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The electron-photon interaction associated with the uncertainty based tunneling �EPAUT� in the parallel
double quantum dot system is studied. In the considered system, the electron interacts with the single mode
detuning quantum photon field, i.e., �ph+�=�2−�1, and transits between the quantum dots �QDs�. The cor-
responding characteristic temperature is calculated and compared with the Kondo temperature to recognize the
role of the related quantities. There are two energy uncertainties in the considered system. One is the energy
difference between the energy of electron-photon interacting quasiparticle and the Fermi energy of the lead.
The other is the detuning factor �. Besides, �� /�� is the bandwidth of the intermediate state of EPAUT. The
peak of the density of state corresponding to the EPAUT rises when the temperature is in the order of or below
the characteristic temperature. The EPAUT peak can be modified via tuning the Fermi energy of the lead
connected to the adjoined QD. Hence, the conductance between the connected leads is varied via tuning the
Fermi energy of the lead connected to the adjoined QD.
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I. INTRODUCTION

Recently, due to the advancement of the fabrication tech-
nology of the semiconductor nanostructures, the electronic
transport through nanostructure devices have been investi-
gated extensively. One of the nanostructure devices is the
quantum dot �QD� in which the electron energy levels are
quantized and the behavior is similar to the atom. The QD is
regarded as the artificial atom.1 Similar to the atomic system,
the coupled QD system can be treated as the artificial mo-
lecular system. The advantage of studying the QD systems is
that the properties of artificial atom or molecular systems can
be widely controlled by the external applied field. Hence, the
QD systems have been used to implement the quantum op-
tics, quantum device, e.g., the QD laser,2,3 the single photon
emitter,4,5 and the cavity QED.6–9 �for a review, see Ref 10�.
Besides, the quantum dot is one of the candidate of quantum
information devices.11–14 In the semiconductor cavity QED
system, the QD is embedded in the semiconductor microcav-
ity system, and the electron strongly couples with the quan-
tum photon field and interacts coherently. The electron tran-
sition via the strong electron-photon interaction is reversible
and the Rabi oscillation exists. In the cavity QED system, the
electronic energy is split due to the Rabi oscillation and is
called the Rabi splitting which has been observed in many
experiments.7–9

In contrast to the natural atom or molecular system, the
QD system is more convenient to connect with the lead;
hence, the electron transport is an important subject in the
QD system. For the application of the quantum optics and
quantum electronic QD device, the electronic transport in the
photon interacting QD system, i.e., the photon assisted trans-
port �PAT�, attracts many investigations.15–17 �for a review,
see Ref. 18�. The pattern of Rabi splitting also emerges from
the PAT in the double quantum dot or two states quantum
dot and reflects on the profile of the PAT current or
conductance.19–22

The uncertainty principle is one of the basic principle in
quantum mechanics and affects the electronic transport. The
Kondo effect is one of the quantum phenomena which is
related to the uncertainty based electronic transport and has
been experimentally observed in the QD system.23 It is inter-
ested to ask: Is there any other quantum effect based on the
uncertainty principle which may occur in the quantum dot or
nanostructure devices? In this paper, we will explore a new
quantum effect which is originated from the energy uncer-
tainty related to the electron-photon interaction.

In this paper, we study the electron-photon interaction as-
sociated with the uncertainty based tunneling �EPAUT� in a
double quantum dot �DQD� system. In our system, the elec-
tron can transit between the dots via absorbing or emitting a
detuning photon and undergoes the uncertainty based tunnel-
ing �UT� between the QD and lead. There are two kinds of
energy uncertainties in the EPAUT. One is related to the
uncertainty based tunneling effect which is a crucial process
in the Kondo effect. The other one is related to the electron-
photon interaction, i.e., the detuning factor �. The main pro-
cess in our system is the EPAUT. In order to clarify the
identities of these two uncertainties, we will firstly describe
“the detuning factor and Rabi oscillation” and “the uncer-
tainty based tunneling in Kondo effect” in the following.

A. Detuning factor and Rabi oscillation

The Rabi oscillation is one of the processes in this paper.
It is resulted from the periodic transition between two states
in the two-level system. If the electron occupies the higher
energy resonant state with energy �2 and interacts with the
single mode detuning quantum photon field, i.e., �ph+�
=�2−�1, the electron will transit to an intermediate state
�nonresonant state for the case of nonzero detuning factor�
with the energy �=�2−�ph=�1+� via emitting a photon and
retains to the higher resonant state via absorbing a photon.
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After many cycles of the transiting processes, the resonant
energy is split into the electron-photon interacting quasipar-
ticle energies �2

ph�=�2−� /2��R,nph
/2, where �R,nph

���2+4M2nph is the Rabi frequency and M is the electron-
photon coupling coefficient.24 Similar to the higher energy
state, the lower energy is split into �1

ph�=�1
+� /2��R,nph

/2. The Rabi splitting has been observed in
many semiconductor device systems.7,8

An energy uncertainty � exists in the electron-photon in-
teracting system when the photon is detuning. The zero pho-
ton number case gives a clear insight for understanding the
role of detuning factor �. For the zero photon case, the Rabi
frequency is � and the period of the electron transition is
T= �2� /��, i.e., the effective lifetime of the intermediate
state is in the same order of magnitude of �2� /�� or the
effective bandwidth is �� /2��. In the considered system, the
detuning factor � is expected as an energy uncertainty re-
lated to the electron interacting with the detuning quantum
photon field.

B. Uncertainty based tunneling in Kondo effect

The uncertainty based tunneling is a crucial process in the
Kondo effect.23 In the simplest Anderson model, there is a
local magnetic spin impurity embedded in the Fermi sea. The
local spin of impurity can be exchanged with the Fermi sea
via tunneling and causes the Kondo effect. In Anderson im-
purity model, the resonant energy of the electron in the mag-
netic impurity �or QD� is below the Fermi energy of Fermi
sea; thus, the electron in impurity �or QD� is trapped and
cannot tunnel out of the impurity to Fermi sea in the classical
situation. Since there is a strong Coulomb interaction be-
tween the opposite spin electrons, the electron with opposite
spin cannot exist in the impurity �or QD� at the same time.
The only way for impurity �or QD� to exchange the spin state
with the surrounding Fermi sea is to remove the electron
from the impurity �or QD� into the surrounding Fermi sea
first and then the electron in the surrounding Fermi sea with
the spin opposite to the impurity tunnels into the impurity.
The energy for an electron to be taken from the localized
impurity state to the unoccupied state at Fermi surface is
large and thus is forbidden classically without putting energy
into the system. However, the tunneling between the local-
ized magnetic impurity �or QD� and Fermi sea is allowed to
happen due to the quantum uncertainty principle in a very
short time interval around h / ��F−�0�, where �0 is the elec-
tron energy and �F is the Fermi energy of the surrounding
Fermi sea. The tunneling process via the allowance of the
uncertainty principle is called UT in this paper. The electron
in the localized impurity state tunnels into the electron res-
ervoir via the UT, leaves the localized impurity state unoc-
cupied, and becomes a virtual �intermediate� state with the
effective bandwidth D.25 Then, the electron in the Fermi sea
with opposite spin tunnels into the impurity �or QD� and
occupies the localized state. Eventually, the spin state of the
impurity �or QD� is exchanged. When the temperature is in
the same order of magnitude of or below a certain character-
istic temperature, i.e., the Kondo temperature TK, many of
the spin exchange processes are taken place together, the

Kondo effect occurs, and a peak is established around the
Fermi energy of the electron reservoir, which is the famous
“Kondo resonant peak.” The Kondo temperature for the in-
finite onsite Coulomb interaction case is TK=D exp�−���F

−�0� /��.26,27 The energy difference ��F−�0� is the tunneling
related energy uncertainty in the Kondo effect. � is the cou-
pling strength between the impurity �or QD� and lead.25 Re-
cently, the Kondo effect and the extension model have been
studied intensively in the semiconductor quantum dot
system.23,28–32 Besides, no matter the original Anderson im-
purity model or the extension model, the Coulomb interac-
tion is the necessary condition for the Kondo effect.

Because of the requirement of the energy conservation,
the electron cannot transit between the resonant states of the
DQD via interacting with the detuning photon field. The en-
ergy uncertainty plays an important role that provides a way
for the electron to transit between the nonresonant state and
the resonant state. Hence, the electron can transit between
the resonant states of QDs via the EPAUT. The EPAUT
arises no matter the interdot Coulomb interaction exists or
not; hence, the EPAUT is not equivalent to the “usual”
Kondo effect. We will show that the Hamiltonian of the con-
sidered system can be transformed into the form of the
Anderson impurity model. The electron photon interaction
associated with tunneling is the necessary condition for the
EPAUT. In the following, the characteristic temperature cor-
responding to the EPAUT is calculated and compared to the
Kondo temperature to understand the roles of the uncertain-
ties in our system. Besides, the density of state �DOS� and
conductance are also studied.

II. MODEL AND NOTATION

In this paper, we consider a double quantum dot system in
which the QDs are coupled with the single mode detuning
quantum photon field. The sketch of the system is plotted in
Fig. 1. Our system can be divided into two subsystems. Each
subsystem contains a quantum dot and two connected leads.
The electron can transit between the QDs in the subsystems
via the electron-photon interaction in which the tunneling
barrier between the QDs is incorporated with the electron-
photon coupling constant M.

FIG. 1. �Color online� The sketch of the considered parallel
double-quantum-dot system in the photon cavity. Each subsystem
contains a QD coupled to two leads. The electron in QD can transit
to the QD in the adjoined subsystem via electron-photon
interaction.
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The Hamiltonian can be expressed as

H = �
m�1,2

Hm + He-ph + Hph, �1�

where

Hm = HQD,m + Hlead,m + HT,m, �2�

HQD,m = �mdm
+ dm + Un̂mn̂m̄, �3�

Hlead,m = �
km,�

��L,R

	k�,m
ck�,m

+ ck�,m
, �4�

HT,m = �
km,�

��L,R

Vm,�ck�,m

+ dm + H.c., �5�

Hph = �phb
+b , �6�

He-ph = Md2
+bd1 + H.c. �7�

The Hamiltonian H includes three parts. The first term in Eq.
�1� is the Hamiltonian of individual subsystems. The second
term in Eq. �1� is the electron-photon interaction Hamil-
tonian. The subsystems interact with each other and the elec-
tron transits between the subsystems via the electron-photon
interaction. The third term is the energy of the photon cavity.
The Hamiltonian of the mth subsystem contains the quantum
dot energy HQD,m, where m�1,2 labels the lower energy

system �subsystem1� and higher energy system �sub-
system2�. Hlead,m is the lead energy and HT,m is the tunneling
Hamiltonian. The operators dm

† �dm�, ck�,m

† �ck�,m
�, and b†�b�

are the creation �annihilation� operators of electron in QD,
the lead � in the mth subsystem, and the photon, respec-
tively. V�,m is the tunneling matrix element for electron tun-
neling between QD and lead � in the subsystem m.

In order to simplify the problem, the following assump-
tions are made. �1� The tunneling matrix elements V�,m are
set to be identical for each tunneling barrier and hence the
tunneling coupling constant �m,�=� /2. �2� The electron-
photon interaction is assumed in the dipole approximation
and the corresponding Hamiltonian is He-ph, where M is the
electron-photon coupling coefficient.24 �3� The tunneling bar-
rier between the dots is involved in M. �4� The large photon
number situation, i.e., nph
1, is considered.

In this paper, the notation �m̄m
��� ���adj, int� is used to

label the self-energy corresponding to the EPAUT processes.
Via the equation of motion method, EPAUT self-energies are
obtained as

�m̄m
�adj� = M �

km̄,�

�Vkm̄,�
�2

�� − �km̄,�
− �− 1�m�ph��� − �km̄,�

− �− 1�m��ph + ���
fkm̄,�

= �− 1�m̄�
�

M�m̄,�

2��
ln

�� − �m̄,�
F − �− 1�m��ph + ���2 + ��T�2

�� − �m̄,�
F − �− 1�m��ph��2 + ��T�2

�8�

and

�m̄m
�int� = M �

km̄,�

�Vkm,�
�2

�� − �km,�
��� − �km,�

− �− 1�m��
fkm,�

= �− 1�m̄�
�

M�m,�

2��
ln

�� − �m,�
F − �− 1�m����2 + ��T�2

�� − ��m,�
F ��2 + ��T�2

= �− 1�m̄�
�

M�m̄,�

2��
ln

�� − �m̄,�
F − �− 1�m��ph + ���2 + ��T�2

�� − �m̄,�
F − �− 1�m��ph��2 + ��T�2

, �9�

where m , m̄�1,2 and m� m̄. The superscript �=adj indicates the EPAUT process that the electron in the QD of the initial
occupied subsystem m transits to the QD in adjoined subsystem via electron-photon interaction and then the UT proceeds
between the QD and leads in the adjoined subsystem m̄. The superscript �=int indicates the EPAUT process that the electron
proceeds the UT between QD and lead in the initial occupied subsystem m and then transits to the QD in the adjointed
subsystem m̄ via the electron-photon interaction. The sketch of these two types of EPAUT is plotted in Fig. 2. It should be
noted that a notation with a bar does not equal to the notation without a bar, however, a notation with a prime may equal or
may not equal to the notation without a prime.

FIG. 2. �Color online� The sketch of the notation of the EPAUT
coupling energy �m�

�,m, where �� int ,adj and m ,m��1,2.
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III. CANONICAL TRANSFORMATION ANALYSIS

In order to distinguish the EPAUT from the usual Kondo
effect and recognize the role of the electron-photon interac-
tion and the tunneling processes in EPAUT, we apply the
canonical transformation twice on the Hamiltonian shown in
Eq. �1�. The Hamiltonian Eq. �1� can be transformed into the
form of the Anderson impurity model via choosing the trans-
formation function as

S�1� = SSW
�1� + Se-ph

�1� , �10�

SSW
�1� = �

km,�

Vm,�	 1 − nm̄

�m − �km

+
nm̄

�m + U − �km


�dm
† ck�,m

− ck�,m

† dm� ,

�11�

Se-ph
�1� =

M

�
�d2

†d1b − b†d1
†d2� , �12�

keeping the terms proportional to �M�2, �Vm,��2, and �MVm,��.
The Hamiltonian in Eq. �1� is transformed as

H̃�1� = es�1�
He−s�1�

� HQD + Hlead +
1

2
�S�1�,Hint�

= H̃0
�1� + H̃ep-T

�1� + Hlead + Hph, �13�

H̃0
�1� � H̃QD

�1� + H̃K
�1� + H̃Coul

�1� , �14�

where

H̃QD
�1� = ��1 +

�M�2

�
b†b
d1

†d1 + ��2 −
�M�2

�
bb†
d2

†d2,

�15�

H̃Coul
�1� = �U −

�M�2

�

d2

†d2d1
†d1, �16�

H̃K
�1� = �

km,qm

Vkm
Vqm

�m − �km

�nm
q,k −
1

2
�cqm

† ckm + ckm
† cqm

�

+ �

km,qm

Jkm,qm�1

2
�nm̄cqm

† ckm + nm̄ckm
† cqm

+ dm
† dm̄cqm̄

† ckm + dm̄
† dmckm

† cqm̄
� − nm̄nm
qk
 , �17�

Jkm,qm � Vkm
Vqm	 1

�m − �km

−
1

�m + U − �km


 , �18�

where Jkm,qm is the effective exchange constant and

H̃ep-T
�1� = −

1

2�
k1

MVk1	 �1 − n1�
�1 − �k1

+
n1

�1 + U − �k1

−
1

�

��d2

†ck1b + b†ck1
† d2� −

1

2�
k2

MVk2

�	 �1 − n2�
�2 − �k2

+
n2

�2 + U − �k2

+
1

�
�ck2

† d1b + b†d1
†ck2

� .

�19�

The Hamiltonian H̃K
�1� is exactly the Kondo form which

corresponds to the usual Kondo effect. In the Hamiltonian

H̃K
�1�, the term related to the two QD electrons which hops off

the QD site to the Fermi sea and vice versa is abandoned.

The Hamiltonian H̃ep-T
�1� is the electron-photon interaction as-

sociated with the tunneling processes and causes self-energy

proportional to �M�2�Vkm
�2. The transformed Hamiltonian H̃�1�

becomes the form of Anderson impurity model in which the
tunneling term is recognized as the electron-photon interac-

tion associated with tunneling �EPAT� process, i.e., H̃ep-T
�1� ,

and the Coulomb interaction is modified as U− �M�2 /�, in
which −�M�2 /� is the electron-photon inducing effective in-
terdot Coulomb interaction. Compared to the Kondo term

H̃K
�1�, the EPAT is the higher order process. Besides, the EPAT

and Kondo terms are decoupled. Hence, the ground state of
the considered system is the Kondo effect quasiparticle and
is scattered by the EPAT process which will be shown in the
following discussion when considered in the case of short
distance.

In this paper, the highest order term we considered is only
up to the term with �M�2Vkm

Vqm
and all the other higher order

terms are ignored. Since the terms result from the effective
interdot Coulomb interaction, in which −�M�2 /� is the higher
order scattering terms, i.e., the corresponding self-energy is
proportional to �M�4, the effective interdot Coulomb interac-
tion is omitted. Besides, in distinguishing the EPAUT from
the Kondo effect, we set the interdot Coulomb interaction as
zero in the second canonical transformation. Hence, both of

the Kondo term H̃K
�1� and the Coulomb term H̃Coul

�1� are zero
and Kondo effect does not arise.

Set the Coulomb term as zero and transform the Hamil-
tonian Eq. �13� via the following function:

S�2� =
1

2 �
k1,�

MVk1,�	 1

�1 − �k1,�

+
1

�
	 1

�1 + �



��b†ck1,�
d2 − d2

†ck1,�
b�

+
1

2 �
k2,�

MVk2,�	 1

�2 − �k2,�

−
1

�
	 1

�2 − �



��ck2,�

† d1b − b†ck2,�
d2� . �20�

The Hamiltonian then becomes
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H̃�2� = H̃QD
�1� + Hlead + Hph +

1

2
�S�1�,H̃ep-T

�1� �

� H̃QD
�1� + H̃ep-T

�2� + Hlead + Hph, �21�

where

H̃ep-T
�2� = �

k1,�q1,�

J1,��
ep-T �d2

†d2ck1,�

† cq1,�
+ ck1,�

† cq1,�
b†b

− 
q1,�,k1,�
d2

†d2bb†� + �
k1,�q1,�

J2,��
ep-T �d1

†d1ck2,�

† cq2,�

+ ck1,�

† cq1,�
b†b − 
q1,�,k1,�

d1
†d1b†b� �22�

and

Jm,��
ep-T = �− 1�m �M�2

4
Vkm,�

Vqm,�� 1

�m − �km,�

− �− 1�m 1

�

�� 1

�m − �qm,�

− �− 1�m 1

�
� 1

�m − �− 1�m�

 . �23�

The Hamiltonian in Eq. �22� describes the EPAUT between
the QD and the lead in the adjoined subsystem with the
effective coupling constant Jm,��

ep . From Eqs. �23� and �22�,
the coupling strength is proportional to �M�2Vkm,�

Vqm,�
� �M�2�m. Note that EPAUT is resulted from the electron-
photon associated with tunneling process and not related to
both the interdot Coulomb interaction U and the effective
interdot Coulomb interaction �M�2 /�. It manifests that the
EPAUT and the Kondo effect are different and not entangled.
If the Coulomb interaction is considered, it is expected that
the Kondo effect quasiparticle is scattered by EPAUT in
which the self-energy is in the form of direct product of the
Kondo quasiparticle Green’s function and EPAUT coupling
energy.

In following, the results are obtained via the equation of
motion method �EOM� and the Lacroix’s decoupling ap-
proximation is adopted.26

IV. RESULTS AND DISCUSSIONS

A. Long distance limit (the zero interdot Coulomb
interaction approximation)

In order to understand the EPAUT and clarify its physical
picture, we study the long distance �LD� case first. In the LD
case, the interdot Coulomb interaction is ignored and the
Kondo effect is not involved. The corresponding Green’s
function Gmm is expressed as

��gmm
T �−1 − Mgm̄m

T �Mnph + �− 1�m�m̄m
�adj���Gmm = 1, �24�

which can be rewritten as

gm̄m
T �	� − �m

eph+ − i
�m

2

	� − �m

eph− − i
�m

2



− �− 1�mM�m̄m
�adj�
Gmm = 1, �25�

where �m
eph� is the electron-photon cavity quasiparticle en-

ergy. The Green’s functions gmm
T ���−�m+ i� /2�−1 and

gm̄m
T = ��−�m̄− �−1�m�ph�−1 are the tunneling quasiparticle

Green’s functions. The energy �m̄m
�adj� is the EPAUT coupling

energy in which the UT occurs in the adjoined subsystem m̄
�m , m̄�1,2 and m� m̄�. The detailed derivation of the above
equations can be found in the Appendix . Since the self-
energy �m̄m

�adj� is the logarithmic function of temperature,
therefore, as the Kondo temperature in Kondo effect, it is
expected that there is a characteristic temperature TC corre-
sponding to the EPAUT with the form similar to the Kondo
temperature.

Equations �24� and �25� are physically meaningful. Equa-
tion �24� represents that the ground state is the tunneling
quasiparticle, i.e., gmm

T and the ground state quasiparticle is
scattered via the simple electron-photon interaction which
causes the self-energy �M�2nphgm̄m

T , while the EPAUT causes
the self-energy �−1�mMgm̄m

T �m̄m
�adj�. Compared to the Green’s

function for the Kondo effect in the infinite Coulomb inter-
action case, Eq. �25� suggests that the tunneling related en-
ergy uncertainties are ��m

F −�m
eph+� and ��m

F −�m
eph+�.26

The physical picture of the Green’s function Gmm in the
LD case is demonstrated as follows. For the Green’s function
G22, as shown in Fig. 3, the electron occupies the resonant
state of QD2 initially with resonant energy �2, it can transit
to QD1 via emitting a photon with energy �ph, and it occu-
pies the nonresonant state of QD1 with energy �=�2−�ph
=�1+� due to the requirement of the energy conservation.
The nonresonant state electron and the emitted photon be-
come the intermediate state. Then, there are two possible
processes. The first one is the Rabi oscillation process which
does not associate with the UT process and causes the self-
energy �Rabi=g12

T �M�2nph for the Green’s function G22. Note
that there are nph photons participating in the Rabi oscilla-
tion; hence, the self-energy �Rabi is proportional to the pho-
ton number. The second one is the electron-photon interac-
tion associated with the uncertainty based tunneling process,

FIG. 3. �Color online� The sketch plot of the EPAUT process.
�a� �process �I�� The electron in the QD2 with the resonant energy
of QD2, �=�2, transits to QD1 with energy �=�2−�ph=�1+� via
emitting a photon and becomes an intermediate state. �b� The inter-
mediate state electron tunnels out of QD1 and into lead1 via the UT.
�c� The emitted photon polarizes the DQD which induces an elec-
tron in QD1 with the energy �=�2−� and a hole in QD2 with the
energy �=�1. �d� The hole tunneling into the lead 1 via UT. Process
�I� can be regarded as process �II�.
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i.e., EPAUT process. The electron in QD1 with energy �
=�1+� tunnels out of QD1 and occupies the state in lead1
with energy �=�k1�

+�. The emitted photon with energy
�ph=�2−�1+� causes the fluctuation of the photon cavity
and thus polarizes the DQD which creates an electron with
energy �=�2−� in QD2 and a hole with energy �=�1 in
QD1. Finally, the hole in QD1 tunnels into lead1 and occu-
pies the state with energy �=�1k�

via UT and leaves an elec-
tron in QD2 with energy �=�2−�. Note that only the emit-
ted photon participates in the DQD polarization process. In
another viewpoint, the polarization and hole tunneling pro-
cesses can be regarded as follows: an electron in lead1 with
energy �=�1k�

tunnels into QD1 and occupies the resonant
state via UT and then transits to the state of QD2 with energy
�=�2−� via absorbing the emitted photon. The UT process
provides a way for the electron transition from the nonreso-
nant state to the resonant state. Hence, the complete EPAUT
process can be regarded as follows: the electron in QDm
transits to the resonant state of the adjoined QDm̄ via inter-
acting with the detuning photon and UT. The effective cou-
pling energy of EPAUT process is �m̄m

�adj�. In the EPAUT pro-
cess, the detuning factor � is the energy uncertainty due to
the electron interacting with the detuning photon. The EP-
AUT must be completed within the time interval of time
uncertainty �1 / ���; hence, the effective bandwidth corre-
sponding to the EPAUT is expected in the same order of
magnitude of ��� �or the lifetime of the intermediate state is
in the same order of the magnitude of 1 / ����.

The characteristic temperature TC corresponding to the
EPAUT can be obtained by solving the characteristic equa-
tion,

Re�
�m
ph+
�m

ph− − �− 1�m̄M�m̄m
�adj�� = 0, �26�

i.e., the zero point of the real part of the denominator of the
Green function, in the vicinity of the extreme values of EP-
AUT coupling energy �m̄m

�adj�. Since the extreme values of
�m̄m

�adj� are located at �=�m
F and �=�m

F − �−1�m�, the charac-
teristic temperature can be defined when �2

F=�1
F+ ��ph+��.

In order to get the analytic solution, we solve the character-
istic temperature in three regimes: ���
�TC, �����TC, and
�����TC.

�a� For the case of ���
�TC, the characteristic tempera-
ture is calculated as

TC = ��

�
�exp�− � ��

�M�2�

�m

ph+
�m
ph−�
 , �27�

which can be compared to the characteristic temperature Tk
of the Kondo temperature for infinite U limit case,26,33

TK = D exp�−

�0

�

 , �28�

where 
�0���F−�0�. Comparing Eq. �27� with Eq. �28�, the
effective bandwidth, the energy uncertainties, and the inter-
action coupling strength for the EPAUT are able to be rec-
ognized. The comparison between the physics quantities for
the Kondo effect and EPAUT are listed in Table I.

As in the preceding discussion, the EPAUT process must
be completed within the time interval 1 /�. Hence, �� /�� is
the effective bandwidth in EPAUT. There are two energy
uncertainties in EPAUT. One is the detuning factor � which
is related to the electron-photon interaction and the other is
��m

F −�m
eph+� ��m

F −�m
eph−� which is related to the uncertainty

based tunneling. The coupling strength in EPAUT is �M�2�,
where M is related to the electron-photon interaction and � is
related to the uncertainty based tunneling. From Eq. �27�,
similar to the Kondo effect, the characteristic temperature is
high when the interaction coupling constant is strong and the
energy uncertainties are small.

�b� For the case of �����TC, the characteristic tempera-
ture is found as

TC =
M�m̄ ln�2.618�

2���2��
�m
ph+
�m

ph−��
. �29�

�c� For the case of �����TC, the characteristic tempera-
ture TC is obtained as

TC =
M�m̄

2���2�
�m
ph+
�m

ph−�
. �30�

For the �����TC region, the TC is independent of the detun-
ing factor �. As shown in Fig. 4, in the higher temperature
region, the Fermi surface is smeared and the electron-photon
interaction related energy uncertainty � is smother compared
with small TC. Hence, TC is dependent on the tunneling-
related energy uncertainty 
�m

ph+
�m
ph− only. The lifetime of

the corresponding quasiparticle is dominated by the UT pro-

TABLE I. Comparison between the Kondo effect and
EPAUT.

Kondo effect EPAUT

Effective bandwidth D �� /��
Energy uncertainty 
�0 ��
�m

ph+
�m
ph−�

Interaction coupling strength � �M�2�

FIG. 4. �Color online� The left hand side is the dot region and
the right hand side is the lead region. The red block in the right
hand side is the Fermi sea. The electron transits to the dot via
interacting with photon and occupies the intermediate state �dash
line�. The Fermi surface is smeared in higher temperature. The elec-
tron can tunnel into lead and occupied the state with energy �
��F+TC /2. �a� For the case of ����TC, the Fermi surface is sharp
and the detuning factor is important. �b� For the case of ����TC,
the Fermi surface is smeared and the role of detuning factor is
smothered.
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cess dominated by the uncertainty based tunneling mainly in
the �����TC region.

There is a maximum solution �TC= ��� for the case of
�m

F =�m
eph�; i.e., the tunneling related uncertainty is zero. The

maximum solution corresponds to the Rabi oscillation peak
�e.g., Fig. 5, nph=25� and the EPAUT effect �corresponding
peak� is not obvious. Besides the solution of maximum TC,
there is a zero TC solution for the case of large photon num-
ber, i.e., nph→� and TC→0. This property reflects that the
single photon fluctuation is not important and the EPAUT is
weak when the photon number of the photon cavity is large
in the LD case.

The densities of state of QD2 �DOS2� for the cases of T
=TC and T=10TC are shown in Figs. 5�a� and 5�b�. Since the
poles of the self-energy �m̄m

�adj� are located in the vicinity of
�=�1

F+�ph and are independent of the photon number nph,
the EPAUT peaks occur in the vicinity of �=�1

F+�ph always
and do not shift when the photon number nph is varied. Be-
sides, the EPAUT peak strongly depends on the temperature;
hence, the EPAUT peak is weak when T=10TC. The maxi-
mum value of the characteristic temperature appears in the
case of nph=25. For the case of nph=25, as in the preceding
discussion, the peak appeared in the vicinity of �=�1

F+�ph
corresponds to the Rabi oscillation which is insensitive to the
temperature.

Since the EPAUT involves two UT processes which asso-
ciate with opposite charged particles, i.e., the electron and

hole tunneling out of the QD1, the self-energy �12
�adj� can be

positive or negative. There are a peak and a dip in the DOS2.
The peak �dip� corresponds to the electron �hole� tunneling
quasiparticle. The distance of the peak and dip equals to the
detuning factor �. Besides, the sign of 
�m

ph+
�m
ph− changes

when the Rabi oscillation peak crosses the Fermi energy �2
F;

the positions of the dip and peak are exchanged for the cases
of nph�25 and nph�25. For the case of nph�25, both the
Rabi-oscillation peaks are located below the Fermi energy of
the connected lead, i.e., the electron-photon interacting qua-
siparticle is bounded; the peak corresponding to electron UT
process is below the Fermi energy. For the case of nph�25,
the higher energy of the Rabi split peak is located at the
energy higher than the Fermi energy of the connected lead,
while the dip corresponding to the hole UT process is below
the Fermi energy.

The conductance of subsystem2 versus the modulation of
the Fermi energy of lead1, i.e., �1

F, is shown in Fig. 6. Since
the electron in QD2 transits to QD1 via emitting a photon
and the UT exhibits between QD1 and lead1, the EPAUT
peak of DOS2 is shifted due to the modulation of the Fermi
energy of lead1. Hence, the profile of the conductance be-
comes the mirror image of DOS2, i.e., the mirror image of
Fig. 5�b�. The dip of the conductance at �1

F=0.1 reflects the
factor that the dip of DOS2 is pushed to �2

F due to the raise of
�1

F.

FIG. 5. �Color online� The density of state of QD2. The solid
line is the case of T=TC and the dash line is the case of T=10TC.
The detuning factor �=0.1. The tunneling coupling constant �
=�m=�m

R +�m
L =1. The electron-photon coupling coefficient M =1.

The electronic energies are �2
F−�2=�1

F−�1=5, where �1=−5 and
�2=0.

FIG. 6. �a� The DOS of QD2 and �b� the conductance of sub-
system2 vs the Fermi energy of lead 1 for the case of nph=40. The
other parameters are the same as the parameters in Fig. 5. The down
arrow in �a� points the Fermi energy of lead2.
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B. Short distance limit (the infinite interdot Coulomb
interaction limit)

In the short distance �SD� limit, the strong interdot Cou-
lomb interaction is included and the electron in the adjoined
QD is involved. Since the second particle �electron� is in-
volved by the interdot Coulomb interaction, the problem be-
comes a two-electron system. The QD exchanges the second
electron with both leads of the initial occupied and adjoining
subsystems via UT processes. Besides, the backward elec-
tron may not be one of the intermediate state; hence, the
exchanged electron can transit backward to initial subsystem
via interacting with any one of the photon in the cavity.
Therefore, there are nph photons participating in the EPAUT
processes and the strength of EPAUT process is enhanced
with nph times. Besides, as in the preceding discussion, the
ground state of the QD is the Kondo effect quasiparticle
when the interdot Coulomb interaction is considered.

In order to simplify the problem, the infinite interdot Cou-
lomb interaction is considered.23,28 Under the infinite interdot
Coulomb interaction limit, the Green’s functions Gmm can be
obtained as

��gmm
K �−1 − nph�Mmm̄�gm̄m

K �Mm̄m��Gmm = 1 − �nm̄� , �31�

where Mm̄m�M +�m̄m
�adj�+�m̄m

�int� is the generalized electron-
photon coupling coefficient. The generalized electron-photon
coupling coefficient involves three-electron transition pro-
cesses between QDs. The first one is the simple electron-
photon interaction with the coupling constant M. The other
two are related to the EPAUT coupling energies, i.e., �m̄m

�adj�

and �m̄m
�int�. Equation �31� indicates that the ground state of the

QD of the considered system is the Kondo effect quasiparti-
cle and the electron-photon coupling coefficient becomes the
generalized electron-photon coupling coefficient Mm̄m�M
+�m̄m

�adj�+�m̄m
�int�. The Kondo effect quasiparticle performs the

Rabi oscillation between the DQD with the generalized
electron-photon coupling coefficient Mm̄m.

Since the EPAUT process is involved in the generalized
electron-photon coupling coefficient Mm̄m and plays as a par-
tial role in the Rabi oscillation which associates with nph
photons, thus the strength of the EPAUT process is enhanced
by nph times. It suggests that the characteristic temperature is
higher than the Kondo temperature when the photon number
is large enough at suitable condition. For temperature much
higher than the Kondo temperature, the ground state effec-
tive quasiparticles become the tunneling quasiparticles gmm

T

and gm̄m
T . In the following, the case beyond the Kondo effect

will be discussed. We show numerically that the assumption
is appropriate. Besides, since the EPAUT is enhanced by nph
times due to the Rabi oscillation, the DQD polarization
which is induced by the single photon �the second term in
square brackets of Eq. �A44�� is not important now and can
be ignored.

In the SD case, TC is hardly solved in an analytic form for
the finite photon number situation. In order to express the
characteristic temperature in a form similar to Kondo tem-
perature, we only take the linear terms of the EPAUT cou-
pling energy and ignore the nonlinear terms, i.e., the product
terms of �mm̄

��� ���adj, int�, when we solve the characteristic

temperature for the finite photon situation in the SD case.
Hence, the self-energy in Eq. �31� is simplified as
nMgm̄m

T �M +M�m̄m
�int�+M�m̄m

�adj�+M�mm̄
�int�+M�mm̄

�adj��. Similar to
the case of LD limit, we choose the condition �m̄

F

+ �−1�m��ph+��=�m
F , i.e., �m̄m

�int�=�m̄m
�adj�, to define the charac-

teristic temperature. Hence, the characteristic equation be-
comes

Re�
�m
ph+
�m

ph− − 4Mnph�mm̄
��� � = 0. �32�

Since the nonlinear terms of �mm̄
��� in the Green’s function

�Eq. �31�� are ignored in the characteristic equation, this
equation does not give an exact characteristic temperature for
Eq. �31�. Instead of solving TC from Eq. �32� directly, we
express the characteristic temperature TC by an empirical pa-
rameter k multiplied by the “speculative” characteristic tem-
perature TC

S . TC
S is solved from the characteristic equation

shown in Eq. �32�. The characteristic temperature TC is ob-
tained as

TC = kTC
S = k��

�
�exp�− � ��

4nph�M�2�

�m

ph+
�m
ph−�
 .

�33�

The characteristic temperature shown in Eq. �33� is similar in
form as that of the LD case. Figure 7 shows the characteristic
temperature TC versus photon number nph. Similar to the
case of LD limit, TC is higher when �m

eph� is closer to the
Fermi energy of the lead �nph=50�, and TC is lower when
�m

eph� is far away from the Fermi energy of the lead. Since
the EPAUT is participated by all of the photons in the cavity,
the characteristic temperature for large photon number case,

FIG. 7. The characteristic temperature versus the photon num-
ber. The related parameters are the detuning factor �=0.1, the tun-
neling coupling constant �=�m=�m

R +�m
L =1, and the electron-

photon coupling coefficient M =1. The electronic energy is �2
F−�2

=�1
F−�1=5, where �1=−5 and �2=0. The corresponding Kondo

temperature TK=1.5�10−5 for the effective bandwidth D=100. The
inserted plot is the empirical constant k. The empirical constant k
approximates to a constant when the corresponding TC is low. It
suggests that the exact form of TC for the SD case is similar to the
form of TC for the LD case.
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i.e., nph
1, is higher than the long distance case. In the
infinite photon number limit, i.e., nph→�, the tunneling re-
lated energy uncertainty 
�m

ph+
�m
ph− becomes nph�M�2, and

the characteristic temperature, i.e., Eq. �33�, is independent
of the photon number nph. As shown in Fig. 7, the slop of the
curve of the characteristic temperature versus photon number
at nph=1000 is much smaller than the one at nph=50. It also
implies that the characteristic temperature approximates to
a constant of photon number when the photon number
is infinite. Figure 8 shows Re�gmm

K gm̄m
K �−1 and nph�M�2

�nphMmm̄Mm̄m. The intersection of Re�gmm
K gm̄m

K �−1 and
nphMmm̄Mm̄m shows that the obtained characteristic tempera-
ture is suitable. Besides, the inserted plot in Fig. 8 shows
Re�gmm

K gm̄m
K �−1 for the case of the temperature T=TC and T

=10TC. It is obvious that the change of Re�gmm
K gm̄m

K �−1 due to
the variation of temperature is much smaller than the change
of nphMmm̄Mm̄m. Since the Kondo effect is involved in
Re�gmm

K gm̄m
K �−1, the inserted plot in Fig. 8 points out that the

Kondo effect can be ignored when T�TC. It implies that the
characteristic temperature of EPAUT is much higher than the
Kondo temperature and agrees with our preceding argument.

In the SD case, although the characteristic temperature is
hardly solved in an analytic form for the case with finite
photon number, it has the analytic solution under the infinite
photon number limit and is found as follows.

�a� For ���
�TC,

TC = ��

�
�exp	− � ��

�2��
�
 . �34�

�b� For �����TC,

TC =
2�

2�2 ln 2.618. �35�

�c� For �����TC,

TC =
2�

2�2 = TC
max. �36�

As in the preceding discussion �the finite photon case�, the
characteristic temperature is independent of the photon num-
ber for the case of infinite photon number. Comparing TC in
the LD case, i.e., Eqs. �27�, �29�, and �30�, and the SD case,
since the UT not only proceeds in the adjoined subsystem but
also in the initial occupied subsystem, therefore, the tunnel-
ing coupling strength is twice as the LD case. The plots of
the characteristic temperature versus the detuning factor for
various photon number cases are shown in Fig. 9. It is obvi-
ous that TC decreases exponentially as the magnitude of the
detuning factor is increased in the �����TC region for any
photon number. As in the preceding discussion in the LD
case, the detuning factor is important and the lifetime of the
corresponding quasiparticle is dominated by the detuning
factor in the �����TC region. For the case of �����TC,
Similar to the LD case, TC is insensitive to the detuning
factor and EPAUT is mainly dominated by the uncertainty
based tunneling process. As shown in Eq. �36�, the maximum
characteristic temperature appears in the �����TC region.

Figure 10 shows the DOS of QD2 for the cases of T
=TC and T=10TC. The EPAUT peaks arise in the vicinity of
�=�1

F+�ph+�=�2
F when T=TC and disappear when T

=10TC. Compared to the LD case, the bandwidth of the
EPAUT peak in the SD case is larger. This property reflects
the fact of high characteristic temperature of the short dis-
tance case.

In the SD case, the EPAUT peak is due to both the UT
exhibited in the initial occupied subsystem and that in the
adjoined subsystem. Figure 11�a� shows the affect of EPAUT
peaks of QD2 due to the modulation of the Fermi energy of
lead1 and Fig. 11�b� shows the EPAUT coupling energies
�12

�int� �solid line, the UT exhibited in subsystem2� and �12
�adj�

�dash line, the UT exhibited in subsystem1� when T=TC. As
shown in Figs. 11�a� and 11�b�, the peak height of EPAUT is
shifted along the intersection of �12

�int� and �12
�adj� �labeled by

the circle in Fig. 11�b�� when the Fermi energy of lead1 is
modified. The EPAUT peak is strongest for the case of �2

F

=�1
F+ ��2−�1� in which the �12

�adj� and �12
�int� overlap com-

FIG. 8. �Color online� The solid lines are Re�gmm
K gm̄m

K �−1 and the
dash line are nph�M�2�nph�Mmm̄��Mm̄m�. The inserted figures are
Re�gmm

K gm̄m
K �−1 for nph=200 and the temperature T=1TC and T

=10TC. The other related parameters are the same as Fig. 7 and
m=2.

FIG. 9. �Color online� The characteristic temperature versus the
detuning factor. The solid line is the case of nph→�. The related
parameters are set as �2=0, �2=5, �m

F =�m+5, �m
� =� /2=0.5, and

M =1.
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pletely. When the Fermi energy of lead1, i.e., �1
F, is far away

from the condition �2
F=�1

F+ ��2−�1�, the strength of the over-
lap between �12

�adj� and �12
�int� is smaller and the EPAUT peak

is weaker. Since the energy �12
�int� is due to the UT between

QD2 and lead2, it does not shift as the Fermi energy of lead1

is tuned. In the SD case, the EPAUT peak height is hardly
shifted via modifying the Fermi energy of lead1. Compared
to the LD case, the increase of conductance owing to tuning
the Fermi energy of the lead in the adjoined subsystem is
very smaller. Although the energy �12

�int� does not shift as the
variation of the Fermi energy of lead1, however, the energy
�12

�adj� is shifted. Hence, the DOS in the vicinity of �2
F and the

conductance of subsystem2 are modified slightly via tuning
�1

F.
Figure 12 shows the conductance of subsystem2 versus

the Fermi energy of lead1. As in the previous discussion, the
conductance in the SD case is much smaller than that in the
LD case. However, the increase of the conductance owing to
tuning the Fermi energy of the lead in the adjoined sub-
system is still prominent. The enhancement of the conduc-
tance is due to the shift of the coupling energy �12

�adj�. The
conductance for the case that the EPAUT proceeds �T=TC� is
obviously larger than the case that the EPAUT does not pro-
ceed �T=10TC�. Similar to the LD case, the conductance
between lead2 can be tuned by tuning the Fermi energy of
lead1.

V. CONCLUSION

We study the EPAUT in a parallel double quantum dot
system. Due to the association of the UT, the electron transits
between the resonant states of DQD via emitting or absorb-
ing a detuning photon. Through the canonical analysis, EP-
AUT is recognized as unequal to the usual Kondo effect. For
the Kondo effect, the Coulomb interaction is a necessary
condition whether in the original Anderson impurity25 model
or in the extend Anderson impurity model.28 However, unlike
the usual Kondo effect, neither the interdot Coulomb inter-
action nor the electron-photon interaction inducing interdot
Coulomb interaction is the necessary condition of EPAUT.
The EPAUT results from the electron-photon interaction as-
sociated with tunneling and arises even the Coulomb inter-
action is zero �the LD case�.

The EPAUT is studied in the LD case in which the inter-
dot Coulomb interaction is ignored and in the SD case in

FIG. 11. �a� The DOS of QD2 for the various Fermi energy of
lead2 is at T=TC �nph=200�. �b� The EPAUT coupling energy �12

�int�

�solid line� and �12
�adj� �dash line�. The other related parameters are

the same as Fig. 7.

FIG. 12. �Color online� The conductance of subsystem 2 for
nph=100, 150, and 200. The solid lines are the case of T=TC and
the dash lines are the case of T=10TC. The other related parameters
are the same as Fig. 7.

FIG. 10. �Color online� The DOS of QD2 in �a� is at T=10TC

and in �b� is at T=TC. The EPAUT height is pointed out by the
arrow. The other related parameters are the same as Fig. 7.
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which the interdot Coulomb interaction is approximated to
be infinite. In the LD case, there is only one photon partici-
pating in the EPAUT process and the uncertainty tunneling
proceeds in the adjoined subsystem only. For the SD case,
the UT proceeds in both the adjoined and the initial occupied
subsystems and all of the photons of the photon cavity par-
ticipating in the EPAUT process which becomes the partial
elements of the generalized electron-photon coupling energy
and plays a partial role of Rabi oscillation.

The EPAUT corresponding characteristic temperature TC
is found in three regions: ���
�TC, �����TC, and ���
��TC. For the ���
�TC region, TC is in the form of the
Kondo temperature TK. The physical quantities are recog-
nized via comparing TC and TK and are listed in Table I. For
�����TC and �����TC regions, TC is insensitive to the de-
tuning factor and dominates by the tunneling coupling con-
stant. For the SD case, since there are nph photons participat-
ing in the EPAUT process, TC could be higher than the LD
case. For suitable situation, TC is higher than the Kondo
temperature in the SD case in which the interdot Coulomb
interaction is involved.

The EPAUT constructs a peak of DOS of QDm in the
vicinity of �=�m̄

F + �−1�m�ph when the temperature is in the
same order of magnitude of or below the characteristic tem-
perature. The peak height of the EPAUT peak is independent
of the photon number and its strength is highly sensitive to
temperature; hence, it is easily differentiated from the Rabi
oscillation peak.

In the LD case, UT of the EPAUT exhibits in the adjoined
subsystem only. If the Fermi energy of the lead in the ad-
joined subsystem is tuned, the EPAUT peak will be shifted.
Although the EPAUT peak is not located at the Fermi energy
of connected lead always and may not contribute to the con-
ductance, the EPAUT peak position can be shifted to the
Fermi energy of the connected lead via tuning the Fermi
energy of the lead in the adjoined subsystem and the electron
can transport through the QD via the channel opened by the
EPAUT.

In the SD case, UT is observe not only in the adjoined
subsystem but also in the initial occupied subsystem and
causes the EPAUT coupling energies �m̄m

�adj� and �m̄m
�int�, respec-

tively. When the lead of the subsystem is tuned toward the
condition �2

F= �1
F+ ��2−�1�, the EPAUT coupling energies

overlap completely and the EPAUT is strongest. Since the
EPAUT coupling �m̄m

�int� is shifted as the Fermi energy of the
connected lead is tuning and does not shift by modulating the
Fermi energy of the lead in the adjoined subsystem. The
EPAUT peak height is hardly to shift via modifying the
Fermi energy of lead in the adjoined subsystem to open a
strong channel for electron tunneling. Compared to the LD
case, the conductance channel opened by the EPAUT is very
weak and the conductance due to the EPAUT is very small in
the SD case. However, the EPAUT still opens a weak chan-
nel for the electron transport in the SD case and the conduc-
tance is larger than the case without EPAUT �T=10TC�. Al-
though, in the cases we considered, the EPAUT peak is
located below the Fermi energy of connected lead and the
conductance is small, the EPAUT peak is expected to pro-
vide the available channel for the electron transport in the
nonequilibrium �finite bias� case.

The cavity QED is one of the possible mechanisms to
implement the quantum information and the quantum dot is a
candidate system. The semiconductor cavity QED system be-
comes an interested field. Most of the electron-photon inter-
action in the cavity QED system is independent of the elec-
tron transport. According to the EPAUT in the SD case we
studied above, the electron-photon coupling coefficient is
generalized as Mm̄m which includes the EPAUT coupling en-
ergy. Since the EPAUT coupling energy is related to the tun-
neling coupling constant, the cavity QED behavior will be
related to the electron transport when the QD in cavity is
connected with a lead. The EPAUT provides the extra chan-
nels for the electron-photon interaction, and the strength of
the electron-photon interaction can be enhanced at the suit-
able condition. Beside the subject of electron transport in QD
system, we hope that our work will inspire the investigation
on the semiconductor cavity QED systems.
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APPENDIX

In the following, we show the detailed derivations of the
Green’s functions. In the considered system, the electron
transits between the QDs via the electron-photon interaction.
Hence, we assume that the system is described by the diag-
onal Green’s function Gmm and the off-diagonal Green func-
tion Gmm̄, where m�1,2 and m� m̄. The main effect de-
scribed in this paper contains the electron interacting with
the detuning photon and the uncertainty based tunneling;
hence, all of the correlation functions will be estimated in
same order of magnitude of M and �Vk�

�2 and expressed by
the Green’s functions Gmm and Gmm̄. By using the EOM
method, the Green’s function for QDm is

gmm
T Gmm = �� − �m − �T�Gmm = 1 + MGm̄m + UGmm

�2� ,

�A1�

where �T=−i� /2 is the self-energy due to the tunneling be-
tween QD and lead. In this paper, the tunneling barriers be-
tween the QD and lead are assumed identical; hence, �m

T

=�T=−i� /2. The off-diagonal Green’s functions are G21
���b†d2 ,d1

†�� and G12���bd1 ,d2
†��. Applying the EOM on

the off-diagonal Green’s function, we obtain

�gm̄m
T �−1Gm̄m � �� − �m − �− 1�m̄� − �T�Gm̄m

= �− 1�m�m̄m
�adj�Gmm + MnphGmm

+ MGm̄m
�dipole� + UGm̄m

�2� , �A2�

where the approximation nph
1 is employed; hence,
��b†b��= ��bb†��=nph. The energy �m̄,m

�adj� is related to the EP-
AUT and defined as Eq. �8�.
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There are two dipole-electron Green’s functions which are
induced by the emitted or absorbed photon,

G21
�dipole� � − ��d2

†d1d2,d1
†��, G12

�dipole� � ��d1
†d2d1,d2

†�� ,

�A3�

which are induced by the electron-photon interaction. They
are calculated as follows:

�� − �1 − U���d2
†d1d2,d1

†��

= �
k1,�

Vk1,�
��d2

†ck1,�
d2,d1

†�� + �
k2,�

Vk2,�
�− ��ck2,�

† d1d2,d1
†��

+ ��d2
†d1ck2,�

,d1
†��� − MG21

�2�, �A4�

and

�
k1,�

Vk1,�
��d2

†ck1,�
d2,d1

†�� = �1
T��d2

†d1d2,d1
†�� , �A5�

�
k2,�

− Vk2,�
��ck2,�

† d1d2,d1
†��

= �TU��d2
†d1d2,d1

†��

+ �
k2,�

�Vk2,�
�2

�� + �k2,�
− �1 − �2 − U�

fk2,�
G11

� �TU��d2
†d1d2,d1

†�� + K21,2
�dipole,U�G11, �A6�

�
k2,�

Vk2,�
��d2

†d1ck2,�
,d1

†�� = �T��d2
†d1d2,d1

†��

+ �
k2,�

�Vk2,�
�2

�� − �k2,�
− �1 + �2�

fk2,�
G11

� �T��d2
†d1d2,d1

†�� + K21,2
�dipole�G11,

�A7�

where �TU�−i� /2�0� for finite �infinite� U case. The
Green’s function G21

�dipole��−��d2
†d1d2 ,d1

†�� is obtained as

G21
�dipole� = − g11

T�2��K21,2
�dipole� + K21,2

�dipole,U��G11 + g11
T�2�MG21

�2�,

�A8�

where g11
T�2����−�1−2�T−�TU−U�. As the same way,

�� − �2 − 2�T − �TU − U���d1
†d2d1,d2

†��

= + �
k2,�

Vk2,�
��d1

†ck2,�
d1,d2

†��

+ �
k1,�

Vk1,�
���d1

†d2ck1,�
,d2

†�� − ��ck1,�

† d2d1,d2
†��� − MG12

�2�

= − MG12
�2� + �

k1,�

�Vk1,�
�2

�� − �k1,�
+ �1 − �2�

fk1,�
G22

+ �
k1,�

�Vk1,�
�2

�� + �k1,�
− �1 − �2 − U�

fk1,�
G22

� �K12,1
�ep� + K12,1

�ep� �G22 − MG12
�2�. �A9�

Hence, the Green’s function G12
�dipole����d1

†d2d1 ,d2
†�� is ob-

tained as

G12
�dipole� = g22

T�2��K12,1
�dipole� + K12,1

�dipole,U��G22 − g22
T�2�MG12

�2�.

�A10�

Hence, the off-diagonal Green’s functions become

�gm̄m
T �−1Gm̄m = �Mnph + �− 1�m�m̄m

�adj� + �− 1�mMgmm
T�2�

��Kmm,m̄
�dipole� + Kmm,m̄

�dipole,U���Gmm

+ �U − �− 1�mgmm
T�2��M�2�Gm̄m

�2� . �A11�

The two-electron Green’s functions are solved as follows:

�� − �1 − U�G11
�2� � �� − �1 − U���n2d1,d1

†��

= �n2� + MG21
�2� + �

k1,�

Vk1,�
��n2ck1,�

,d1
†��

+ �
k2,�

Vk2,�
���d2

†ck2,�
d1,d1

†��

− ��ck2,�

† d2d1,d1
†��� , �A12�

�
k1,�

Vk1,�
��n2ck1,�

,d1
†��

= �
k1,�

�Vk1,�
�2

�� − �k1,�
�
G11

�2�

− M�
k1,�

�Vk1,�
�2

�� − �k1,�
��� − �k1,�

− ��
fk1,�

G21

� �1
TG11

�2� − �12
�int�G21, �A13�

�
k2,�

Vk2,�
��d2

†ck2,�
d1,d1

†��

= �
k2,�

�Vk2,�
�2

�� − �k2,�
�
G11

�2� − �
k2,�

�Vk2,�
�2

�� − �k2,�
�

fk2,�
G11

− M�
k2,�

�Vk2,�
�2

�� − �k2,�
+ �ph + ���� − �k2,�

+ �ph�
fk2,�

G21

� �2
TG11

�2� − K11,2G11 − �12
�adj�G21, �A14�

− �
k2,�

Vk2,�
��ck2,�

† d2d1,d1
†��

= �
k2,�

�Vk2,�
�2

�� − �k2,�
�
G11

�2�

− �
k2,�

�Vk2,�
�2

�� − �k2,�
− �2 − �1 − U�

fk2�
G11

� �2
TUG11

�2� − K11,2
U G11. �A15�

KAO-CHIN LIN AND DER-SAN CHUU PHYSICAL REVIEW B 77, 115339 �2008�

115339-12



Hence, the Green’s function G11
�2� is obtained as

�g11
T�2��−1G11

�2� � �� − �1 − U − 2�T − �TU�G11
�2�

= �n2� − �K11,2 + K11,2
U �G11 − ��12

�int� + �12
�adj��G21 + MG21

�2�. �A16�

The off-diagonal elements for two particle Green’s function G21
�2� is calculated as

g21
T�2�G21

�2� � �� − �2 + �ph − U���b†n1d2,d1
†�� = MnphG11

�2� + �
k2,�

Vk2,�
��b†n1ck2,�

,d1
†�� + �

k1,�

Vk1,�
�− ��b†ck1,�

† d1d2,d1
†��

+ ��b†d1
†ck1,�

d2,d1
†��� , �A17�

�
k2,�

Vk2,�
��b†n1ck2,�

,d1
†�� = �2

TG21
�2� − nph�

k2,�

M�Vk2,�
�2

�� − �k2,�
+ �ph��� − �k2,�

+ �ph + ��
fk2,�

G11 = �2
TG21

�2� − nph�21
�adj�G11, �A18�

− �
k1,�

Vk1,�
��b†ck1,�

+ d1d2,d1
†�� = �1

UTG21
�2� − K21,1

U G21, �A19�

�
k1,�

Vk1,�
��b†d1

†ck1,�
d2,d1

†�� = �1
TG21

�2� + Mnph�1
TG11

�2� − K21,1G21 − nph�
k1,�

M�Vk1,�
�2

�� − �k1,�
− ���� − �k1,�

�
fk1,�

G11 = �1
TG21

�2� + Mnph�1
TG11

�2�

− K21,1G21 − nph�21
�int�G11. �A20�

Hence, G21
�2� becomes

�g21
T�2��−1G21

�2� = − nph��21
�adj� + �21

�int��G11

+ �Mnph + Mnph�1
T�G11

�2�

− �K21,1 + K21,1
U �G21. �A21�

As the same way, the Green’s function G22
�2� is calculated as

�� − �2 − U�G22
�2� � �� − �2 − U���n1d2,d2

†��

= �n1� − MG12
�2� + �

k2,�

Vk2,�
��n1ck2,�

,d2
†��

+ �
k1,�

Vk1,�
���d1

†ck1,�
d2,d2

†��

− ��ck1,�

† d1d2,d2
†��� , �A22�

�
k2,�

Vk2,�
��n1ck2,�

,d2
†��

= �
k2,�

�Vk2,�
�2

�� − �k2,�
�
G22

�2�

− M�
k2,�

�Vk2,�
�2

�� − �k2,�
��� − �k2,�

+ ��
fk2,�

G12

� �2
TG22

�2� − �21
�int�G12, �A23�

�
k1,�

Vk1,�
��d1

†ck1,�
d2,d2

†��

= �
k1,�

�Vk1,�
�2

�� − �k1,�
�
G22

�2� − �
k2,�

�Vk1,�
�2

�� − �k1,�
�

fk1,�
G22

− M�
k1,�

�Vk1,�
�2

�� − �k1,�
− �ph − ���� − �k1,�

− �ph�
fk1,�

G12

� �2
TG11

�2� − K22,1G22 − �21
�adj�G12, �A24�

− �
k1,�

Vk1,�
��ck1,�

† d1d2,d2
†��

= �
k1,�

�Vk1,�
�2

�� − �k1,�
�
G22

�2�

− �
k1,�

�Vk1,�
�2

�� − �k1,�
− �2 − �1 − U�

fk1�
G22

= �1
TG22

�2� − K22,1
U G22. �A25�

Hence,

�g22
T�2��−1G22

�2� � �� − �2 − U − 2�T − �TU�G22
�2�

= �n1� − MG12
�2� − �K22,1 + K22,1

U �G22

− ��21
�adj� + �21

�int��G12. �A26�

The off-diagonal two-particle Green’s function G12
�2� is calcu-

lated as
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�g12
T�2��−1G12

�2� � �� − �1 − �ph − U���bn2d1,d2
†��

= MnphG22
�2� + �

k1,�

Vk1,�
��bn2ck1,�

,d2
†��

+ �
k2,�

Vk2,�
�− ��bck2,�

† d2d1,d2
†��

+ ��bd2
†ck2,�

d1,d2
†��� , �A27�

�
k1,�

Vk1,�
��bn2ck1,�

,d2
†��

= �1
TG12

�2� − Mnph�
k1,�

�Vk1,�
�2

�� − �k1,�
− �ph��� − �k1,�

− �ph − ��

�fk1,�
G22

= �1
TG12

�2� − Mnph�12
�adj�G22, �A28�

− �
k1,�

Vk2,�
��bck2,�

† d2d1,d2
†�� = �2

UTG21
�2� − K12,2

U G12,

�A29�

�
k2,�

Vk2,�
��bd2

†ck2,�
d1,d2

†��

= �2
TG12

�2� + Mnph�2
TG22

�2� − K12,2G21

− Mnph�
k2,�

�Vk2,�
�2

�� − �k2,�
+ ���� − �k2,�

�
fk2,�

G22

= �2
TG12

�2� + Mnph�2
TG22

�2�

− K12,2G21 − nph�12
�int�G22. �A30�

Hence, the Green’s function G12
�2� becomes

�g12
T�2��−1G12

�2� � �� − �1 − �ph − 2�T − �UT�G12
�2�

= − nph��12
�adj� + �12

�int��G22 − �K12,2 + K12,2
U �G12

+ �Mnph + Mnph�2
T�G22

�2�. �A31�

Now, the Green’s functions Gmm, Gm̄m, Gmm
�2� , and Gm̄m

�2� are
obtained as follows:

Gmm = gmm
T + gmm

T MGm̄m + gmm
T UGmm

�2� , �A32�

Gm̄m � gm̄m
T �Mnph + �− 1�m��m̄m

�adj� + Mgmm
T�2��Kmm,m̄

�dipole�

+ Kmm,m̄
�dipole,U����Gmm + gm̄m

T �U − �− 1�mgmm
T�2��M�2�Gm̄m

�2� ,

�A33�

Gmm
�2� = gmm

T�2��nm̄� − gmm
T�2��Kmm,m̄ + Kmm,m̄

U �Gmm − gmm
T�2���mm̄

�adj�

+ �mm̄
�int��Gm̄m − �− 1�mgmm

T�2�MGm̄m
�2� , �A34�

Gm̄m
�2� = − gm̄m

T�2��Km̄m,m + Km̄m,m
U �Gm̄m − gm̄m

T�2�nph��m̄m
�adj�

+ �m̄m
�int��Gmm + gm̄m

T�2��Mnph + Mnph�m
T �Gmm

�2� ,

�A35�

where the terms gm̄m
T Mgmm

T�2� �Kmm,m̄
�dipole�+Kmm,m̄

�dipole,U�� Gmm and
gm̄m

T gmm
T�2� �M�2 Gm̄m

�2� in the off-diagonal Green’s function Gm̄m

contain the product of the tunneling quasiparticle Green’s
functions gm̄m

T and gmm
T�2� and are the higher order scattering.

Since we consider the lowest order scattering which is re-
lated to one tunneling quasiparticle Green’s function, the
terms gm̄m

T Mgmm
T�2� �Kmm,m̄

�dipole�+Kmm,m̄
�dipole,U�� Gmm and gm̄m

T gmm
T�2� �M�2

Gm̄m
�2� which contain the product of the two tunneling quasi-

particle Green’s functions, i.e., gm̄m
T gmm

T�2�, will be ignored in
following discussion.

1. Long distance limit: The zero interdot Coulomb interaction
approximation

If the distance between the quantum dots are enough long
and the interdot Coulomb interaction approximates to zero,
the Green’s functions become

��gmm
T �−1 − Mgm̄m

T �Mnph + �− 1�m�m̄m
�adj���Gmm = 1.

�A36�

The Green’s functions can be rewritten as

�	� − �m
eph+ − i

�m

2

	� − �m

eph− − i
�m

2

 − �− 1�mM�m̄m

�adj�
Gmm

= �gm̄m
T �−1, �A37�

where �m
eph� is the electron-photon interacting quasi-particle

energy of QDm and �m̄m
�adj� is the self-energy corresponding to

the EPAUT process in which the UT processes occur in the
m̄ subsystem and the EPAUT peak heights located in the
vicinity of �m̄

F + �−1�m�ph.

2. Short distance limit: The infinite Coulomb approximation

In this case, the two electron processes are induced via the
Coulomb interaction. The two-electron Green’s functions are
Gmm

�2� and Gm̄m
�2� . Under the infinite U limit, Eqs. �A34� and

�A35� become

Gmm = gmm
T + gmm

T MGm̄m + gmm
T UGmm

�2� , �A38�

Gm̄m = gm̄m
T �Mnph + �− 1�m�m̄m

�adj��Gmm + gm̄m
T UGm̄m

�2� ,

�A39�

UGmm
�2� � − �nm̄� + Kmm,m̄Gmm + ��mm̄

�int� + �mm̄
�adj��Gm̄m,

�A40�
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UGm̄m
�2� � Km̄m,mGm̄m + nph��m̄m

�int� + �m̄m
�adj��Gmm. �A41�

Substituting Eq. �A40� in Eq. �A38� and Eq. �A41� in Eq.
�A39�, the Green’s functions Gmm and Gmm can be solved.
Since the interdot Coulomb interaction is strong, we expand
the Green’s functions with the Kondo effect interacting
quasiparticle gm̄m

K ,

�gmm
K �−1Gmm � ��gmm

T �−1 − Kmm,m̄�Gmm

= 1 − �nm̄� + �M + �mm̄
�int� + �mm̄

�adj��Gm̄m,

�A42�

�gm̄m
K �−1Gm̄m � ��gm̄m

T �−1 − Km̄m,m�Gm̄m

= �nph�M + �m̄m
�int� + �m̄m

�adj�� + �− 1�m�m̄m
�adj��Gmm.

�A43�

Combining Eqs. �A42� and �A43�, we get the Green’s func-
tion Gmm as

��gmm
K �−1 − �− 1�mMgm̄m

K �m̄m − nph�Mmm̄�gm̄m
K �Mm̄m��Gmm

= 1 − �nm̄� , �A44�

where Mmm̄�M +�mm̄
�adj�+�mm̄

�int�. The form of Eq. �A44� is
same as the Green’s function for the long distance case, i.e.,
Eq. �A36�, except the term �Mmm̄�gm̄m

K �Mm̄m�. For the large
photon case, �Mmm̄�gm̄m

K �Mm̄m� is the dominative term and
the term �−1�mMgm̄m

K �m̄m
�adj� can be ignored.
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