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中文摘要
本研究計畫包括兩個部分，第一個部分是以

類神經網路控制模式來發展新的最佳化結構半主
動控制理論，此網路稱之為可調式半主動神經控制
器（Adaptive Neural Structural Semi-Active Controller, 
ANSSA Controller）。ANSSA Controller 以抵消累
積反應的觀念來施加主動可變阻尼力，可以有效地
解決時間延遲的問題，並大量地減低結構反應。第
二個部分則是設計及製作一可調式的流體阻尼
器，藉由改變結構之阻尼值而達到結構控制之目
的。
關鍵詞：結構半主動控制、時間延遲、類神經網路、
誤差向後推導學習演算法（BP）、L-BFGS 學習演
算法

1. Abstract
This study includes two parts. The first part 

presents a neural-network-based semi-active control 
algorithm, termed Adaptive Neural Structural 
Semi-Active Controller (ANSSA Controller), to 
control civil engineering structures under dynamic 
loading. The ANSSA Controller minimizes structural 
cumulative responses during earthquakes by applying 
active variable damper forces. The problem of time 
delay is considered in the control strategy so that the 
active variable damper forces can be calculated in time, 
prepared for, and applied. The ANSSA Controller also 
circumvents the difficulty of obtaining system 
parameters of a real structure for the algorithm for 
structural control. The second part is the design and 
production of an adaptive fluid damper, which is 
capable of varying the damping coefficient in a 
structural control system to suppress structural 
vibration.
Keywords: Structural Semi-Active Control, Time 
Delay, Error Back-propagation Learning Algorithm, 
L-BFGS Learning Algorithm

2. Motive and Goal
Semi-active control systems, maintaining the 

reliability of passive control systems while taking 
advantage of the adjustable parameter characteristics 
of an active control system, typically require a small 
external power source for operation and utilize the 
motion of the structure to develop the control forces.

Housner et al.1 indicated that the control 
strategies deemed appropriate for civil engineering 
structural control should be simple, but robust and 
fault tolerant; in addition, they do not need to be an 
optimal control, and must be implemented. Notably, 

the artificial neural network (ANN) model is robust 
and fault tolerant.2-4 In addition, ANN can effectively 
deal with qualitative, uncertain, and incomplete 
information. Therefore, ANN is highly promising for 
structural control.  A Number of researchers have 
developed ANN models for active structural control, 
including Nikzad and Ghaboussi5, Wen et al.6 and 
Tang7; besides, Hung et al.8 presented an ANN 
Controller, Adaptive Neural Structural Active Pulse 
(ANSAP) Controller, to control civil engineering 
structures under dynamic loadings. The ANSAP 
Controller attempts to reduce the structural cumulative 
responses during earthquakes by applying the active 
pulse control force. All of the above references show 
that ANNs are effective for structural active control. 
However, there is still no published reference about 
ANN models for structural semi-active control.

The fluid damper9-10 is a promising control 
system wildly used in mechanical engineering. In the 
last decade, civil engineers adopt the fluid damper as a 
dissipater to decrease seismic responses of structures. 
The characteristic of its energy dissipation is excellent 
in buildings under strong excitation.

3. Contents of the Research

3.1 Background
Extending the ANSAP Controller, this work 

presents an ANN control model, Adaptive Neural 
Structural Semi-Active (ANSSA) Controller, to 
control civil engineering structures under dynamic 
loadings. The proposed ANN semi-active control 
model uses an adaptive L-BFGS ANN learning 
algorithm27 with a standard BP ANN learning 
algorithm. The proposed control strategy attempts to 
reduce the structural cumulative responses during 
earthquakes by applying the control force generated by 
active variable damper devices. The ANSSA 
Controller has three components: (1) a neural emulator 
network to represent the minimized cumulative 
structural responses under both the seismic loading 
and the control force; (2) a neural control network to 
determine the control force on the structure; and (3) a 
neural prediction network to predict the future 
structural response.

3.2 Control Algorithm
The responses of a system with a linear 

n-degree-of-freedom structure, when the system is 
subjected to an external excitation in configuration 
space, can be described by the following equation
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where constant matrices M, C, and K are, respectively, 
the mass, damping, and stiffness matrices with n×n
entities; x(t) is the n-dimensional displacement vector 
with respect to the ground; u(t) is the p-dimensional 
control force vector; w(t) is the q-dimensional external 
excitation vector; and the n×p matrix B1 and n×q
matrix E1 are location matrices that define the 
locations of the control force and the excitation, 
respectively. While assuming that the control force 
and external excitation are constants in any sampling 
period t∆ , Eq. (1) can be written in a discrete state 
equation as follows:
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2n-dimensional state vector of the structure response 
at time t = (k+1) t∆ , and t∆  is the time length of the 
sampling period. The matrices A, B, and E can be 
determined by the following:
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The main notion of the cumulative response 
destroying control algorithm is to destroy the gradual 
rhythmic buildup of the structural response by 
applying control force of suitable magnitude and 
proper direction. Thus, the proposed control strategy is 
to apply the control force to minimize the system 
response that carries over from the current time step to 
the next time step. The first two terms in the 
right-hand side of Eq. (2) represent the structural 
response that carries over from time k t∆  to time (k+1)

t∆  after the control force u[k] has been applied. That 
is, the structural response z[k] at any time k t∆  should 
be eliminated by applying a control force u[k].

z*[k]=Adz[k]+Bdu[k]=0                       
(6)

The control force can be obtained as 
][][)(][ T1T kkk dddd zGzABBBu =−= −          (7)

Considering time delay problem, the control 
force u[k] has to be computed and prepared before 
time k t∆ , and applied to the structure from time k t∆
to time (k+1) t∆ .  Thus, it’s impossible to calculate 
u[k] by using z[k]. Assuming that n time step is needed 
to compute and prepare the control force, the control 
force can be represented by the following equation:
u[k]=g(z[k-n], … , z[k-n-nz], w[k-n], … , w[k-n-nw])

   ( 8 )

where nz and nw are the maximum lags in the structural 
response and the external excitation, respectively; and 
g is some vector-valued linear or nonlinear function. 
Consequently, there is time to calculate and prepare 
the control force from time (k-n) t∆  to k t∆  and to 
apply it to the structure from time k t∆  to (k+1) t∆ .. 
Thus, the problem of time delay effect can be 
circumvented in the proposed control strategy.
3.3 ANSSA Controller

For simplicity, assume that only one active 
tendon controller is used, and that it can be used on 
any floor. After controlling each degree of freedom, all 
the relative displacements and relative velocities of the 
structure cannot be kept at zero by a single control 
force, but minimizing the cumulative structural 
responses allows us to apply the single control force. 
Hence, modifying the control strategy is an attempt to 
minimize the cumulative structural responses, z*[k] in 
Eq. (6), by applying the control force. The simplest 
way to achieve this aim is to minimize the sum of the 
square of the cumulative structural responses, which 
happens to be an unconstrained optimization problem, 
solved most effectively using supervised ANN models.

The ANSSA Controller, schematically presented 
in Fig. 1, consists of three components: (1) a neural 
emulator network to represent the minimized 
cumulative structural responses under both the seismic 
loading and the control force; (2) a neural control 
network to determine the control force on the structure; 
and (3) a neural prediction network to predict the 
future structural response. The details of these three 
components of the ANSSA Controller are presented in 
the following.

3.3.1 Neural Emulator Network (NEN)
This network is modeled by an adaptive L-BFGS 

neural network model11, which models the dynamic 
behavior of the structure described by Eq. (6). To 
minimize the sum of the square of the cumulative 
structural responses, vectors u[k] and z[k] are the 
inputs, and vector z*[k] is the corresponding output of 
the neural emulator network. The input data of the 
training instances are generated randomly, and are 
substituted into Eq. (6) to generate the desired outputs 
of the training instances. The computed outputs are 
then generated by feeding the inputs forwardly through 
the network. The difference between the desired and 
computed outputs, ][* kez  and ][* ksz , of the neural 
emulator network is then measured. Finally, the 
weights of the network are adjusted based on the error 
function Ee(k).

3.3.2 Neural Control Network (NCN)
The neural control network searches a suitable 

control force to minimize the cumulative structural 
responses z*[k]. According to Eq. (8), the inputs of the 
neural control network are z[k-n], … ,z[k-n-nz], 
w[k-n], … , w[k-n-nw], and the corresponding output is 
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u[k]. In this study, a conventional BP neural network 
is adopted as the neural control network.

Before the neural control network can be 
trained, the neural emulator network has to be trained. 
The training process of the neural control network is 
also demonstrated in Fig. 1. First, presenting the input 
vector z[k-n], … , z[k-n-zz], w[k-n], … , w[k-n-nw] to 
the neural control network to compute the control 
force u[k], that is then applied to the pre-trained neural 
emulator network to obtain the minimized cumulative 
response ][* ksz . The error function Ec(k) can be 
formulated as follows:
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where P is the number of instances in the training set; 
and ][* kpdz is the desired minimized cumulative 
responses of the structure to be controlled, chosen to 
be zero in this work. The superscript o represents the 
oth element of the output vectors. Second, the weights 

C
ijW  in the neural control network are then updated as 

follows:
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Herein, the learning ratio is a constant. 

Term uk is the kth component of the control force, u. 
Eq. (11) indicates that the adjustment of the weight 

C
ijW  during the training process is split into two steps: 

first back-propagating the system error function Ec
through the pre-trained neural emulator network 
without any changes in the weights E

ijW  to calculate 
the corresponding error u of the control force u; 
then back-propagating the error u∆ through the 
neural control network to adjust the weights C

ijW . The 
training process is terminated as the minimized 
cumulative structural responses converge to the 
desired responses within the predetermined tolerance.

3.3.3 Neural Prediction Network (NPN)
The obvious equation for n-step structural 

response prediction can be expressed as
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where nz, nw and nu are the maximum lags in the 
structural response, the external excitation and the 
control force, respectively; and h is some 
vector-valued linear or nonlinear function.

Function h in Eq. (12) can be approximated by 
the ANN, called Neural Prediction Network (NPN), as 
shown in Fig. 1. The inputs of the NPN are structural 
responses z[k-n], … , z[k-n-nz], external excitations 
w[k-n], … , w[k-n-nw], and control forces u[k-n], … , 
u[k-n-nu]. The output of the NPN is the structural 
response in the kth time step, z[k]. Herein, the NPN is 

implemented through an adaptive L-BFGS neural 
network model.

3.4 Adjusting the Damping Coefficient of the Active 
Variable Dampers
After the ANSSA Controller has been trained, 

the damping coefficient of the active variable dampers 
can be adjusted according to the outputs of the NCN 
and NPN. Assuming that the active variable dampers 
are installed in parallel along diagonal braces that are 
hinged to the main structure as shown in Fig. 2.
Let F[k]=du[k]                            (13)
where 
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F[k]=[F1[k] F2[k] …  F i[k] … Fn[k]]T is the vector of 
the control forces (at time k t∆ ) produced by the 
active variable dampers; F i[k] is the control force (at 
time k t∆ ) produced by the active variable dampers 
installed between the i-th and (i-1)-th floors; 
u[k]=[u1[k] u2[k] … ui[k] … un[k]]T is the control 
force vector (at time k t∆ ) calculated by the NCN; and 
ui[k] is the control force (at time k t∆ ) of the i-th floor. 
The active variable damper forces can be expressed as
F i[k]=-P i[k]cos i                        (15)
where P i[k] is the active variable damper force (at time 
k t∆ ) between the i-th and (i-1)-th floors; and i is 
the angle of inclination of the dampers installed 
between the i-th and (i-1)-th floors. The active variable 
damper force also can be expressed as
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where Ni is the number of dampers installed between 
the i-th and (i-1)-th floors; vi[k] is the internal velocity 
(at time k t∆ ) of the dampers installed between the 
i-th and (i-1)-th floors; [ ]kxi&  is the relative velocity 

(at time k t∆ ) of the i-th floor predicted by NPN; and 
(CSA)i[k] is the damping coefficient (at time k t∆ ) of 
the dampers installed between the i-th and (i-1)-th 
floors. Thus, the adjustment in the damping coefficient 
of each active variable damper is given by
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3.5 The numerical examples
SDOF and MDOF structural systems subjected 

to EL-Centro, Hachinohe and Myiagiok earthquake, 
were investigated to demonstrate the feasibility of the 
ANSSA Controller. Results indicate that the proposed 
semi-active control algorithm destroys the gradual 
rhythmic buildup of the structural response and 
reduces the structural responses significantly at the 
peak of the relative displacement, velocity, and 
acceleration.

4.  Adaptive Fluid damper
     In order to verify the control algorithm, an 
adaptive fluid damper is designed and experimented. 
Figure 3 shows the adaptive fluid damper used in this 
study. The damper consists of a stainless steel piston, 
safe valve, flow control valve, and proportional servo 
valve.. Experimental results indicate that the adaptive 
fluid damper can enhance the energy absorption of a 
structure during earthquakes. The damping coefficient 
of the damper can be adapted via adjusting the 
propositional valve to perform variant energy 
absorption capacity. The experiment results reveal that 
the adaptive fluid damper  

5.  Comment and Conclusion
In this work, we present a semi-active control 

algorithm using ANN model, called Adaptive Neural 
Structural Semi-Active Controller (ANSSA 
Controller), to control civil engineering structures 
under dynamic loadings. The control strategy of the 
ANSSA Controller aims to minimize the structural 
cumulative responses during earthquakes by applying 
the active variable damper forces; besides, the problem 
of time delay is considered in the proposed control 
strategy.
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Figure 1. The architecture and training of the 
ANSSA Controller
                                                    

Figure 2. Structural frame with diagonal damping 
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Figure 3. The adaptive fluid damper


	page1
	page2
	page3
	page4
	page5
	page6

