Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

A quaternary germanium(II) phosphate, Na[Ge₄(PO₄)₃]

Chi-Shen Lee* and Sheng-Feng Weng

Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Rd, Hsinchu 30010, Taiwan Correspondence e-mail: chishen@mail.nctu.edu.tw

Received 22 November 2007; accepted 29 January 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Ge–O) = 0.013 Å; R factor = 0.058; wR factor = 0.133; data-to-parameter ratio = 10.3.

A new germanium(II) phosphate, sodium tetragermanium tris(phosphate), Na[Ge₄(PO₄)₃], has been synthesized by a solid-state reaction. The compound is isotypic with $A[Sn_4(PO_4)_3]$ ($A = Na, K, NH_4$). It features a [Ge₄(PO₄)₃]⁻ framework made up of GeO₃ pyramids and PO₄ tetrahedra, which are linked by shared corners, yielding a three-dimensional structure. The crystal studied showed partial inversion twinning.

Related literature

Open-framework series of isotypic tin(II) phosphates with general formula $A[Sn_4(PO_4)_3]$ ($A = Na, K, NH_4$) were synthesized by hydrothermal methods (Ayyappan *et al.*, 2000; Bontchev & Moore, 2004; Deng *et al.*, 2004; Mao *et al.*, 2004). For related literature, see: Brown & Altermatt (1985); Cheetham *et al.* (1999); Weakley & Watt (1979).

Experimental

Crystal data

Na[Ge₄(PO₄)₃] Z = 6 $M_r = 598.26$ Mo Kα radiation Trigonal, R3c $μ = 10.49 \text{ mm}^{-1}$ a = 9.377 (8) Å T = 298 (2) K c = 23.48 (3) Å $0.2 \times 0.13 \times 0.1 \text{ mm}$ $V = 1788 (3) Å^3$ Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.488$, $T_{\max} = 1$ (expected range = 0.171–0.350)

2164 measured reflections 639 independent reflections 567 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.068$

Refinement

 $\begin{array}{lll} R[F^2>2\sigma(F^2)]=0.058 & \Delta\rho_{\rm max}=1.71~{\rm e}~{\rm \mathring{A}}^{-3} \\ wR(F^2)=0.133 & \Delta\rho_{\rm min}=-1.06~{\rm e}~{\rm \mathring{A}}^{-3} \\ S=1.09 & {\rm Absolute~structure:~Flack~(1983)}, \\ 639~{\rm reflections} & 146~{\rm Friedel~pairs} \\ 62~{\rm parameters} & {\rm Flack~parameter:~0.23~(8)} \\ 1~{\rm restraint} & \end{array}$

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ATOMS* (Dowty, 2005); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

This work was supported by the National Science Council (NSC94–2113–M–009–012, 94–2120–M–009–014) and the Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan (NL940251).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2055).

References

Ayyappan, S., Chang, J. S., Stock, N., Hatfield, R., Rao, C. N. R. & Cheetham, A. K. (2000). *Int. J. Inorg. Mater.* 2, 21–27.

Bontchev, R. P. & Moore, R. C. (2004). Solid State Sci. 6, 867-873.

Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.

Deng, J.-F., Kang, Y.-J., Mi, J.-X., Li, M.-R., Zhao, J.-T. & Mao, S.-Y. (2004).
Acta Cryst. E60, i116-i117.

Dowty, E. (2005). ATOMS. Shape Software, Kingsport, TN, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Mao, S. Y., Deng, J. F., Li, M. R., Mi, J. X., Chen, H. H. & Zhao, J. T. (2004). Z. Kristallogr. 219, 205–206.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Weakley, T. J. R. & Watt, W. W. L. (1979). Acta Cryst. B35, 3023-3024.

supplementary m	aterials	

Acta Cryst. (2008). E64, i17 [doi:10.1107/S1600536808003231]

A quaternary germanium(II) phosphate, Na[Ge₄(PO₄)₃]

C.-S. Lee and S.-F. Weng

Comment

Open-framework metal phosphates exhibit interesting structural types and physical properties that have been the subject of intensive research due to their potential applications in the areas of catalysis, ion–exchange and phase separation (Cheetham *et al.*, 1999). Among these compounds, germanium phosphates are rare compared to other phosphate compounds. Most of reported germanophosphate contain germanium (IV) with octahedral coordination environment to oxygen atoms. To the best of our knowledge, germanophosphate with Ge(II) are very rare. Our group has demonstrated that A_2HPO_4 and metal can serve as reducing and oxidizing reagents to synthesize metal phosphates. In an attempt to synthesize compounds in the system using A_2HPO_4 as the precursor, we obtained a new quaternary compound $Na[Ge_4(PO_4)_3]$. As confirmed by measurements on single crystals, the synthesis of $Na[Ge_4(PO_4)_3]$ is presented as follows:

 $4Na_2HPO_4+17Ge+15GeO_2+10P_2O_5 \rightarrow 8Na[Ge_4(PO_4)_3]+2H_2$

The structure of Na[Ge₄(PO₄)₃] is shown in Figure 1. The asymmetric unit contains two germanium, one phosphorus, four oxygen and one sodium atom (Figure 2). The Ge atoms occupy two different crystallographic sites and each site being coordinated by three O atoms to form distorted pyramids with Ge—O distances ranging from 1.87 (1) to 1.92 (1) Å, which agrees well with bond valence sum calculations (Brown & Altermatt, 1985). Similar Ge—O distances are reported in GeCl(H₂PO₂) (Weakley & Watt, 1979). The coordination environment of the Ge²⁺ atoms is similar to Sn²⁺ in A[Sn₄(PO₄)₃] (A=Na, K, NH₄) (Ayyappan *et al.*, 2000, Bontchev & Moore, 2004, Deng *et al.*, 2004, Mao *et al.*, 2004). The phosphorus atoms is tetrahedrally coordinated with P—O distances in a range 1.53 (1) to 1.54 (1) Å, which agrees with literature values. The structure of the title compound contains [PO₄]³⁻ layers stacked along the c-axis with a repeat sequence of six layers. The [PO₄]³⁻ units on the *ab* plane form 6 membered–ring with corner–shared [PO₄] and Ge(2)O₃ units, which are connected by Ge(1)O₃ pyramids to construct the two–dimensional framework. The two-dimensional layers are additionally connected to each other by out of planeGe(1)O₃ groups to form a three–dimensional framework. Each sodium atom is coordinated by nine oxygen atoms with Na—O distances ranging between 2.46 (1) and 2.71 (1) Å in a basket–like cage.

Experimental

Na[Ge₄(PO₄)₃] were synthesized from mixtures of Na₂HPO₄ (99%, Riedel-de Haën), Ge (99.999%, Alfa), GeO₂ (99.999%, Cerac), and P₂O₅ (99.999%, J·T·Baker) in stoichiometric proportions according to the solid state method. Initially, all reagents were mixed in an Ar-filled glove box (total weight \approx 0.5 g), placed in a silica tube, sealed under vacuum (P \approx 10⁻⁴ torr), and heated slowly to 600 °C over 48 h, followed by furnace cooling to room temperature on simply terminating the power. The length of the reaction tube was kept about 7~8 cm to avoid the prospective explosion due to the formation of gaseous hydrogen. The product contains hydrogen gas and brittle, colorless, transparent rod-shape crystals. The crystalline product

was confirmed to be pure $Na[Ge_4(PO_4)_3]$ by powder X-ray diffraction. Attempts to synthesize the analogue $K[Ge_4(PO_4)_3]$ with the precursor K_2HPO_4 failed.

Refinement

The structures were solved by direct methods and refined by full matrix least–squares techniques with the *SHELXTL* software package. Analysis of single-crystal X–ray diffraction data revealed four unique sites for Na, Ge and P and four unique sites for O atoms. The structural analysis yielded a charge–balanced formula Na[Ge₄(PO₄)₃]. All atomic positions were refined with anisotropic displacement parameters. The highest peak in the difference map is 1.67 e/Å³ and 0.96 Å from Ge1, while the minimum peak is -1.08 e/Å³ and 1.51 Å from O3.

Figures

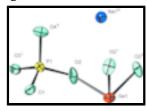


Fig. 1. The framework of Na[Ge₄(PO₄)₃] [Symmetry codes: (i)-y,x-y,z (ii)-x+y, -x, z (ix)-y+2/3, -x+1/3, z+5/6 (x)-x+y+2/3, y+1/3, z+5/6. Displacement ellipsoids are drawn at the 50% probability level.

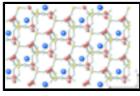


Fig. 2. The alternating full/empty sequence of channels running parallel to the a- and b-axes.

sodium tetragermanium tris(phosphate)

Crystal data

 $Na[Ge_4(PO_4)_3]$ Z = 6 $F_{000} = 1680$ $M_r = 598.26$ $D_{\rm x} = 3.334 \; {\rm Mg \; m}^{-3}$ Trigonal, R3c Mo Kα radiation Hall symbol: R 3 -2" c $\lambda = 0.71073 \text{ Å}$ a = 9.377 (8) Å Cell parameters from 2164 reflections $\theta = 3.1-28.3^{\circ}$ b = 9.377 (8) Åc = 23.48 (3) Å $\mu = 10.49 \text{ mm}^{-1}$ $\alpha = 90^{\circ}$ T = 298 (2) K $\beta = 90^{\circ}$ Rod, colourless $y = 120^{\circ}$ $0.2 \times 0.13 \times 0.1 \text{ mm}$ $V = 1788 (3) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer 567 reflections with $I > 2\sigma(I)$

Monochromator: graphite	$R_{\rm int}=0.068$
T = 298(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -11 \longrightarrow 6$
$T_{\min} = 0.488, T_{\max} = 1$	$k = -12 \rightarrow 10$
2164 measured reflections	$l = -14 \rightarrow 31$
639 independent reflections	

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier map

Least-squares matrix: full $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.08P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$

639 reflections Extinction correction: none

62 parameters Absolute structure: Flack (1983), 146 Friedel pairs

1 restraint Flack parameter: 0.23 (8)

Primary atom site location: structure-invariant direct

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

$egin{array}{cccccccccccccccccccccccccccccccccccc$	$*/U_{\rm eq}$
Ge1 1.0000 1.0000 0.07489 (10) 0.02	243 (6)
Ge2 1.41201 (19) 1.47337 (17) 0.10322 (6) 0.02	214 (4)
P1 1.3317 (4) 1.1233 (4) 0.14139 (17) 0.01	190 (7)
Na1 0.6667 0.3333 0.0506 (4) 0.02	25 (2)
O1 1.4071 (13) 1.2667 (13) 0.0985 (4) 0.02	24 (2)
O2 1.1603 (13) 0.9917 (13) 0.1226 (5) 0.03	32 (2)
O3 1.6040 (13) 1.5600 (13) 0.1466 (4) 0.02	27 (2)
O4 1.5371 (12) 1.5216 (13) 0.0335 (4) 0.02	26 (2)

Atomic displacement parameters (\mathring{A}^2)							
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Ge1	0.0271 (9)	0.0271 (9)	0.0187 (11)	0.0136 (4)	0.000	0.000	
Ge2	0.0170(8)	0.0212 (8)	0.0242 (6)	0.0083 (6)	-0.0022 (5)	-0.0022 (6)	
P1	0.0169 (17)	0.0186 (17)	0.0205 (14)	0.0082 (14)	0.0026 (12)	0.0008 (12)	
Na1	0.025(3)	0.025(3)	0.026 (5)	0.0125 (16)	0.000	0.000	
01	0.025 (5)	0.027 (6)	0.019 (4)	0.012 (5)	-0.005 (4)	0.000 (4)	
O2	0.019 (5)	0.031 (6)	0.050 (6)	0.016 (5)	0.002 (4)	0.010 (5)	
O3	0.027 (6)	0.028 (5)	0.020 (4)	0.009 (5) -0.001 (4)	0.000 (4)	-0.004 (4)	
O4	0.018 (5)	0.024 (6)	0.019 (4)	-0.001 (4)	0.002 (4)	0.008 (4)	
Geometric po	arameters (Å, °)						
Ge1—O2		1.908 (10)	Na1-	–O1 ^{viii}	2.40	62 (11)	
Ge1—O2 ⁱ		1.908 (10)	Na1-	–O4 ^{vii}	2.62	27 (11)	
Ge1—O2 ⁱⁱ		1.908 (10)	Na1-	–O4 ⁱⁱ	2.62	27 (11)	
Ge1—Na1 ⁱⁱⁱ		3.343 (11)	Na1-	–O4 ^{viii}	2.62	27 (11)	
Ge2—O3		1.864 (10)	Na1-	–O2 ^{ix}	2.70	05 (13)	
Ge2—O1		1.918 (11)	Na1—O2 ^x		2.70	2.705 (13)	
Ge2—O4		1.931 (10)	Na1—O2 ^{xi}		2.70	2.705 (13)	
Ge2—Na1 ^{iv}		3.477 (5)	Na1—P1 ^{ix}		3.254 (7)		
P1—O2		1.522 (12)	Na1-	–P1 ^x	3.25	54 (7)	
P1—O3 ^v		1.534 (11)	Na1-	–P1 ^{xi}	3.25	54 (7)	
P1—O1		1.540 (11)	01—	Na1 ^{iv}	2.40	52 (11)	
P1—O4 ^{vi}		1.540 (9)	O2—	Na1 ⁱⁱⁱ	2.70	05 (13)	
P1—Na1 ⁱⁱⁱ		3.254 (7)	О3—	P1 ^{xii}	1.53	34 (11)	
Na1—O1 ^{vii}		2.462 (11)	O4—	P1 ^{xiii}	1.54	40 (9)	
Na1—O1 ⁱⁱ		2.462 (11)	O4—	Na1 ^{iv}	2.62	27 (11)	
O2—Ge1—O	2^{i}	89.0 (5)	O2 ^{ix} -	-Na1O2 ^x	59.2	2 (4)	
O2—Ge1—O	2 ⁱⁱ	89.0 (5)	O1 ^{vii} -	—Na1—O2 ^{xi}	135	.5 (4)	
O2 ⁱ —Ge1—C	o2 ⁱⁱ	89.0 (5)	O1 ⁱⁱ –	–Na1—O2 ^{xi}	122	.3 (4)	
O2—Ge1—N	a1 ⁱⁱⁱ	54.0 (3)	O1 ^{viiii}	-Na1-O2 ^{xi}	83.0	(3)	
O2 ⁱ —Ge1—N	la1 ⁱⁱⁱ	54.0 (3)	O4 ^{vii}	—Na1—O2 ^{xi}	77.9	9 (4)	
O2 ⁱⁱ —Ge1—N	Na1 ⁱⁱⁱ	54.0 (3)	O4 ⁱⁱ –	–Na1—O2 ^{xi}	113	.5 (4)	
O3—Ge2—O	1	90.1 (5)	O4 ^{viiii}	-Na1-O2 ^{xi}	55.3	5 (3)	
O3—Ge2—O	4	91.2 (4)	O2 ^{ix} -	–Na1—O2 ^{xi}	59.2	2 (4)	
O1—Ge2—O	4	83.8 (4)	O2 ^x —	-Na1O2 ^{xi}	59.2	2 (4)	
O3—Ge2—N	a1 ^{iv}	70.3 (3)	O1 ^{vii}	—Na1—P1 ^{ix}	69.3	3 (2)	
O1—Ge2—N	a1 ^{iv}	43.3 (3)	O1 ⁱⁱ –	–Na1—P1 ^{ix}	158	.4 (3)	
O4—Ge2—N	a1 ^{iv}	48.4 (3)	O1 ^{viii}	-Na1-P1 ^{ix}	100	.0 (3)	
O2—P1—O3	v	108.5 (6)	O4 ^{vii}	—Na1—P1 ^{ix}	27.8	3 (2)	

O2—P1—O1	110.8 (6)	O4 ⁱⁱ —Na1—P1 ^{ix}	97.9 (3)
O3 ^v —P1—O1	110.5 (6)	O4 ^{viii} —Na1—P1 ^{ix}	119.8 (3)
O2—P1—O4 ^{vi}	108.4 (6)	O2 ^{ix} —Na1—P1 ^{ix}	27.7 (2)
O3 ^v —P1—O4 ^{vi}	109.1 (6)	O2 ^x —Na1—P1 ^{ix}	86.4 (3)
O1—P1—O4 ^{vi}	109.5 (6)	O2 ^{xi} —Na1—P1 ^{ix}	66.4 (3)
O2—P1—Na1 ⁱⁱⁱ	55.7 (4)	O1 ^{vii} —Na1—P1 ^x	100.0(3)
O3 ^v —P1—Na1 ⁱⁱⁱ	122.1 (4)	O1 ⁱⁱ —Na1—P1 ^x	69.3 (2)
O1—P1—Na1 ⁱⁱⁱ	127.4 (4)	O1 ^{viii} —Na1—P1 ^x	158.4 (3)
O4 ^{vi} —P1—Na1 ⁱⁱⁱ	52.8 (4)	O4 ^{vii} —Na1—P1 ^x	119.8 (3)
O1 ^{vii} —Na1—O1 ⁱⁱ	100.8 (4)	O4 ⁱⁱ —Na1—P1 ^x	27.8 (2)
O1 ^{vii} —Na1—O1 ^{viii}	100.8 (4)	O4 ^{viii} —Na1—P1 ^x	97.9 (3)
O1 ⁱⁱ —Na1—O1 ^{viii}	100.8 (4)	O2 ^{ix} —Na1—P1 ^x	66.4 (3)
O1 ^{vii} —Na1—O4 ^{vii}	60.6 (3)	O2 ^x —Na1—P1 ^x	27.7 (2)
O1 ⁱⁱ —Na1—O4 ^{vii}	159.5 (5)	O2 ^{xi} —Na1—P1 ^x	86.4 (3)
O1 ^{viii} —Na1—O4 ^{vii}	76.3 (3)	P1 ^{ix} —Na1—P1 ^x	92.9 (2)
O1 ^{vii} —Na1—O4 ⁱⁱ	76.3 (3)	O1 ^{vii} —Na1—P1 ^{xi}	158.4 (3)
O1 ⁱⁱ —Na1—O4 ⁱⁱ	60.6 (3)	O1 ⁱⁱ —Na1—P1 ^{xi}	100.0(3)
O1 ^{viii} —Na1—O4 ⁱⁱ	159.5 (5)	O1 ^{viii} —Na1—P1 ^{xi}	69.3 (2)
O4 ^{vii} —Na1—O4 ⁱⁱ	117.71 (15)	O4 ^{vii} —Na1—P1 ^{xi}	97.9 (3)
O1 ^{vii} —Na1—O4 ^{viii}	159.5 (5)	O4 ⁱⁱ —Na1—P1 ^{xi}	119.8 (3)
O1 ⁱⁱ —Na1—O4 ^{viii}	76.3 (3)	O4 ^{viii} —Na1—P1 ^{xi}	27.8 (2)
O1 ^{viii} —Na1—O4 ^{viii}	60.6 (3)	O2 ^{ix} —Na1—P1 ^{xi}	86.4 (3)
O4 ^{vii} —Na1—O4 ^{viii}	117.71 (15)	O2 ^x —Na1—P1 ^{xi}	66.4 (3)
O4 ⁱⁱ —Na1—O4 ^{viii}	117.71 (15)	O2 ^{xi} —Na1—P1 ^{xi}	27.7 (2)
O1 ^{vii} —Na1—O2 ^{ix}	83.0 (3)	P1 ^{ix} —Na1—P1 ^{xi}	92.9 (2)
O1 ⁱⁱ —Na1—O2 ^{ix}	135.5 (4)	P1 ^x —Na1—P1 ^{xi}	92.9 (2)
O1 ^{viii} —Na1—O2 ^{ix}	122.3 (4)	P1—O1—Ge2	127.8 (6)
O4 ^{vii} —Na1—O2 ^{ix}	55.5 (3)	P1—O1—Na1 ^{iv}	118.9 (6)
O4 ⁱⁱ —Na1—O2 ^{ix}	77.9 (4)	Ge2—O1—Na1 ^{iv}	104.4 (5)
O4 ^{viii} —Na1—O2 ^{ix}	113.5 (4)	P1—O2—Ge1	132.2 (6)
O1 ^{vii} —Na1—O2 ^x	122.3 (4)	P1—O2—Na1 ⁱⁱⁱ	96.7 (5)
O1 ⁱⁱ —Na1—O2 ^x	83.0 (3)	Ge1—O2—Na1 ⁱⁱⁱ	91.2 (4)
O1 ^{viii} —Na1—O2 ^x	135.5 (4)	P1 ^{xii} —O3—Ge2	141.5 (7)
O4 ^{vii} —Na1—O2 ^x	113.5 (4)	P1 ^{xiii} —O4—Ge2	123.5 (6)
O4 ⁱⁱ —Na1—O2 ^x	55.5 (3)	P1 ^{xiii} —O4—Na1 ^{iv}	99.4 (6)
O4 ^{viii} —Na1—O2 ^x	77.9 (4)	Ge2—O4—Na1 ^{iv}	98.3 (4)
Symmetry codes: (i) $-y+2$ $y-y+1$ 7: (ii	$) = r + v + 1 = r + 2 = r \cdot (iii) = v + r \cdot $	4/3 = v + 5/3 = z + 1/6: (iv) $v + 1 = v + 1 = z$: (v) =	-v+3 $v-v+1$

Symmetry codes: (i) -y+2, x-y+1, z; (ii) -x+y+1, -x+2, z; (iii) -y+4/3, -x+5/3, z+1/6; (iv) x+1, y+1, z; (v) -y+3, x-y+1, z; (vi) -x+y+4/3, y-1/3, z+1/6; (vii) -y+2, x-y, z; (viii) x-1, y-1, z; (ix) -y+5/3, -x+4/3, z-1/6; (x) x-1/3, x-y+1/3, z-1/6; (xi) -x+y+2/3, y-2/3, z-1/6; (xii) -x+y+2, -x+3, z; (xiii) -x+y+5/3, y+1/3, z-1/6.

Fig. 1

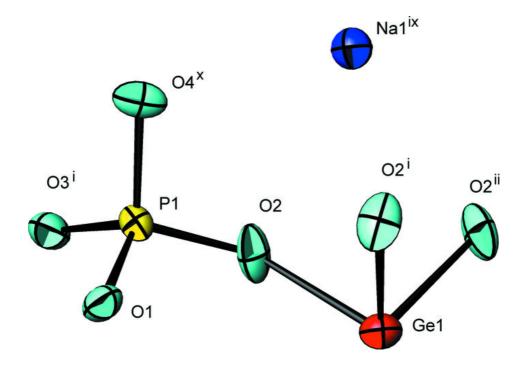
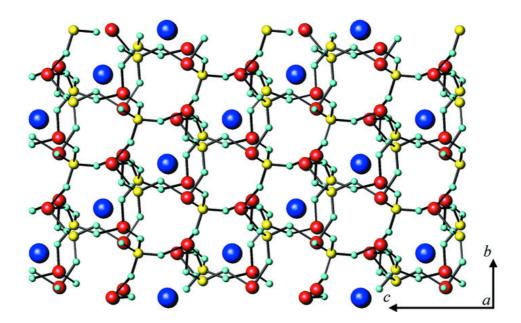



Fig. 2

