7 Frle

BA SRR SEE

SRS EY RN R

5 %472

'f"f"#ﬂfi?vbf F;L

Development of Artificial Neural Network Semi-Active Structure Control System
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1. Abstract

This study includes two parts. The first part
presents a neural-network-based semi-active control
algorithm, termed Adaptive Neura Structural
Semi-Active Controller (ANSSA Controller), to
control civil engineering structures under dynamic
loading. The ANSSA Controller minimizes structural
cumulative responses during earthquakes by applying
active variable damper forces. The problem of time
delay is considered in the control strategy so that the

active variable damper forces can be calculated in time,

prepared for, and applied. The ANSSA Controller also
circumvents the difficulty of obtaining system
parameters of a real structure for the algorithm for
structural control. The second part is the design and
production of an adaptive fluid damper, which is
capable of varying the damping coefficient in a
structural control system to suppress structural
vibration.

Keywords: Structural Semi-Active Control, Time
Delay, Error Back-propagation Learning Algorithm,
L-BFGS Learning Algorithm

2. Motive and Goal

Semi-active control systems, maintaining the
reliability of passive control systems while taking
advantage of the adjustable parameter characteristics
of an active control system, typically require a small
external power source for operation and utilize the
motion of the structure to develop the control forces.

Housner et a.! indicated that the control
strategies deemed appropriate for civil engineering
structural control should be simple, but robust and
fault tolerant; in addition, they do not need to be an
optimal control, and must be implemented. Notably,
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the artificial neural network (ANN) model is robust
and fault tolerant.** In addition, ANN can effectively
deal with qualitative, uncertain, and incomplete
information. Therefore, ANN is highly promising for
structural control. A Number of researchers have
developed ANN models for active structural control,
including Nikzad and Ghaboussi®, Wen et al.® and
Tang’; besides, Hung et a.® presented an ANN
Controller, Adaptive Neural Structural Active Pulse
(ANSAP) Controller, to control civil engineering
structures under dynamic loadings. The ANSAP
Controller attempts to reduce the structural cumulative
responses during earthquakes by applying the active
pulse control force. All of the above references show
that ANNs are effective for structural active control.
However, there is still no published reference about
ANN models for structural semi-active control.

The fluid damper®’® is a promising control
system wildly used in mechanical engineering. In the
last decade, civil engineers adopt the fluid damper as a
dissipater to decrease seismic responses of structures.
The characteristic of its energy dissipation is excellent
in buildings under strong excitation.

3. Contents of the Research

3.1 Background

Extending the ANSAP Controller, this work
presents an ANN control model, Adaptive Neural
Structural  Semi-Active (ANSSA) Controller, to
control civil engineering structures under dynamic
loadings. The proposed ANN semi-active control
model uses an adaptive L-BFGS ANN learning
dgorithm? with a standard BP ANN learning
algorithm. The proposed control strategy attempts to
reduce the structural cumulative responses during
earthquakes by applying the control force generated by
active variable damper devicess The ANSSA
Controller has three components: (1) a neural emulator
network to represent the minimized cumulative
structural responses under both the seismic loading
and the control force; (2) a neural control network to
determine the control force on the structure; and (3) a
neural prediction network to predict the future
structural response.

3.2 Control Algorithm

The responses of a system with a linear
rrdegree-of-freedom structure, when the system is
subjected to an external excitation in configuration
space, can be described by the following equation
M (1) + CX() +Kx(f) =B, u() +E,w() (1)



where constant matrices M, C, and K are, respectively,
the mass, damping, and stiffness matrices with nxn
entities; x(f) is the n-dimensional displacement vector
with respect to the ground; u(?) is the p-dimensional
control force vector; w(?) isthe g-dimensional external
excitation vector; and the nxp matrix B; and rnxq
matrix E; are location matrices that define the
locations of the control force and the excitation,
respectively. While assuming that the control force
and external excitation are constants in any sampling
period Dt, Eq. (1) can be written in a discrete state
equation as follows:

Zk+1=A,Z[K+B ,u[k+E WK @)
where
A, =e" B,=A*(A,-1)B , ad

E,=A"(A,- I)E. Index kis an integer number; k=
Ak+q=ga
eXlk+1g,,,
2n-dimensional state vector of the structure response
attime t= (k+1) Dt, and Dt isthe time length of the
sampling period. The matrices A, B, and E can be
determined by the following:
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The main notion of the cumulative response
destroying control algorithm is to destroy the gradual
rhythmic buildup of the structural response by
applying control force of suitable magnitude and
proper direction. Thus, the proposed control strategy is
to apply the control force to minimize the system
response that carries over from the current time step to
the next time step. The first two terms in the
right-hand side of Eq. (2) represent the structural
response that carries over fromtime kDt to time (k+1)
Dt after the control force u[A has been applied. That

is, the structural response z[ A at any time kDt should
be eliminated by applying a control force u[A.

Z[A=AZA+Bu[K=0

(6)
The control force can be obtained as
ulkl=-(B;B,) "'B,A K =Gz (7)

Considering time delay problem, the control
force u[A has to be computed and prepared before
time kDt , and applied to the structure from time kDt
to time (k+1) Dt. Thus, it's impossible to calculate
Uu[A by using z[ K. Assuming that ntime step is needed
to compute and prepare the control force, the control
force can be represented by the following equation:
UlK=gz[knl, -, Zlkn-n], wlknl, -, w[kn-ny))

(8)

where n,and n, are the maximum lags in the structural
response and the external excitation, respectively; and
g is some vector-valued linear or nonlinear function.
Consequently, there is time to calculate and prepare
the control force from time (k) Dt to kDt and to

apply it to the structure from time kDt to (k+1) Dt ..
Thus, the problem of time delay effect can be
circumvented in the proposed control strategy.
3.3 ANSSA Controller

For simplicity, assume that only one active
tendon controller is used, and that it can be used on
any floor. After controlling each degree of freedom, all
the relative displacements and relative velocities of the
structure cannot be kept at zero by a single control
force, but minimizing the cumulative structural
responses allows us to apply the single control force.
Hence, modifying the control strategy is an attempt to
minimize the cumulative structural responses, z'[A] in
Eqg. (6), by applying the control force. The simplest
way to achieve this aim is to minimize the sum of the
square of the cumulative structural responses, which
happens to be an unconstrained optimization problem,
solved most effectively using supervised ANN models.

The ANSSA Controller, schematically presented
in Fig. 1, consists of three components: (1) a neural
emulator network to represent the minimized
cumulative structural responses under both the seismic
loading and the control force; (2) a neural control
network to determine the control force on the structure;
and (3) a neural prediction network to predict the
future structural response. The details of these three
components of the ANSSA Controller are presented in
the following.

3.3.1 Neural Emulator Network (NEN)

This network is modeled by an adaptive L-BFGS
neural network model™, which models the dynamic
behavior of the structure described by Eq. (6). To
minimize the sum of the sguare of the cumulative
structural responses, vectors u[Kl and z[k] are the
inputs, and vector z [A] is the corresponding output of
the neural emulator network. The input data of the
training instances are generated randomly, and are
substituted into Eq. (6) to generate the desired outputs
of the training instances. The computed outputs are
then generated by feeding the inputs forwardly through
the network. The difference between the desired and

computed outputs, z.[k] and z,[K], of the neural
emulator network is then measured. Finaly, the

weights of the network are adjusted based on the error
function E{K).

3.3.2 Neura Control Network (NCN)

The neural control network searches a suitable
control force to minimize the cumulative structural
responses z [K]. According to Eq. (8), the inputs of the
neural control network are z[kn], ....z[knny,
w[kn], ..., w[krn,], and the corresponding output is



Uu[A]. In this study, a conventional BP neural network
is adopted as the neural control network.

Before the neural control network can be
trained, the neural emulator network has to be trained.
The training process of the neural control network is
also demonstrated in Fig. 1. First, presenting the input
vector Z[knl, ..., Z[knZ), W[kn], ..., W[krn,] to
the neural control network to compute the control
force u[A], that is then applied to the pre-trained neural
emulator network to obtain the minimized cumulative

response z_[K] . The error function E{K) can be
formulated as follows:

()——aa[pd[kl 2, 1M ©)

p—l [
where P is the number of instancesin the training set;
and g;d[k] is the desired minimized cumulative
responses of the structure to be controlled, chosen to

be zero in this work. The superscript o represents the
oth element of the output vectors. Second, the weights

Wf in the neural control network are then updated as

follows:
e o]
DVV,-/-cz'h T[Ecc; Dmc__ha?-[Egﬂuc_
w; lu, ®IW, &
(10-11)

Herein, the learning ratio 11il{ is a constant.
Term v is the kth component of the control force, u.
Eq. (11) indicates that the adjustment of the weight
Wf during the training process is split into two steps:
first back-propagating the system error function E.
through the pretrained neural emulator network
without any changes in the weights Wf to calculate

the corresponding error £} u of the control force u;
then back-propagating the error DU &} through the
neural control network to adjust the weights Wf The

training process is terminated as the minimized
cumulative structural responses converge to the
desired responses within the predetermined tolerance.

3.3.3 Neural Prediction Network (NPN)
The obvious equation for rnstep structura
response prediction can be expressed as
7K = hZk-n,---.2Zk-n-n], wik-n],-,
wlk-n-n,],ulk-rl, ulk-n-n,])
where n, n, and n, are the maximum lags in the
structural response, the external excitation and the
control force, respectively;, and h is some
vector-valued linear or nonlinear  function.
Function h in Eq. (12) can be approximated by
the ANN, called Neural Prediction Network (NPN), as
shown in Fig. 1. The inputs of the NPN are structural
responses z[k-n|, ..., Z[knn), external excitations
W[k, ..., w[k-r-n,], and control forces u[kr], ...,
ulkn-n]. The output of the NPN is the structura
response in the kth time step, z[ 4. Herein, the NPN is

(12)

implemented through an adaptive L-BFGS neura
network model.

3.4 Adjusting the Damping Coefficient of the Active

Variable Dampers

After the ANSSA Controller has been trained,
the damping coefficient of the active variable dampers
can be adjusted according to the outputs of the NCN
and NPN. Assuming that the active varigble dampers
are installed in paralel along diagonal braces that are
hinged to the main structure as shown in Fig. 2.

Let F[A=du[A (13)
where
6l 1 1 >x 10
S 1 1 »x 1Y
d=€ w10 (14)
é G
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FIK=[FIA F[K - F[RA - F{A]" is the vector of

the control forces (at time kDt) produced by the
active variable dampers; F{K is the control force (at
time kDt) produced by the active variable dampers
installed between the Jth and (/-1)-th floors;

ulK=[w[A WK - uld - ulM]" is the control

force vector (at time kDt) calculated by the NCN; and
Ul K isthe control force (at time kDt) of the j-th floor.
The active variable damper forces can be expressed as

FlK=-P[Kcos %t ; (15
where P[4 isthe active variable damper force (at time
kDt) between the i-th and (/-1)-th floors; and % ; is
the angle of inclination of the dampers installed
between the /-th and (/-1)-th floors. The active variable
damper force also can be expressed as
P = N,(Cs.), v[Kcosq,

Ni (Csa)i (X/ [k] - j(f-l[k])cosqf
where N is the number of dampers installed between
the /-th and (/-1)-th floors; v[A] isthe internal velocity
(at time kDt) of the dampers installed between the
i-th and (i-1)-th floors, x[k] is the relative velocity
(at time kDt) of the j-th floor predicted by NPN; and
(Csa){ A is the damping coefficient (at time kDt) of
the dampers installed between the /-th and (/-1)-th
floors. Thus, the adjustment in the damping coefficient
of each active variable damper is given by

(16-17)

1C,, if (C..), £C,,
(cu) I =1(c.) [ if C,,, £(Ca) [K] £ C...
1C,. if (Csy); 2 Cr
(18)
where
(c.)[d= ald (19)

N; (X/ [k] B

X, [K])cos’ q,



3.5 Thenumerica examples

SDOF and MDOF structural systems subjected
to EL-Centro, Hachinohe and Myiagiok earthquake,
were investigated to demonstrate the feasibility of the
ANSSA Controller. Results indicate that the proposed
semi-active control algorithm destroys the gradual
rhythmic buildup of the structural response and
reduces the structural responses significantly at the
peak of the relative displacement, velocity, and
acceleration.

4. Adaptive Fluid damper

In order to verify the control agorithm, an
adaptive fluid damper is designed and experimented.
Figure 3 shows the adaptive fluid damper used in this
study. The damper consists of a stainless steel piston,
safe valve, flow control valve, and proportiona servo
valve.. Experimental results indicate that the adaptive
fluid damper can enhance the energy absorption of a
structure during earthquakes. The damping coefficient
of the damper can be adapted via adjusting the
propositional valve to perform variant energy
absorption capacity. The experiment results reveal that
the adaptive fluid damper

5. Comment and Conclusion

In this work, we present a semi-active control
algorithm using ANN model, called Adaptive Neural
Structural Semi-Active  Controller (ANSSA
Controller), to control civil engineering structures
under dynamic loadings. The control strategy of the
ANSSA Controller aims to minimize the structura
cumulative responses during earthquakes by applying
the active variable damper forces; besides, the problem
of time delay is considered in the proposed control

strategy.
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Figure2. Structura frame with diagonal damping



Figure3. The adaptive fluid damper
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