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Localization of wave patterns on classical periodic orbits in a square billiard
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The connection between wave functions and classical periodic trajectories in a square billiard is analytically
constructed by using the representation of SU(2) coherent states. The analytical function form is modified to
show that the wave patterns can be apparently localized on the classical periodic trajectories by superposing a
few nearly degenerate eigenfunctions. Based on the analogy between the Schrodinger and Helmholtz equa-
tions, the features of wave functions are experimentally studied from the transverse pattern formation in a
laterally confined microcavity laser. The experimental transverse pattern in a square-shaped microcavity agrees

very well with the constructed wave pattern concentrated along classical periodic orbits.
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L INTRODUCTION

The two-dimensional (2D) square billiard is one of the
simplest billiards that is completely integrable in classical
mechanics [1,2]. One common periodic orbit in a 2D square
billiard is usually denoted by (1,1). As shown in Fig. 1, the
(1,1) periodic orbits can be characterized by a parameter ¢
that is related to the wall positions of specular reflection
points [3,4]. Some examples of periodic orbits are shown in
Fig. 1. According to Bohr’s correspondence principle, the
classical limit of a quantum system should be achieved when
the quantum numbers go to infinity. However, the conven-
tional eigenstates of a square billiard in most quantum me-
chanics do not manifest the properties of classical periodic
orbits even in the correspondence limit of large quantum
numbers.

Although semiclassical periodic orbit theory has been
used to explain the scarred wave functions in quantum chaos
[5-7], the wave functions related to stable periodic orbits
seem to have been overlooked. The reason for this disregard
is probably that most work has focused on energy levels and
energy level statistics [8~10]. Furthermore, there are some
striking phenomena in open quantum ballistic cavities asso-
ciated with the wave functions in terms of classical periodic
orbits [11-13]. Therefore, to construct the connection be-
tween the eigenfunctions and classical periodic trajectories is
essentially helpful for understanding quantum-classical cor-
respondence as well as quantum transport in mesoscopic sys-
tems.

In this paper, we use the representation of SU(2) coherent
states [14,15] to analytically construct the wave functions
related to the classical periodic trajectories in the 2D square
billiard. The noticeable finding is that a superposition con-
taining only a few nearly degen¢rate eigenfunctions is al-
ready sufficient for localization of the wave function inten-
sity on the classical periodic trajectory. This result explains
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the reason why the wave functions related to classical peri-
odic orbits often appear in weakly perturbed integrable sys-
tems [16,17]. In experiment, the analogy between the Schro-
dinger and Helmholtz equations [18] enables us to connect
the features of wave functions with the transverse modes in a
laterally confined microcavity laser. The experimental trans-
verse pattern in a square-shaped cavity is generally found to
be concentrated along classical periodic orbits. This result
confirms that the wave functions related to classical periodic
orbits provide a more physical description of a phenomenon
than the true eigenstates in mesoscopic systems.

II. WAVE FUNCTIONS RELATED TO CLASSICAL
PERIODIC ORBITS

Recently, Pollet ef al. [19] demonstrated that the wave
function of the SU(2) coherent state for 2D quantum har-
monic oscillation is particular simple and well localized on
the corresponding classical elliptical trajectory. Mathemati-
cally, the SU(2) coherent state for 2D quantum harmonic
oscillation is a superposition of eigenstates leading to a state
with a minimum uncertainty of AxAy, where x and y are the
Cartesian coordinates [14,15]. For 2D integrable Cartesian
systems, the SU(2) minimum-uncertainty states ¥ (x,y;7)
can be expressed as the superposition of number eigenstates
g n-k(x,y) where N is an integer constant and K
=0,1,2,...,.N:

N N 172
‘PN(x,y;T)=(1+lT|2)—N/2K2=0 (K) Kyg n-k(x.y).
(1)

The parameter 7 is, in general, complex and has a physical
meaning in that |7]? is the ratio of the average values of two
quantum numbers. In the limit 7—0 (or 7—), the SU(2)
coherent states becomes the eigenstate g n(x,y) [or

©2002 The American Physical Society
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FIG. 1. Some classical periodic orbits. The periodic orbits are in
terms of the parameter ¢ which is related to the wall positions of
specular reflection points.

¥no(x,y)]. In terms of the eigenstates of a 2D square bil-
liard, g y—x(x,y) is given by

P

2 mx
U n-k(x,y)= ;—sin[(K+ 1) _a—}

. my
X sin| (N—K+1) —a—J, K=01,..N, (2)

where a is the length of the square boundary. The numerical
calculation reveals that the classical periodic orbits shown in
Fig. 1 can be figured out by setting 7=e‘?. Using Egs. (1?
and (2), the condition |7/>=1 can lead to (vx)/(vv)
where (v,) and (v,) are the average speeds along the x and
y axes. In other words, the general relation 7=¢'? is consis-
tent with the requirement of (v,)/(v,)=1 for the classical
periodic obits shown in Fig. 1. Substituting Eq. (2) and 7
=¢'? into Eq. (1) yields

PHYSICAL REVIEW E 66 046215 (2002)

2\ 1 N\2
“'""‘”“”’:(Z)WZO(K) et
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X sin| (K+1)-a— sin (N—K+1)—a—].

©)

Figure 2 depicts the ¢ dependence of the wave function
[W a(x,y;¢)|? for N=25. It can be seen that the behavior of
|W n(x,y;)|* agrees very well with the classical periodic
orbit shown in Fig. 1. Furthermore, the distribution of
| a(x,y; )| illustrates geometrically Bohr’s correspon-
dence principle: the velocity of the classical particle is at a
minimum at the specular reflection points of the motion, and
therefore the distribution has a peak at these points.

The wave function given in Eq. (3) represents a traveling-
wave property. The standing-wave representations can be ob-
tained by using Wn(x,y;d)= V¥ (x,y;¢). Including the
normalization constant, the standing-wave forms can be ex-
pressed as

(2/0) 172

N
ZZ=0( K) cos’ K¢

_—

K=0

Yi(xy;d)=

X (cos K ¢)sin

mX
(K+l)71|

X sin (N—K+1)1:%] @

and

Wi(xy;h)=

mX
X (sin K¢)sin[(K+ 1) -a—}

X sint (N—K+1)£a¥—]. (5)

The N dependence of the wave pattern W §(x,y; ¢)|? is pre-
sented in Fig. 3. Here we only show the wave pattern
l‘lf};,(x,y;¢)|2 because the wave pattern |Wi(x,y;¢)|? is
generally the same; the value of the parameter ¢ is fixed to
be /2 for convenient representation. It can be seen that a
large quantum number N is not necessary for the localization
of the probability density on the classical trajectory. Even so,
it should be noted that the wave function in Egs. (3)-(5) is
not a stationary state because the eigenstate components are
not degenerate for the Hamiltonian H. Nevertheless, the cal-
culation result shown in Fig. 4 reveals that AH/{H) is pro-
portional to 1/N. In other words, AH/(H)—0 ds N—o.*

This result guarantees the coherent state in Egs. (3)—(5) to be”

a stationary state in the classical limit.

046215-2
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- c .
¥y (x,y ’”/3) 10 (x,y ’”/2)

* FIG. 2. The ¢ dependence of the wave pattern | ¥ y(x.y; ¢)|? FIG. 3. The N dependence of the wave pattern |W5(x,y:#)|?

from Eq. (3) for N=25. The wave patterns correspond to those from Eq. (4) obtained by fixing ¢ to be #/2 to show the standing-
shown in Fig. 1. wave property.
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FIG. 4. The calculation result shown for AH/{H) versus the
quantum number N.

Equations (3)—(5) indicate that the wave function repre-
sentation consists of N+ 1 Hamiltonian eigenstates. How-
ever, the numerical analysis reveals that a superposition of
only a few eigenstates is already sufficient to result in the
localization on the classical trajectory. To reflect this prop-
erty, we define the partially coherent states corresponding to
Eqgs. (3)-(5) as

2 NI N2
Yy px,y; )= —"—"( i\), 7 (K) exp(iK ¢)
ZN:q( )} o
K=gq K

Tx Ty
X sin (K+l)7}sin{(N—K+l)7J,

< .
52.9 (x,y ; 0.5571:)
©) BRSO
N—gq , 12 > ?.ah
(2/a) N . J b LS
Vym(xy ¢)= > (K R N AR

sN-4q 2K¢ K=gq

K=gq| g |cOs

. mX _
X (cos K¢)sin| (K + 1)7}

. Ty
X sin (N—K+l)7, 7

and
N-q 1”2 -
(2/a) N
Yy m(x,y; )= V7] 2 K - -

sN-¢ . 2K¢ K=¢q 2

K=q| |50 i :

. . mX r
X (sin K ¢)sin| (K + 1)7} AT SN
i FIG. 5. The M dependence of wave pattern ¥}, ,,(x,y; ¢) from

. i my Eq. (7) obtained by fixing ¢ to be 0.557r to show the dependence of —

Xsin| (N=K+1) 7}’ ®) wave localization on the number of eigenstates. .
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FIG. 6. A diagram illustrating the eigenspectrum of the square
billiard. Each gray point represents an eigenvalue; the solid line
indicates the curve of the equation n%+m?=27%2+272; the circles
are the eigenstates that are selected for the wave patterns shown in
Fig. 5.

where the index M=N—2g+1 represents the number of
eigenstates used in the wave function. All partially coherent
states in Eqs. (6)—(8) have similar density localization; we
conveniently choose ‘If,cv' u(x,y; P) to demonstrate the M de-
pendence of the wave pattern, as shown in Fig. 5. Here we
fix ¢ to be 0.557 only for the presentation. It can be seen
that only 5-9 eigenstates are adequate to localize the wave
pattern on the classical trajectory. The eigenvalue of the en-
ergy corresponding to the eigenstate ¢, ;.. (x,y)
=(2/a)sin[m(mx/a)]sin[n(wy/a)] is given by

L i P
E—-m(;) (m*+n°). )]
The degencrate eigenstate depends on the sum of two integer
squares (m?+n?). Figure 6 shows that the eigenstates of the
partially coherent states in Fig. 5 are not exactly degenerate
but nearly degenerate. The partially coherent states in Egs.
(6)—(8) may often become the eigenstates in weakly per-
turbed 2D square billiards {16,17] because they can be com-
posed of only a few nearly degenerate eigenstates. In fact,
the wave patterns, like partially coherent states to be local-
ized on classical periodic orbits, have been discussed exten-
sively in, ballistic quantum dots [20,21]. In the following
section, we demonstrate that the wave patterns of the par-
tially cobierent states can be experimentally observed using
the trans?/erse pattern formation of a confined microcavity
laser.

11118 EXPERIMENTAL RESULTS AND DISCUSSION

Recently, vertical-cavity surface emitting semiconductor

lasers (VCSEL’s) of large transverse section and short cavity

PHYSICAL REVIEW E 66, 046215 (2002)

length have been used to study the transverse pattern forma-
tion [22-25]. VCSEL’s inherently emit a single-longitudinal-
mode wave because of their extremely short cavity length.
The single-longitudinal-mode laser is a useful laboratory to
study transverse phenomena without the influence of other
degrees of freedom. Hegarty et al. [24] reported interesting
transverse mode patterns from oxide-confined square-shaped
VCSEL’s with large aperture. Their experimental results re-
vealed that a wave incident upon the current-guiding oxide
boundary would undergo total internal reflection because of
large index discontinuities between the oxide layer and the
surrounding semiconductor material. In other words, the
VCSEL cavity can be considered as a planar waveguide with
a dominant wave vector along the vertical direction.

According to the waveguide theory [26], the electromag-
netic fields with a predominantly z direction of propagation
can be approximated as

E(x,y,2,t)=E(x,y)e/Fe=eD, (10)

where w is the angular frequency and B is the propagation
constant along the z direction. Using expression (10) in the
Maxwell equations for a uniform medium gives the well-
known Helmholtz equation [26]

[VZ+(k2=BH]E=0, (11)

where V,2 is the transverse part of the Laplacian operator, k is
the total propagation constant related to the angular fre-
quency by k=w/c, and c is the wave speed. In fact, lasing
modes in a conventional laser are usually characterized by
near-paraxial propagation normal to the resonator mirrors,
with polarization in the plane of the mirrors [27,28]. Within
the framework of the scalar paraxial approximation, the mag-
nitude of the longitudinal field |E,| is very much smaller
than that of the transverse field |E,| [27]. Therefore, trans-
verse modes in a vertical-cavity laser can be determined by
the Helmholtz equation for the transverse field. The solutions
to the Helmholtz equation with total internal reflection
boundaries (E,=0. at the boundary) are equivalent to the
solutions of the 2D Schrodinger equation with hard wall
boundaries (¥ =0 at the boundary) of the same geometry.
Recently, Doya er al. [29,30] have introduced the paraxial
approximation to establish an analogy between light propa-
gation along a multimode fiber and quantum confined sys-
tems. Actually, the guiding character in the oxide-confined
VCSEL'’s is similar to that in optical fibers. Even so, the
transverse patterns of VCSEL’s under cw operation corre-
spond truly to stationary states of the system.

Due to the analogy between the Schrodinger and Helm-
holtz equations [18], it is essentially feasible to use the
oxide-confined VCSEL cavities like microwave cavities
[31,32] to represent quantum mechanical potential wells. In
this case, the transverse patterns can reveal the probability
density of the corresponding wave functions in the 2D quan-
tum billiards. Here we experimentally study the transverse
pattern fotmation in a square-shaped VCSEL with large ap-
erture to compare with the wave functions in the 2D square
billiards.

046215-5
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FIG. 7. The experimental result for the near-field pattern of the
square-shaped VCSEL device near lasing threshold.

Square-shaped VCSEL’s with large apertures are fabri-
cated by metal organic chemical vapor deposition to emit at
a wavelength around A ,=795 nm. The wafers were wet oxi-
dized at 425°C and the oxidation time is controlled to fab-
ricate a 40 um oxide aperture in a 110 um mesa structure.
The device structure of these oxide-confined VCSEL’s is
similar to that described by Ref. [24]. Experimental results
show that the transverse patterns of VCSEL’s can be evi-
dently divided into two regimes of low-divergence and high-
divergence emissions. Hereafter we will concentrate on the
high-divergence emission, which appears only at reduced
temperature and near-threshold operation. It is expected that
the thermal-lensing effect will switch the device into the
low-divergence regime because joule heating induces a tem-
perature rise across the device cross section. Typically, high-
divergence patterns are very symmetric and those of low
divergence are more irregular. Therefore it is easy to differ-
entiate the regimes in which the lasers are being operated.

The near-field patterns are measured with a charge-
coupled device camera (Coherent, Beam-Code) and an opti-
cal setup similar to that described in Ref. [24]. The trans-
verse mode spectral information of the laser is monitored by
an optical spectrum analyzer (Advantest Q8347). The present
spectrum analyzer employs a Michelson interferometer with
a Fourier spectrum system to reach a resolution of 0.002 nm.
The transverse mode spacing can be derived as AA,
~\}/(4a®)=0.0785 nm. Since the resolution of the spec-
trum analyzer is 0.002 nm, the transverse mode spectral in-

. formation can be clearly résolved. We' cooled the device to a

temperature around 0-10 °C. Near lasjng threshold the trans-
verse pattern emitted from the prestnt VCSEL device is
found to be linearly polarized and highly concentrated along
the classical orbit, as shown in Fig. 7. The measurement of
the optical spectrum for the laser beam is depicted in Fig. 8.
The result reveals that the linearly polarized transverse
pattern is a single-frequency oscillation; namely, it is a sta-
tionary state. The excellent similarity between the experi-
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FIG. 8. A plot of the optical spectrum of the transverse pattern
shown in Fig. 7.

mental transverse pattern and the wave pattern of the par-
tially coherent state shown in Fig. 6 indicates that the
experimental transverse pattern can be described in terms of
a few nearly degenerate eigenstates of a perfect square bil-
liard. The optical spectrum information shown in Fig. 8 im-
plies that the nearly degenerate modes are phase synchro-
nized to a common frequency by the mechanism of
cooperative frequency locking [33]. Previous laser experi-
ments have proved cooperative frequency locking to be an
important process in transverse pattern formation [34-36].
As seen in Fig. 6, a lot of nearly degenerate modes can be
selected in the process of cooperative frequency locking.
However, the mode selection rule is based on the criterion
that the resultant field structure should have the minimum
mode volume for the lowest lasing threshold. The criterion of
a minimum-volume mode that corresponds to the minimum
free energy is equivalent to wave localization along the clas-
sical trajectory. This is why the experimental transverse pat-
terns have a connection with the partially coherent states
related to classical trajectories. This result confirms that the
wave functions related to classical periodic orbits provide a
more physical description of a phenomenon than the true
eigenstates in mesoscopic systems.

IV. CONCLUSIONS

We have analytically connected the wave function with
the classical periodic trajectory in a square billiard using the
representation of SU(2) coherent states.” We have further

modified the analytical form'io demobstrdte that only a few. ..
nearly degenerate eigenfunctions are already adequate to fe- .

sult in the localization of the wave pattern.on.the classical
periodic trajectory. In the experiment, we -use the -analogy
between the Schrodinger and Helmholtz equations to study”
the features of wave functions from transverse pattern forma-
tion in a laterally confined microcavity laser. In a square-
shaped microcavity, the: experimental -transverse -pattern..
agrees very well with the theoretical . wave pattern concen-
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trated along classical periodic orbits. The experimental result
evidences that the wave function obtained as a linear super-
position of a few nearly degenerate eigenstates can provide a
more physical description of a phenomenon than the true
eigenstates in mesoscopic systems.
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