the surface energy. Upon 900 °C annealing, the
sol-gel film reaches a stable state due to the formation of
NCs.

The sol-gel derived NC was used as the charge trapping
purpose in the NVM device. Figures 4(a) and 4(b) illustrate
the retention characteristics for the devices annealed at 600
and 900 °C, respectively. For both samples at 25 °C mea-
surement, the retention times can be extrapolated up to 10° s
for only ~5% charge loss, while ~10% charge loss at 85 °C
measurement. As the measuring temperature increased to
125 °C, a significant charge storage at 10* sec is observed
for the 600 °C annealed sample, while the 900 °C annealed
sample still retain its good characteristic for <20% charge
loss. This result explains the importance of NC formation for
the NVM. The NC discretely disperses in the charge trapping
layer, which alleviates the charge loss problem when defects
exist in the thin tunneling oxide. The inset of Fig. 4(b) shows
the 7,-V, characteristic for the 900 °C annealed sample. We
use channel hot electron injection to program and band to
band tunneling induced hot hole injection to erase. The Vy,
shift after programing can be up to 9 V, which is much better
than our previous reports.()’l
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FIG. 3. (Color online) (a) Interfacial tension of the sol-gel thin film as a
function of annealing temperature. (b) Transformation processes of the sol-
gel thin film into NC after different annealing temperatures.

In conclusion, we have discussed the NCs formation of
the sol-gel spin-coating thin film at different annealing tem-
peratures. The XPS characterization indicated the annealing
treatment under oxygen ambient can activate the formation
of metal silicates (i.e., hafnium silicate and zirconium sili-
cate). Together with the TEM images and interfacial ener-
gies, we propose a model to explain the transformation of
thin film into NCs. The 400 °C treatment has no effect on
the thin film, while 600 and 900 °C anneals affect the film’s
morphology. The film after morphology change has higher
interfacial energy and crystallization can minimize the en-
ergy. The sol-gel derived NCs successfully played the role of
charge trapping purpose in the memory. The 900 °C an-
nealed sample demonstrates the satisfactory retention char-
acteristic than the 600 °C annealed sample due to the NC
formation. The large Vy, shift of the 900 °C annealed sample
is potential for future multibit application.
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FIG. 4. Retention characteristics of the NC memories annealed at (a)
600 °C and (b) 900 °C at measurement temperatures of 25, 85, and 125 °C.
Inset of (b): the 1V, curves of the NC memory in the programed/erased
state.
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