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Abstract

In this study, two kinds of hydroxyethyl methacrylate–polyurethane (HEMA–PU) were used as volume shrinkage modifiers, and sev-
eral hydroxyethyl methacrylate–polyurethane modified unsaturated polyester (HEMA–PU/St./UP) resins crosslinked with styrene were
synthesized and characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and in terms
of their mechanical properties, including their tensile strengths and Izod impact energies. The properties of the HEMA–PU–modified St./
UP and St./UP were compared for potential applications as matrices for glass fiber-, aramid fiber-, and UHMWPE fiber-reinforced com-
posites. The effects of the HEMA–PU content and the type of polyol in the HEMA–PU resin matrices of the composites were investi-
gated through testing of their mechanical properties, bulletproof testing, and observations of their morphologies.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Although unsaturated polyester resins are used in many
industrial applications because of their good mechanical
properties, high processability, and high chemical resis-
tance, they often undergo undesirably high volume shrink-
age. To reduce the volume shrinkage of the matrix system,
many researchers [1–3] have attempted to prepare modified
polymer reins, for use as matrices in composites, from
unsaturated polyester resins. Cao et al. [4,5] found that
the addition of low-profile additives (LPA) reduced the
0266-3538/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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UP resin’s shrinkage, but increased the residual styrene
(St.) content; they also found that the use of an unsaturated
polyester at a low MMA/styrene ratio led to a lower
amount of styrene residue with almost unchanged shrink-
age, whereas a high MMA/styrene ratio reduced the resid-
ual styrene adequately but with poor volume shrinkage
control. Li et al. [6–9] studied the low-temperature curing
shrinkage control mechanism of LPA; they demonstrated
that the shrinkage behavior of the resin mixture is depen-
dent upon the competition between the shrinkage arising
from polymerization and the expansion arising from
microvoid formation. Huang et al. [10–12] found that the
addition of LPA enhanced the degree of phase separation
between LPA and a styrene-crosslinked polyester resin,
such that microgel particles could be identified throughout
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the reaction; they also observed the morphologies of sty-
rene-crosslinked polyester containing various LPA content.
Zhang et al. [13] described how compatible LPAs yielded
more-homogeneous matrices than did immiscible ones.

Fiber-reinforced polymer composites are used widely in
material applications. Several kinds of fibers have been
applied as reinforcing materials, including carbon fibers
[14,15], glass fibers [16–19], aramid fibers, and ultrahigh-
molecular-weight polyethylene (UHMWPE) fibers [20,21].

In this study, we synthesized eight sets of HEMA–PU/
St./UP resin systems possessing various HEMA–PU con-
tents and polyol types to investigate their volume shrink-
ages and mechanical properties, including their tensile
strengths and Izod impact energies, and compared them
with those of traditional UP resins. For the manufacture
of the fiber-reinforced composites, we incorporated four
types of fiber reinforcement material (i.e., E- and P-type
glass fibers, aramid fiber, and UHMWPE fiber) into two
different HEMA–PU/St./UP matrices and then determined
the bulletproof nature and mechanical properties of the
systems, including their tensile strengths and elongations.
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We obtained SEM images to observe the fracture behavior
and wet-out properties of these composites. The bullet-
proof properties of the UHMWPE fiber reinforced
HEMA–PU/St./UP and aramid fiber reinforced HEMA–
PU/St./UP composites of different thickness were also
investigated in this study [22,23].

2. Experimental

The materials used are listed in Table 1. Two polyols,
PBA 700 and PPG 400, were heated and degassed under
vacuum overnight prior to use.

2.1. Preparation of Polyurethane prepolymer and HEMA–PU

The preparation of PU prepolymer was mentioned else-
where before [23,24]. The HEMA–PU polymer was pre-
pared by reacting HEMA (2 equiv.) with PU prepolymer
(1 equiv. based on PPG 400 or PBA 700). The molecular
structures of the HEMA–PU polymers (based on PPG
400 or PBA 700) are presented below.
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2.2. Curing the HEMA–PU/St./UP (or St./UP reins)

Methyl ethyl ketone peroxide (MEKPO, 5 phr, initiator)
and the HEMA–PU/St./UP system which containing a
particular HEMA–PU content (or the UP resin with vari-
ous styrene contents) were mixed individually, and then
poured into an aluminum mold coated with polytetrafluo-
roethylene (PTFE) and pressed at 100 kg/cm2 and 60 �C
for 1.5 h before post-cured at 150 kg/cm2 and 80 �C for
1.5 h.

2.3. Preparation of glass fiber-reinforced HEMA–PU/St./

UP and St./UP composites

Each 0.125-mm-thick glass fiber mat was impregnated
with HEMA–PU/St./UP and St./UP resins containing var-
ious St. contents. The impregnated mats were fabricated
using eight plies; the dimensions of the compression mold
were 200 · 200 · 1 mm (length · width · thickness). The
pre-pregs were stacked and compression-molded at
100 kg/cm2 and 60 �C for 1.5 h prior to post-curing at
150 kg/cm2 and 80 �C for 1.5 h.
Table 1
Experimental materials

Designation Description

UHMWPE
fiber

Spectra@900 Denier 1200

Aramid fiber Technora@ T-200
Glass fiber 450 g/m2 (E-type), 300 g/m2 (P-type) (Taiwan Glass

Industry Co., Taiwan)
PBA 700

(polyol)
Poly(tetramethylene adipate)glycol; MW = 700 (Tai Gin
Co., Taiwan)

PPG 400
(polyol)

Poly(oxypropylene)glycol; MW = 400 (Tai Gin Co.,
Taiwan)

MDI 4,4 0-Diphenyl methane diisocyanate (TCI Chem.)
St. Styrene (Acros Organics)
HEMA Hydroxyethyl methacrylate (Acros Organics)
UP Unsaturated polyester (Eternal Co., Taiwan)
MEKPO Methyl ethyl ketone peroxide (Eternal Co., Taiwan)
Acetone 2-Propanone (Acros Organics)
2.4. Preparation of UHMWPE and aramid fiber-reinforced

HEMA–PU/St./UP composites

The preparation of UHMWPE and aramid fiber-rein-
forced HEMA–PU/St./UP composites was described else-
where [22,23]. The MEKPO initiator (5 phr) and HEMA–
PU/St./UP systems with various HEMA–PU contents were
chosen as the matrices in this study. Unidirectional fiber
reinforced composites ([0�]8) and cross-ply ones ([0�, 90�]2S)
were fabricated using eight plies of manufactured pre-pregs.
For mechanical testing, the various composite specimens
were cut into smaller sizes using a hydraulic power cutting
machine (UHO Enterprise Corporation, Taiwan).

2.5. Testing methods

Infrared spectra were recorded using a BIO-RAD FTS-
40 FT-IR spectrophotometer operated at 4 cm�1 resolu-
tion. Morphological studies were performed using a Tescan
5136 MM scanning electron microscope (SEM). The tensile
strengths and Izod impact energies of the various HEMA–
PU/St./UP and St./UP samples were measured according
to the ASTM-638 and ASTM-256 protocols. The stress–
strain properties of the various UHMWPE fiber-reinforced
composites were measured according to the ASTM-D3039
protocol. The method of bulletproof testing was performed
under National Institute of Justice ballistic standards (NIJ
0108.01 IIA and NIJ 0108.01 IIIA). The UHMWPE and
aramid fibers were knitted using the Plain Weaves method
of the Super Textile Corporation, Taiwan. Every 0.5-mm-
thick UHMWPE and aramid fiber knit was impregnated
with HEMA–PU/St./UP (20/20/60, weight ratio) resin.
The impregnated knits were fabricated using 6, 10, and
20 plies; and the compression method was the same as men-
tioned before.

3. Results and discussion

3.1. FTIR spectroscopic analysis

Fig. 1 displays the FTIR spectra of HEMA–PU(PBA
700) resin. A broad peak for the –OH groups



Fig. 1. FTIR spectra recorded at five different reaction stages during the synthesis of PU prepolymer based on PBA 700: (a) Initially: PBA 700 only; (b)
MDI added in PBA 700; (c) PU prepolymer based on PBA 700; (d) HEMA added in PU prepolymer; (e) Finally: HEMA–PU(PBA 700).
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(3500 cm�1) of the polyol is evident in Fig. 1a. The spec-
trum of the sample obtained after mixing MDI (2 equiv.)
and PBA 700 (1 equiv.) in a purged reaction kettle is pre-
sented in Fig. 1b. During the middle stages of the reac-
tion, the intensity of the signal of the –OH groups
(3500 cm�1) gradually disappeared, while that of the sig-
nal for the –NCO groups (2270 cm�1) reduced to half
of its original value (based on the signal for the p-pheny-
lene moieties at 840 cm�1), as presented in Fig. 1c.
Finally, HEMA (2 equiv.) was added to the reaction sys-
tems, as indicated in Fig. 1d. During the final stages, the
peak intensity of the residual –NCO groups (2270 cm�1)
continued to reduce until finally it remained constant, as
indicated in Fig. 1e.
Table 2
Physical properties of UP resins with different St. contents and HEMA–PU/S

Modified UP resin systems PU content
(wt%)

Styrene content
(%)

Styrene/unsaturated polyester 0 12.6
0 19.6
0 26.4
0 30.5
0 40.0
0 44.8
0 54.9

HEMA–PU(PPG)/Styrene/unsaturated
polyester

8.0 32.0
10.0 30.0
13.3 26.6
20.0 20.0

HEMA–PU(PBA)/Styrene/unsaturated
polyester

8.0 32.0
10.0 30.0
13.3 26.6
20.0 20.0
3.2. Volume shrinkages and mechanical properties of various

St./UP systems

The compatibility between the styrene and the unsatu-
rated polyester was high because they both contain benzene
rings. Thus, the addition of styrene acted as a diluting
modifier in the St./UP system; it diluted the viscosity of
the neat unsaturated polyester resin, and enhances the
mechanical properties by increasing the cross-linking den-
sity in the final St./UP networks. Table 2 lists the volume
shrinkages and tensile properties of St./UP systems con-
taining various styrene contents.

As presented in Fig. 2, the values of volume shrinkage
increased linearly upon increasing the styrene contents in
t./UP resin systems with various HEMA–PU contents

Tensile strength
(MPa)

Izod impact energy
(J/m)

Volume shrinkage
(%)

13.7 52.0 4.1
15.1 53.5 5.9
17.3 54.5 6.7
23.3 57.7 8.2
25.3 58.2 11.3
25.2 58.3 12.1
21.3 56.6 13.6

18.6 57.6 7.3
17.0 57.9 7.0
15.1 60.1 5.5
12.9 60.8 3.5

24.0 58.2 7.1
14.1 58.8 6.9
12.6 63.0 5.6
5.0 82.3 2.9



Fig. 2. Effect of the styrene content on the tensile strengths and volume shrinkages of St./UP resin systems.
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the St./UP system, and the regression equation, y = ax + b,
had values of a and b of 0.2375 and 1.0802, respectively
(R2=0.9815). Extending the regression equation to the Y

axis (the styrene content = 0%), the value of b (1.0802%)
represents the volume shrinkage of the neat unsaturated
polyester. The positive slope value of a, increased upon
increasing the styrene content. The tensile strength
increased upon increasing the styrene content in the St./
UP system up to 40 wt%, but then it decreased to
21.3 MPa at a styrene content of 54.9 wt%. Thus, the opti-
mal styrene addition for the St./UP system to provide the
strongest material was 40 wt% (25.3 MPa). Thus, for subse-
quent experiments, the HEMA–PU/St./UP resin materials
were prepared with the modifier (HEMA–PU/St.) content
of 40 wt% in the unsaturated polyester resin.

3.3. Volume shrinkages and mechanical properties of various

HEMA–PU/St./UP systems

Table 2 lists the volume shrinkages and mechanical
properties, including tensile strengths and Izod impact
energies, of HEMA–PU/St./UP systems containing vari-
ous HEMA–PU contents and two types of polyol
(PPG 400 and PBA 700). The values of tensile strength
decreased upon increasing the HEMA–PU content in
the HEMA–PU(PPG 400)/St./UP and the HEMA–
PU(PBA 700)/St./UP systems. The HEMA–PU(PPG
400)/St./UP system exhibited higher values of tensile
strength than did the HEMA–PU(PBA 700)/St./UP sys-
tem when the HEMA–PU content was greater than
8 wt%. This situation arose presumably because the
HEMA–PU(PBA 700)/St./UP system contained a greater
number of soft segmental structures, causing the cross-
linking density in the HEMA–PU, styrene, and the
unsaturated polyester network to be lower than that in
the HEMA–PU(PPG 400)/St./UP system at the same
HEMA–PU content.

The values of the volume shrinkage decreased upon
increasing the HEMA–PU content in the HEMA–PU(PBA
700)/St./UP and the HEMA–PU(PPG 400)/St./UP sys-
tems; these two types of HEMA–PU-modified St./UP resin
systems exhibited seemingly identical volume shrinkages.
The lowest volume shrinkages were 3.5% for the 20 wt%
HEMA–PU(PPG 400)- and 2.9% for the 20 wt%
HEMA–PU(PBA 700)-modified St./UP resin system. As
mentioned above in the discussion of the St./UP system,
the volume shrinkage of the neat unsaturated polyester
resin was 1.0802%; therefore, these two polyol-containing
20 wt% HEMA–PU-modified St./UP resin systems pos-
sessed highly improved volume shrinkage properties. It
seems that the soft segmental structures of the two pol-
yol-modified HEMA–PU systems had been dispersed uni-
formly in the microvoids during the course of UP cross-
linking, such that the HEMA–PU units reacted with the
styrene and the unsaturated polyester resins to result in
the formation of network structures during the cross-link-
ing reaction.

In the HEMA–PU(PPG 400)/St./UP system, the Izod
impact energy decreased to 57.6 J/m at an HEMA–PU
content of 8 wt%, but increased to 60.8 J/m at an
HEMA–PU content of 20 wt%, relative to that of the St./
UP (40/60 in weight ratio) (see Table 2). This result is con-
sistent with the SEM images of the fracture surfaces of the
HEMA–PU(PPG 400)/St./UP systems. For the 10 wt%
HEMA–PU-containing HEMA–PU/St./UP system as
shown in Fig. 3a, the fracture surface revealed many con-
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tinuous narrow shear band structures, indicating rapid
crack propagation [22]. In the HEMA–PU/St./UP system
containing 20 wt% HEMA–PU (Fig. 3b), the crack propa-
gated from the surface across the cross-sectional area, and
fracture surfaces revealed non-continuous, broader cracks.
This finding suggests that the HEMA–PU(PPG 400)-
modified St./UP systems exhibit better load bearing charac-
Table 3
Mechanical properties of various UHMWPE fiber-, Aramid fiber-, and glass

Matrix Reinforcement

HEMA–PU(PBA 700)/St./UP = 20:20:60 UHMWPE fiber

Aramid fiber

Glass fiber A
Glass fiber B

HEMA–PU(PBA 700)/St./UP = 8:32:60 UHMWPE fiber

Aramid fiber

Glass fiber A
Glass fiber B

Fig. 3. SEM images of side-view fracture surfaces with various PU content in H
HEMA–PU(PPG 400) content = 20 wt%; (c) HEMA–PU(PBA 700) content =
teristics. For the HEMA–PU(PBA 700)/St./UP system, the
value of Izod impact energy increased from 58.2 J/m at an
HEMA–PU content of 8 wt% to 82.3 J/m at an HEMA–
PU content of 20 wt%, relative to that of the St./UP
(40/60 in weight ratio) resin. This result is consistent with
the SEM images in Fig. 3c and d. At higher HEMA–PU
content in the HEMA–PU(PBA 700)/St./UP systems, the
fiber-reinforced HEMA–PU(PBA 700)/St./UP composites

Packing way Tensile strength (MPa) Elongation (%)

[0�, 90�]2S 330.8 31.9
[0�]8 586.8 39.7
[0�, 90�]2S 270.8 26.2
[0�]8 526.5 28.5
Mat type 102.4 21.3
Mat type 74.8 20.6

[0�, 90�]2S 399.9 30.3
[0�]8 739.6 33.1
[0�, 90�]2S 314.8 15.3
[0�]8 647.0 23.8
Mat type 114.9 18.6
Mat type 79.7 14.7

EMA–PU/St./UP reins: (a) HEMA–PU(PPG 400) content = 10 wt%; (b)
10 wt%; (d) HEMA–PU(PBA 700) content = 20 wt%.
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fracture paths exhibited discontinuous, convoluted, and
large feather-like features; the fracture surfaces that spread
from the bottom upward are presumably responsible for
the higher toughness and load bearing characteristics.

Thus, a lower HEMA–PU content (8 wt%) in the
HEMA–PU/St./UP resin system led to a higher tensile
strength, whereas a high HEMA–PU content (20 wt%)
improved the Izod impact energy and led to a smaller vol-
ume shrinkage for both types of polyol-containing
HEMA–PU/St./UP systems. The HEMA–PU(PBA 700)/
St./UP systems exhibited superior values for their tensile
and Izod impact energies relative to those of the HEMA–
PU(PPG 400)/St./UP systems at both 8 and 20 wt%
Table 4
Bulletproof tests of UHMWPE fiber/HEMA–PU/St./UP composites and Ara

System (fiber content; vol.%) Standard testing
method

Results

3 mm UHMWPE fiber composite
(30.93 vol.%)

NIJ 0108.01 II A
(380 m/s)

Penetrated

3 mm Aramid fiber composite
(31.18 vol.%)

NIJ 0108.01 II A
(380 m/s)

Penetrated

5 mm UHMWPE fiber composite
(26.80 vol.%)

NIJ 0108.01 II A
(380 m/s)

Penetrated

5 mm Aramid fiber composite
(27.34 vol.%)

NIJ 0108.01 II A
(380 m/s)

Penetrated

10 mm UHMWPE fiber composite
(28.87 vol.%)

NIJ 0108.01 III A
(433 m/s)

Not
penetrated

10 mm Aramid fiber composite
(28.78 vol.%)

NIJ 0108.01 III A
(433 m/s)

Not
penetrated
HEMA–PU content. Thus, for manufacturing subsequent
fiber-reinforced composite materials, we incorporated 8
and 20 wt% of HEMA–PU into the HEMA–PU(PBA
700)/St./UP systems.

3.4. Mechanical properties of various fiber-reinforced
composites

Table 3 lists the mechanical properties, including tensile
strength, elongation, and Izod impact energy, of various
glass fiber-, aramid fiber-, and UHMWPE fiber-reinforced
HEMA–PU(PBA 700)/St./UP composites containing two
different contents of HEMA–PU(PBA 700). The values
mid fiber/HEMA–PU/St./UP composites

Fiber weight/unit composite
area (g/cm2)

Result photographs

Front face Rear face

0.09

0.13

0.13

0.19

0.28

0.40
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of tensile strength and elongation of the UHMWPE fiber-
and aramid fiber-reinforced HEMA–PU(PBA 700)/St./UP
composites incorporating HEMA–PU content of 8 and
20 wt% were clearly higher than those of the two corre-
sponding glass fiber-reinforced composites. These findings
suggest that the UHMWPE and aramid fibers have poten-
tial for application as next-generation fiber-reinforcement
materials.

3.5. Bulletproof properties

Because the HEMA–PU(PBA 700)/St./UP (20/20/60 in
weight ratio) system exhibited the lowest volume shrink-
age and highest Izod impact energy, we manufactured
UHMWPE fiber knit- and aramid fiber knit-reinforced
HEMA–PU(PBA 700)/St./UP (20/20/60, weight ratio)
composites and subjected them to tests of their bullet-
proof nature. Table 4 lists the results of bulletproof test-
ing of these two kinds of fiber knit-reinforced HEMA–
PU(PBA 700)/St./UP (20/20/60, weight ratio) composites.
From standard testing using the NIJ 0108.01 IIA method
at thickness of 3 and 5 mm, neither the UHMWPE fiber
knit/HEMA–PU/St./UP composite nor the aramid fiber
knit/HEMA–PU/St./UP composite was bulletproof (i.e.,
they were penetrated). In contrast, from standard tests
using the NIJ 0108.01 IIIA method at a thickness of
10 mm, both the UHMWPE fiber knit/HEMA–PU/St./
UP and aramid fiber knit/HEMA–PU/St./UP composites
were bulletproof (i.e., they were not penetrated). The fiber
weight per unit composite area played an important role
in affecting the bulletproof nature. For example; using
the NIJ 0108.01 IIIA method at a thickness of 10 mm,
the fiber weight per unit composite area of 10 mm thick-
ness composites were greater than other two smaller
thickness (3 and 5 mm), and they could passed the bul-
let-proof testing via produced the deformation and de-
limination of composites to adsorb the high-speed impact
energy.
4. Conclusion

The optimal addition of styrene to the St./UP system to
provide the strongest material was 40 wt%, albeit with a
high volume shrinkage. After the addition of two kinds
of HEMA–PU as volume shrinkage modifiers for the St./
UP system, we found that a lower HEMA–PU content
(8 wt%) led to a higher tensile strength, whereas a higher
HEMA–PU content (20 wt%) increased the Izod impact
energy and decreased the degree of volume shrinkage in
both types of polyol-modified HEMA–PU/St./UP systems.
The HEMA–PU(PBA 700)/St./UP system exhibited higher
values of tensile and Izod impact energies relative to those
of the HEMA–PU(PPG 400)/St./UP system at both 8 and
20 wt% HEMA–PU addition.

The UHMWPE fiber- and aramid fiber-reinforced
HEMA–PU(PBA 700)/St./UP composites displayed
clearly higher values of tensile strength and elongation
than did the two corresponding types of glass fiber-rein-
forced composites. Thus, it seems that the UHMWPE
and aramid fibers have the potential for application as
next-generation fibers reinforcement materials. The
mechanical properties of the UHMWPE fiber- and ara-
mid fiber-reinforced composites were different, suggesting
that these two kinds of fibers were suited to applications
in different fields.
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