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Abstract. In this paper we are concerned with the monodromy of Picard-Fuchs dif-
ferential equations associated with one-parameter families of Calabi-Yau threefolds. Our
results show that in the hypergeometric cases the matrix representations of monodromy rel-
ative to the Frobenius bases can be expressed in terms of the geometric invariants of the
underlying Calabi-Yau threefolds. This phenomenon is also verified numerically for other
families of Calabi-Yau threefolds in the paper. Furthermore, we discover that under a suit-
able change of bases the monodromy groups are contained in certain congruence sub-
groups of Spð4;ZÞ of finite index and whose levels are related to the geometric invariants
of the Calabi-Yau threefolds.

1. Introduction

Let Mz be a family of Calabi-Yau n-folds parameterized by a complex variable
z A P1ðCÞ, and oz be the unique holomorphic di¤erential n-form on Mz (up to a scalar).
Then the standard theory of Gauss-Manin connections asserts that the periodsÐ

gz

oz

satisfy certain linear di¤erential equations, called the Picard-Fuchs di¤erential equations,
where gz are r-cycles on Mz.

When n ¼ 1, Calabi-Yau onefolds are just elliptic curves. A classical example of
Picard-Fuchs di¤erential equations is

ð1 � zÞy2f � zyf � z

4
f ¼ 0; y ¼ zd=dz;ð1Þ

satisfied by the periods
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f ðzÞ ¼
Ðy
1

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðx � 1Þðx � zÞ

p
of the family of elliptic curves Ez : y2 ¼ xðx � 1Þðx � zÞ.

When n ¼ 2, Calabi-Yau manifolds are either 2-dimensional complex tori or K3 sur-
faces. When the Picard number of a one-parameter family of K3 surfaces is 19, the Picard-
Fuchs di¤erential equation has order 3. One of the simplest examples is

x4
1 þ x4

2 þ x4
3 þ x4

4 � z�1x1x2x3x4 ¼ 0HP3;

whose Picard-Fuchs di¤erential operator is

y3 � 4zð4yþ 1Þð4yþ 2Þð4yþ 3Þ:ð2Þ

Another well-known example is

ð1 � 34z þ z2Þy3 þ ð3z2 � 51zÞy2 þ ð3z2 � 27zÞyþ ðz2 � 5zÞ;ð3Þ

which is the Picard-Fuchs di¤erential operator for the family of K3 surfaces

1 � ð1 � XYÞZ � zXYZð1 � XÞð1 � YÞð1 � ZÞ ¼ 0:

(See [7].) This di¤erential equation appeared in Apéry’s proof of irrationality of zð3Þ. (See
[5].)

When n ¼ 3 and Calabi-Yau threefolds have the Hodge number h2;1 equal to 1, the
Picard-Fuchs di¤erential equations have order 4. One of the most well-known examples of
such Calabi-Yau threefolds is the quintic threefold

x5
1 þ x5

2 þ x5
3 þ x5

4 þ x5
5 � z�1x1x2x3x4x5 ¼ 0HP4:

In [9], it is shown that the Picard-Fuchs di¤erential operator for this family of Calabi-Yau
threefolds is

y4 � 5zð5yþ 1Þð5yþ 2Þð5yþ 3Þð5yþ 4Þ:ð4Þ

Actually, it is the mirror partner of the quintic Calabi-Yau threefolds that has Hodge
number h2;1 ¼ 1 and hence the Picard-Fuchs di¤erential equation is of order 4. But the
mirror pair of Calabi-Yau threefolds share the same ‘‘principle periods’’. This means that
the Picard-Fuchs di¤erential equation of the original quintic Calabi-Yau threefold of order
204 contains the above order 4 equation as a factor and the factors corresponding to the
remaining 200 ‘‘semiperiods’’.

In this article we are concerned with the monodromy aspect of the Picard-Fuchs dif-
ferential equations. Let

L : rnðzÞyn þ rn�1ðzÞyn�1 þ � � � þ r0ðzÞ; ri A CðzÞ;
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be a di¤erential operator with regular singularities. Let z0 be a singular point and S be the
solution space of L at z0. Then analytic continuation along a closed curve g circling z0 gives
rise to an automorphism of S, called a monodromy. If a basis f f1; . . . ; fng of S is chosen,
then we have a matrix representation of the monodromy. Suppose that fi becomes
ai1 f1 þ � � � þ ain fn after completing the loop g, that is, if

f1

..

.

fn

0
BB@

1
CCA 7!

a11 � � � a1n

..

. ..
.

an1 � � � ann

0
B@

1
CA

f1

..

.

fn

0
BB@

1
CCA;

then the matrix representation of the monodromy along g relative to the basis f fig is the
matrix ðaijÞ. The group of all such matrices is referred to as the monodromy group relative
to the basis f fig of the di¤erential equation. Clearly, two di¤erent choices of bases may re-
sult in two di¤erent matrix representations for the same monodromy. However, it is easily
seen that they are connected by conjugation by the matrix of basis change. Thus, the mono-
dromy group is defined up to conjugation. In the subsequent discussions, for the ease of ex-
position, we may often drop the phrase ‘‘up to conjugation’’ about the monodromy groups,
when there is no danger of ambiguities.

It is known that for one-parameter families of Calabi-Yau varieties of dimension one
and two (i.e., elliptic curves and K3 surfaces, respectively), the monodromy groups are very
often congruence subgroups of SLð2;RÞ. For instance, the monodromy group of (1) is Gð2Þ,
while those of (2) and (3) are G0ð2Þ þ o2 and G0ð6Þ þ o6, respectively, where od denotes
the Atkin-Lehner involution. (Technically speaking, the monodromy groups of (2) and (3)
are subgroups of SLð3;RÞ since the order of the di¤erential equations is 3. But because (2)
and (3) are symmetric squares of second-order di¤erential equations, we may describe the
monodromy in terms of the second-order ones.) Moreover, suppose that y0ðzÞ ¼ 1 þ � � � is
the unique holomorphic solution at z ¼ 0 and y1ðzÞ ¼ y0ðzÞ log z þ gðzÞ is the solution with
logarithmic singularity. Set t ¼ cy1ðzÞ=y0ðzÞ for a suitable complex number c. Then z, as a
function of t, becomes a modular function, and y0

�
zðtÞ

�
becomes a modular form of weight

1 for the order 2 cases and of weight 2 for the order 3 cases. For example, a classical result
going back to Jacobi states that

y2
3 ¼ 2F1

1

2
;
1

2
; 1;

y4
2

y4
3

 !
;

where

y2ðtÞ ¼ q1=8 P
n AZ

qnðnþ1Þ=2; y3ðtÞ ¼
P

n AZ
qn2=2; q ¼ e2pit;

or equivalently, that the modular form yðtÞ ¼ y2
3, as a function of zðtÞ ¼ y4

2=y
4
3, satisfies (1).

Here 2F1 denotes the Gauss hypergeometric function.

In this paper we will address the monodromy problem for Calabi-Yau threefolds. At
first, given the experience with the elliptic curve and K3 surface cases, one may be tempted
to guess that the monodromy group of such a di¤erential equation will be the symmetric
cube of some congruence subgroup of SLð2;RÞ. After all, there is a result by Stiller [23]
(see also [27]) asserting that if tðtÞ is a non-constant modular function and FðtÞ is a mod-
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ular form of weight k on a subgroup of SLð2;RÞ commensurable with SLð2;ZÞ, then
F ; tF ; . . . ; tkF , as functions of t, are solutions of a ðk þ 1Þ-st order linear di¤erential equa-
tion with algebraic functions of t as coe‰cients. However, this is not the case in general.
A quick way to see this is that the coe‰cients of the symmetric cube of a second order dif-
ferential equation y 00 þ r1ðtÞy 0 þ r0ðtÞy ¼ 0 are completely determined by r1 and r0, but the
coe‰cients of the Picard-Fuchs di¤erential equations, including (4), do not satisfy the re-
quired relations. (The exact relations can be computed using Maple’s command symmetric
_power.) Nevertheless, in the subsequent discussion we will show that, with a suitable choice
of bases, the monodromy groups for Calabi-Yau threefolds are contained in certain con-
gruence subgroups of Spð4;ZÞ whose levels are somehow described in terms of the geomet-
ric invariants of the manifolds in question. This is proved rigorously for the hypergeometric
cases and verified numerically for other (e.g., non-hypergeometric) cases. Furthermore, our
computation in the hypergeometric cases shows that the matrix representation of the mono-
dromy around the finite singular point (di¤erent from the origin) relative to the Frobenius
basis at the origin can be expressed completely using the geometric invariants of the asso-
ciated Calabi-Yau threefolds. This phenomenon is also verified numerically in the non-
hypergeometric cases. Although it is highly expected that geometric invariants will enter
into the picture, in reality, geometry will dominate the entire picture in the sense that every

entry of the matrix is expressed exclusively in terms of the geometric invariants.

The monodromy problem in general has been addressed by a number of authors. Pa-
pers relevant to our consideration include [6], [9], [11], [16], and [26], to name a few. In [6],
Beukers and Heckman studied monodromy groups for the hypergeometric functions nFn�1.
They showed that the Zariski closure of the monodromy groups of (4) is Spð4;CÞ. The
same is true for other Picard-Fuchs di¤erential equations for Calabi-Yau threefolds that
are hypergeometric. In [9], Candelas et al. obtained precise matrix representations of mono-
dromy for (4). Then Klemm and Theisen [16] applied the same method as that of Candelas
et al. to deduce monodromy groups for three other hypergeometric cases. In [11] Doran and
Morgan determined the monodromy groups for all the hypergeometric cases. Their matrix
representations also involve geometric invariants of the Calabi-Yau threefolds. For Picard-
Fuchs di¤erential equations of non-hypergeometric type, there is not much known in liter-
ature. In [26] van Enckevort and van Straten computed the monodromy matrices numeri-
cally for a large class of di¤erential equations. In many cases, they are able to find bases
such that the monodromy matrices have rational entries. We will discuss the above results
in more detail in Sections 3–5.

Our motivations of this paper may be formulated as follows. Modular functions and
modular forms have been extensively investigated over the years, and there are great body
of literatures on these subjects. As we illustrated above, the monodromy groups of Picard-
Fuchs di¤erential equations for families of elliptic curves and K3 surfaces are congruence
subgroups of SLð2;RÞ. This modularity property can be used to study properties of the dif-
ferential equations and the associated manifolds. For instance, in [18] Lian and Yau gave a
uniform proof of the integrality of Fourier coe‰cients of the mirror maps for several fam-
ilies of K3 surfaces using the fact that the monodromy groups are congruence subgroups of
SLð2;RÞ. For such an application, it is important to express monodromy groups in a
proper way so that properties of the associated di¤erential equations can be more easily
discussed and obtained. Thus, the main motivation of our investigation is to find a
good representation for monodromy groups from which further properties of Picard-Fuchs
di¤erential equations for Calabi-Yau threefolds can be derived.

170 Chen, Yang, Yui, and Erdenberger, Picard-Fuchs di¤erential equations

Brought to you by | National Chiao-Tung University
Authenticated | 140.113.38.11

Download Date | 4/25/14 1:07 PM



The terminology ‘‘modularity’’ has been used for many di¤erent things. One aspect of
the modularity that we would like to address is the modularity question of the Galois rep-
resentations attached to Calabi-Yau threefolds, assuming that Calabi-Yau threefolds in
question are defined over Q. Let X be a Calabi-Yau threefold defined over Q. We consider
the L-series associated to the third étale cohomology group of X . It is expected that the
L-series should be determined by some modular (automorphic) forms. The examples of
Calabi-Yau threefolds we treat in this paper are those with the third Betti number equal to
4. It appears that Calabi-Yau threefolds with this property are rather scarce. Batyrev and
Straten [4] considered 13 examples of Calabi-Yau threefolds with Picard number h1;1 ¼ 1.
Then their mirror partners will fulfill this requirement. (We note that more examples of such
Calabi-Yau threefolds were found by Borcea [8].) All these 13 Calabi-Yau threefolds are
defined as complete intersections of hypersurfaces in weighted projective spaces, and they
have defining equations defined over Q.

To address the modularity, we ought to have some ‘‘modular groups’’, and this paper
o¤ers candidates for appropriate modular groups via the monodromy group of the associ-
ated Picard-Fuchs di¤erential equation (of order 4). In these cases, we expect that modular
forms of more variables, e.g., Siegel modular forms associated to the modular groups for
our congruence subgroups would enter the scene.

In general, the third Betti numbers of Calabi-Yau threefolds are rather large, and
consequently, the dimension of the associated Galois representations would be rather high.
To remedy this situation, we first decompose Calabi-Yau threefolds into motives, and then
consider the motivic Galois representations and their modularity. Especially, when the prin-
cipal motives (e.g., the motives that are invariant under the mirror maps) are of dimension
4, the modularity question for such motives should be accessible using the method devel-
oped for the examples discussed in this paper.

The modularity questions will be treated in subsequent papers.

2. Statements of results

To state our first result, let us recall that among all the Picard-Fuchs di¤erential equa-
tions for Calabi-Yau threefolds, there are 14 equations that are hypergeometric of the form

y4 � Czðyþ AÞðyþ 1 � AÞðyþ BÞðyþ 1 � BÞ:

Their geometric descriptions and references are given in the following Table 1.

K A B C description H 3 c2 � H c3 ref

1 1/5 2/5 3125 X ð5ÞHP4 5 50 �200 [9]

2 1/10 3/10 8 � 105 X ð10ÞHP4ð1; 1; 1; 2; 5Þ 1 34 �288 [20]

3 1/2 1/2 256 X ð2; 2; 2; 2ÞHP7 16 64 �128 [19]

4 1/3 1/3 729 X ð3; 3ÞHP5 9 54 �144 [19]
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5 1/3 1/2 432 X ð2; 2; 3ÞHP6 12 60 �144 [19]

6 1/4 1/2 1024 X ð2; 4ÞHP5 8 56 �176 [19]

7 1/8 3/8 65536 X ð8ÞHP4ð1; 1; 1; 1; 4Þ 2 44 �296 [20]

8 1/6 1/3 11664 X ð6ÞHP4ð1; 1; 1; 1; 2Þ 3 42 �204 [20]

9 1/12 5/12 126 X ð2; 12ÞHP5ð1; 1; 1; 1; 4; 6Þ 1 46 �484 [11]

10 1/4 1/4 4096 X ð4; 4ÞHP5ð1; 1; 1; 1; 2; 2Þ 4 40 �144 [17]

11 1/4 1/3 1728 X ð4; 6ÞHP5ð1; 1; 1; 2; 2; 3Þ 6 48 �156 [17]

12 1/6 1/4 27648 X ð3; 4ÞHP5ð1; 1; 1; 1; 1; 2Þ 2 32 �156 [17]

13 1/6 1/6 28 � 36 X ð6; 6ÞHP5ð1; 1; 2; 2; 3; 3Þ 1 22 �120 [17]

14 1/6 1/2 6912 X ð2; 6ÞHP5ð1; 1; 1; 1; 1; 3Þ 4 52 �256 [17]

Some comments might be in order for the notations in the table. We employ the notations of
van Enckevort and van Straten [26]. X ðd1; d2; . . . ; dkÞHPnðw0; . . . ;wnÞ stands for a com-
plete intersection of k hypersurfaces of degree d1; . . . ; dk in the weighted projective space
with weight ðw0; . . . ;wnÞ. For instance, X ð3; 3ÞHP5 is a complete intersection of two cu-
bics in the ordinary projective 5-space P5 defined by

fY 3
1 þ Y 3

2 þ Y 3
3 � 3fY4Y5Y6 ¼ 0gX f�3fY1Y2Y3 þ Y 3

4 þ Y 3
5 þ Y 3

6 ¼ 0g:

Slightly more generally, Xð4; 4ÞHP5ð1; 1; 2; 1; 1; 2Þ denotes a complete intersection of two
quartics in the weighted projective 5-space P5ð1; 1; 2; 1; 1; 2Þ and may be defined by the
equations

fY 4
1 þ Y 4

2 þ Y 2
3 � 4fY4Y5Y6 ¼ 0gX f�4fY1Y2Y3 þ Y 4

4 þ Y 4
5 þ Y 2

6 ¼ 0g:

We note that all these examples of Calabi-Yau threefolds M have the Picard number
h1;1ðMÞ ¼ 1. Let OðHÞ be the ample generator of the Picard group PicðMÞFZ. The basic
invariants for such a Calabi-Yau threefold M are the degree d :¼ H 3, the second Chern

number c2 � H and the Euler number c3 (the Euler characteristic of M). The equations are
numbered in the same way as in [1].

In [9], using analytic properties of hypergeometric functions, Candelas et al. proved
that with respect to a certain basis, the monodromy matrices around z ¼ 0 and z ¼ 1=3125
for the quintic threefold case (Equation 1 from Table 1) are

51 90 �25 0

0 1 0 0

100 175 �49 0

�75 �125 35 1

0
BBB@

1
CCCA and

1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA;

respectively. (Note that these two matrices are both in Spð4;ZÞ.) Applying the same
method as that of Candelas et al., Klemm and Theisen [16] also obtained the monodromy
of the one-parameter families of Calabi-Yau threefolds for Equations 2, 7, and 8. Presum-
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ably, their method should also work for several other hypergeometric cases. However, the
method fails when the indicial equation of the singularity y has repeated roots. To be
more precise, it does not work for Equations 3–6, 10, 13 and 14. Moreover, the method
uses the explicit knowledge that the singular point z ¼ 1=C is of conifold type. (Note that
in geometric terms, a conical singularity is a regular singular point whose neighborhood
looks like a cone with a certain base. For instance, a 3-dimensional conifold singularity is
locally isomorphic to XY � ZT ¼ 0 or equivalently, to X 2 þ Y 2 þ Z2 þ T 2 ¼ 0. Reflect-
ing to the Picard-Fuchs di¤erential equations, this means that the local monodromy is uni-
potent of index 1.) Thus, it can not be applied immediately to study monodromy of general
hypergeometric di¤erential equations.

In [11] Doran and Morgan proved that if the characteristic polynomial of the mono-
dromy around y is

x4 þ ðk � 4Þx3 þ ð6 � 2k þ dÞx2 þ ðk � 4Þx þ 1;

then there is a basis such that the monodromy matrices around z ¼ 0 and z ¼ 1=C are

1 1 0 0

0 1 d 0

0 0 1 1

0 0 0 1

0
BBB@

1
CCCA and

1 0 0 0

�k 1 0 0

�1 0 1 0

�1 0 0 1

0
BBB@

1
CCCA;ð5Þ

respectively. It turns out that these numbers d and k both have geometric interpre-
tation. Namely, the number d ¼ H 3 is the degree of the associated threefolds and
k ¼ c2 � H=12 þ H 3=6 is the dimension of the linear system jHj. Doran and Morgan’s rep-
resentation has the advantage that the geometric invariants can be read o¤ from the ma-
trices directly (although there is no way to extract the Euler number c3 from the matrices),
but has the disadvantage that the matrices are no longer in the symplectic group (in the
strict sense).

Before we state our Theorem 1, let us recall the definition of Frobenius basis. Since the
only solution of the indicial equation at z ¼ 0 for each of the cases is 0 with multiplicity 4,
the monodromy around z ¼ 0 is maximally unipotent. (See [20] for more detail.) Then the
standard method of Frobenius implies that at z ¼ 0 there are four solutions yj,
j ¼ 0; 1; 2; 3; with the property that

y0 ¼ 1 þ � � � ; y1 ¼ y0 log z þ g1;

y2 ¼ 1

2
y0 log2 z þ g1 log z þ g2;ð6Þ

y3 ¼ 1

6
y0 log3 z þ 1

2
g1 log2 z þ g2 log z þ g3;

where gi are all functions holomorphic and vanishing at z ¼ 0. We remark that these solu-
tions satisfy the relation

y0 y3

y 0
0 y 0

3

����
���� ¼ y1 y2

y 0
1 y 0

2

����
����;
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and therefore the monodromy matrices relative to the ordered basis fy0; y2; y3; y1g are in
Spð4;CÞ, as predicted by [6]. Now we can present our first theorem.

Theorem 1. Let

L : y4 � Czðyþ AÞðyþ 1 � AÞðyþ BÞðyþ 1 � BÞ

be one of the 14 hypergeometric equations, and H 3, c2 � H, and c3 be geometric invariants

of the associated Calabi-Yau threefolds given in the table above. Let yj, j ¼ 0; . . . ; 3,
be the Frobenius basis specified by (6). Then with respect to the ordered basis

fy3=ð2piÞ3; y2=ð2piÞ2; y1=ð2piÞ; y0g, the monodromy matrices around z ¼ 0 and z ¼ 1=C are

1 1 1=2 1=6

0 1 1 1=2

0 0 1 1

0 0 0 1

0
BBB@

1
CCCA and

1 þ a 0 ab=d a2=d

�b 1 �b2=d �ab=d

0 0 1 0

�d 0 �b 1 � a

0
BBB@

1
CCCA;ð7Þ

respectively, where

a ¼ c3

ð2piÞ3
zð3Þ; b ¼ c2 � H=24; d ¼ H 3:

Remark 1. We remark that by conjugating the matrices in (7) by the matrix

d 0 b a

0 d d=2 d=6 þ b

0 0 1 1

0 0 0 1

0
BBB@

1
CCCA;

we do recover Doran and Morgan’s representation (5). Thus, our Theorem 1 strengthens
the results of Doran and Morgan [11]. Although the referee suggested that Theorem 1
might be a reformulation of the results of Doran and Morgan, we do not believe that is
the case. For one thing, the argument of Doran-Morgan is purely based on Linear Algebra.
It might be possible to derive our Theorem 1 combining the results of Doran-Morgan and
those of Kontsevich; we will not address this question here, but left to future investiga-
tions.

The appearance of the geometric invariants c2, c3, H and d is not so surprising. In [9],
it was shown that the conifold period, defined up to a constant as the holomorphic solution
f ðzÞ ¼ a1ðz � 1=CÞ þ a2ðz � 1=CÞ2 þ � � � at z ¼ 1=C that appears in the unique solution
f ðzÞ logðz � 1=CÞ þ gðzÞ with logarithmic singularity at z ¼ 1=C, is asymptotically

H 3

6ð2piÞ3
log3 z þ c2 � H

48pi
log z þ c3

ð2piÞ3
zð3Þ þ � � �ð8Þ

near z ¼ 0. (See also [15].) Therefore, it is expected that the entries of the monodromy ma-
trices should contain the invariants. However, it is still quite remarkable that the matrix is
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determined completely by the invariants exclusively. We have numerically verified the
phenomenon for other families of Calabi-Yau threefolds, and also for general di¤erential
equations of Calabi-Yau type. (See [1] for the definition of a di¤erential equation of
Calabi-Yau type. See also Section 5 below.) It appears that if the di¤erential equation has
at least one singularity with exponents 0, 1, 1, 2, then there is always a singularity whose
monodromy relative to the Frobenius basis is of the form stated in the theorem. Thus, this
gives a numerical method to identify the possible geometric origin of a di¤erential equation
of Calabi-Yau type.

We emphasize that our proof of Theorem 1 is merely a verification. That is, we can
prove it, but unfortunately it does not give any geometric insight why the matrices are in
this special form.

Acutally, the referee has pointed out that such a geometric interpretation seems to ex-
ist by Kontsevich. In the framework of ‘‘homological mirror symmetry’’ of Kontsevich, the
first matrix in Theorem 1 would be the matrix associated to tensoring by the hyperplane
line bundle in the bounded derived category of sheaves on the Calabi-Yau variety. In gen-
eral, the matrices in Theorem 1 describe the cohomology action of certain Fourier-Mukai
functors. In particular, this explains why the matrices are determined by topological invari-
ants of the underlying Calabi-Yau manifolds. The paper of van Enckevort and van Straten
[26] addressed monodromy calculations of fourth order equations of Calabi-Yau type based
on homological mirror symmetry. The reader is referred to the article [26] for full details
about geometric interpretations of matrices. We wonder, though, if the Kontsevich’s results
fully explain why there are no ‘‘non-geometric’’ numbers in the second matrices. To be
more precise, here is our question. Since the second matrix M is unipotent of rank 1, we
know that the rows of M � Id are all scalar multiples of a fixed row vector. We probably
can deduce from Kontsevich’s result that the fourth row is ð�d; 0;�b;�aÞ, but why the
first three rows of M � Id are �a=d, �b=a, and 0 times this vector (but not other ‘‘non-
geometric’’ scalars)?

Now conjugating the matrices in (7) by

0 0 1 0

0 0 0 1

0 d d=2 �b

�d 0 �b �a

0
BBB@

1
CCCA;ð9Þ

we can bring the matrices into the symplectic group Spð4;ZÞ. The results are

1 1 0 0

0 1 0 0

d d 1 0

0 �k �1 1

0
BBB@

1
CCCA and

1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

for z ¼ 0 and z ¼ 1=C, respectively, where k ¼ 2b þ d=6. Since the monodromy group is
generated by these two matrices, we see that the group is contained in the congruence sub-
group G

�
d; gcdðd; kÞ

�
, where the notation Gðd1; d2Þ with d2 j d1 represents
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Gðd1; d2Þ ¼ g A Spð4;ZÞ : g1

1 � � �
0 � � �
0 0 1 0

0 � � �

0
BBB@

1
CCCA mod d1

8>>><
>>>:

9>>>=
>>>;

X g A Spð4;ZÞ : g1

1 � � �
0 1 � �
0 0 1 0

0 0 � 1

0
BBB@

1
CCCA mod d2

8>>><
>>>:

9>>>=
>>>;
:

We remark that the entries of the matrices in Gðd1; d2Þ satisfy certain congruence relations
inferred from the symplecticity of the matrices. To be more explicit, let us recall that the
symplectic group is characterized by the property that

g ¼ A B

C D

� �
A Spð2n;CÞ;

where A, B, C, and D are n � n blocks, if and only if

g�1 ¼ Dt �Bt

�C t At

� �
:

Thus, for

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

0
BBB@

1
CCCA

to be in Gðd1; d2Þ, the integers aij should satisfy the implicit conditions

a22a44 � a24a42 1 1; a23 1 a14a22 � a12a24; a43 1 a14a42 � a12a44 mod d1;

and

a12 1�a43 mod d2:

We now summarize our finding in the following theorem.

Theorem 2. Let

y4 � Czðyþ AÞðyþ 1 � AÞðyþ BÞðyþ 1 � BÞ

be one of the 14 hypergeometric equations. Let yj, j ¼ 0; . . . ; 3, be the Frobenius basis. Then

relative to the ordered basis

y1

2pi
; y0;

H 3

2ð2piÞ2
y2 þ

H 3

4pi
y1 �

c2 � H

24
y0; � H 3

6ð2piÞ3
y3 �

c2 � H

48pi
y1 �

c3

ð2piÞ3
zð3Þy0;

the monodromy matrices around z ¼ 0 and z ¼ 1=C are
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1 1 0 0

0 1 0 0

d d 1 0

0 �k �1 1

0
BBB@

1
CCCA and

1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

0
BBB@

1
CCCAð10Þ

with d ¼ H 3, k ¼ H 3=6 þ c2 � H=12, respectively. They are contained in the congruence sub-

groups Gðd1; d2Þ for the 14 cases in the table below.

K A B d1 d2 K A B d1 d2

1 1/5 2/5 5 5 8 1/6 1/3 3 1

2 1/10 3/10 1 1 9 1/12 5/12 1 1

3 1/2 1/2 16 8 10 1/4 1/4 4 4

4 1/3 1/3 9 3 11 1/4 1/3 6 1

5 1/3 1/2 12 1 12 1/6 1/4 2 1

6 1/4 1/2 8 2 13 1/6 1/6 1 1

7 1/8 3/8 2 2 14 1/6 1/2 4 1

Remark. We remark that what we show in Theorem 2 is merely the fact that the
monodromy groups are contained in the congruence subgroups Gðd1; d2Þ. Although the
congruence subgroups Gðd1; d2Þ are of finite index in Spð4;ZÞ (see the appendix by Cord
Erdenberger for the index formula), the monodromy groups themselves may not be so.

At this moment, we cannot say anything definite about monodromy groups, e.g.,
their finite indexness. In fact, there are two opposing speculations (one by the authors,
and the other by Zudilin) about monodromy groups. We believe, based on a result (Theo-
rem 13.3) of Sullivan [24], that it might be justified to claim that the monodromy group is
an arithmetic subgroup of the congruence subgroup Gðd1; d2Þ, and hence is of finite index.
(Andrey Todorov pointed out to us Sullivan’s theorem, though we must confess that we do
not fully understand the paper of Sullivan.) The a‰rmative answer would imply the finite-
ness of the total number of connected vaccua in IIB string theory. As opposed to our belief,
Zudilin has indicated to us via e-mail that a heuristic argument suggests that the mono-
dromy groups are too ‘‘thin’’ to be of finite index.

It would not be of much significance if the hypergeometric equations are the only
cases where the monodromy groups are contained in congruence subgroups. Our numerical
computation suggests that there are a number of further examples where the monodromy
groups continue to be contained in congruence subgroups of Spð4;ZÞ. However, the general
picture is not as simple as that for the hypergeometric cases.

As mentioned earlier, our numerical data suggest that the Picard-Fuchs di¤erential
equations for Calabi-Yau threefolds known in the literature all have bases relative to which
the monodromy matrices around the origin and some singular points of conifolds take the
form (7) described in Theorem 1. Thus, with respect to the basis given in Theorem 2, the
matrices around the origin and the conifold points again have the form (10). However,
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with this basis change, the monodromy matrices around other singularities may not be in
Spð4;ZÞ, but in Spð4;QÞ instead, although the entries still satisfy certain congruence rela-
tions. Furthermore, in most cases, we can still realize the monodromy groups in congruence
subgroups of Spð4;ZÞ, by a suitable conjugation.

Example 1. Consider the di¤erential equation

25y4 � 15zð51y4 þ 84y3 þ 72y2 þ 30yþ 5Þ

þ 6z2ð531y4 þ 828y3 þ 541y2 þ 155yþ 15Þ

� 54z3ð423y4 þ 2160y3 þ 4399y2 þ 3795yþ 1170Þ

þ 243z4ð279y4 þ 1368y3 þ 2270y2 þ 1586yþ 402Þ � 59049z5ðyþ 1Þ4:

In [4] it is shown that this is the Picard-Fuchs di¤erential equation for the Calabi-Yau
threefolds defined as the complete intersection of three hypersurfaces of degree ð1; 1; 1Þ in
P2 � P2 � P2. The invariants are H 3 ¼ 90, c2 � H ¼ 108, and c3 ¼ �90. There are 6 singu-
larities 0, 1=27,Gi=

ffiffiffiffiffi
27

p
, 5=9, and y for the di¤erential equation. Among them, the local

exponents at z ¼ 5=9 are 0, 1, 3, 4 and we find that the monodromy around z ¼ 5=9 is the
identity. For others, our numerical computation shows that relative to the basis in Theorem
2 the monodromy matrices are

T0 ¼

1 1 0 0

0 1 0 0

90 90 1 0

0 �24 �1 1

0
BBB@

1
CCCA; T1=27 ¼

1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA;

Ti=
ffiffiffiffi
27

p ¼

�17 3 1=3 1

�54 10 1 3

�972 162 19 54

162 �27 �3 �8

0
BBB@

1
CCCA; T�i=

ffiffiffiffi
27

p ¼

�11 3 1=3 �1

36 �8 �1 3

�432 108 13 �36

108 �27 �3 10

0
BBB@

1
CCCA:

From these, we see that the monodromy group is contained in the following group:�
ðaijÞ A Spð4;QÞ : aij A Z Eði; jÞ3 ð1; 3Þ; a13 A

1

3
Z;

a21; a31; a41; a32; a34 1 0 mod 18; a11; a33 1 1 mod 6;

a42 1 0; a22; a44 1 1 mod 3

�
:

Conjugating by

3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA;

we find that the monodromy group can be brought into the congruence subgroup Gð6; 3Þ.
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Example 2. Consider the di¤erential equation

9y4 � 3zð173y4 þ 340y3 þ 272y2 þ 102yþ 15Þ

� 2z2ð1129y4 þ 5032y3 þ 7597y2 þ 4773yþ 1083Þ

þ 2z3ð843y4 þ 2628y3 þ 2353y2 þ 675yþ 6Þ

� z4ð295y4 þ 608y3 þ 478y2 þ 174yþ 26Þ þ z5ðyþ 1Þ4:

This is the Picard-Fuchs di¤erential equation for the complete intersection of 7 hyper-
planes with the Grassmannian Gð2; 7Þ with the invariants H 3 ¼ 42, c2 � H ¼ 84, and
c3 ¼ �98. (See [3].) The singularities are 0, 3, y, and the three roots z1 ¼ 0:01621 . . . ,
z2 ¼ �0:2139 . . . , and z3 ¼ 289:197 . . . of z3 � 289z2 � 57z þ 1. The monodromy around
z ¼ 3 is the identity. The others have the matrix representations

T0 ¼

1 1 0 0

0 1 0 0

42 42 1 0

0 �14 �1 1

0
BBB@

1
CCCA; Tz1

¼

1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA;

Tz2
¼

�13 7 1 �2

28 �13 �2 4

�196 98 15 �28

98 �49 �7 15

0
BBB@

1
CCCA; Tz3

¼

1 0 0 0

42 1 0 9

�196 0 1 �42

0 0 0 1

0
BBB@

1
CCCA:

Thus, the monodromy group is contained in the subgroup Gð14; 7Þ.

3. A general approach

Let

yðnÞ þ rn�1yðn�1Þ þ � � � þ r1y 0 þ r0y ¼ 0; ri A CðzÞ;

be a linear di¤erential equation with regular singularities. Then the monodromy around a
singular point z0 with respect to the local Frobenius basis at z0 is actually very easy to de-
scribe, as we shall see in the following discussion.

Consider the simplest cases where the indicial equation at z0 has n distinct roots
l1; . . . ; ln such that li � lj B Z for all i3 j. In this case, the Frobenius basis consists of

yjðzÞ ¼ ðz � z0Þlj fjðzÞ; j ¼ 1; . . . ; n;

where fjðzÞ are holomorphic near z0 and have non-vanishing constant terms. It is easy to
see that the matrix of the monodromy around z0 with respect to fyjg is simply

e2pil1 0 � � � 0

0 e2pil2 � � � 0

..

. ..
. ..

.

0 0 � � � e2piln

0
BBBB@

1
CCCCA:
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Now assume that the indicial equation at z0 has l1; . . . ; lk, with multiplicities
e1; . . . ; ek, as solutions, where e1 þ � � � þ ek ¼ n and li � lj B Z for all i3 j. Then for each
lj, there are ej linearly independent solutions

yj;0 ¼ ðz � z0Þlj fj;0;

yj;1 ¼ yj;0 logðz � z0Þ þ ðz � z0Þlj fj;1;

yj;2 ¼ 1

2
yj;0 log2ðz � z0Þ þ ðz � z0Þlj fj;1 logðz � zjÞ þ ðz � z0Þlj fj;2;

..

. ..
.

yj; ej�1 ¼ ðz � z0Þlj
Pej�1

h¼0

1

h!
fj; ej�1�h loghðz � z0Þ;

where fj;h are holomorphic near z ¼ z0 and satisfy fj;0ðz0Þ ¼ 1 and fj;hðz0Þ ¼ 0 for h > 0.
Since fj;h are all holomorphic near z0, the analytic continuation along a small closed curve
circling z0 does not change fj;h. For other factors, circling z0 once in the counterclockwise
direction results in

ðz � z0Þlj 7! e2piljðz � z0Þlj

and

logðz � z0Þ 7! logðz � z0Þ þ 2pi:

Thus, the behaviors of yj;h under the monodromy around z0 are governed by

yj;0

yj;1

..

.

yj; ej�1

0
BBBB@

1
CCCCA 7!

oj 0 � � � 0

2pioj oj � � � 0

..

. ..
. ..

.

ð2piÞej�1

ðej � 1Þ! oj

ð2piÞej�2

ðej � 2Þ! oj � � � oj

0
BBBBBBB@

1
CCCCCCCA

yj;0

yj;1

..

.

yj; ej�1

0
BBBB@

1
CCCCA;

where oj ¼ e2pilj .

When the indicial equation of z0 has distinct roots li and lj such that li � lj A Z, there
are many possibilities for the monodromy matrix relative to the Frobenius basis, but in any
case, the matrix still consists of blocks of entries that take the same form as above.

From the above discussion we see that monodromy matrices with respect to the local
Frobenius bases are very easy to describe. Therefore, to find monodromy matrices uni-
formly with respect to a given fixed basis, it su‰ces to find the matrix of basis change be-
tween the fixed basis and the Frobenius basis at each singularity. When the di¤erential
equation is hypergeometric, this can be done using the (refined) standard analytic method,
in which we first express the Frobenius basis at z ¼ 0 as integrals of Barnes-Mellin type
and then use contour integration to obtain the analytic continuation to a neighborhood of
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z ¼ y. This gives us the monodromy matrices around z ¼ 0 and z ¼ y. Since the mono-
dromy group is generated by these two matrices, the group is determined.

When the di¤erential equation is not hypergeometric, we are unable to determine the
matrices of basis change precisely. To obtain the matrices numerically we use the following
idea. Let z1 and z2 be two singularities and fyig and f~yyjg, i; j ¼ 1; . . . ; n, be their Frobenius
bases. Observe that if yi ¼ ai1~yy1 þ � � � þ ain~yyn, then we have

y1 y 0
1 � � � y

ðn�1Þ
1

y2 y 0
2 � � � y

ðn�1Þ
2

..

. ..
. ..

.

yn y 0
n � � � y

ðn�1Þ
n

0
BBBBB@

1
CCCCCA ¼

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

.

an1 an2 � � � ann

0
BBBB@

1
CCCCA

~yy1 ~yy 0
1 � � � ~yy

ðn�1Þ
1

~yy2 ~yy 0
2 � � � ~yy

ðn�1Þ
2

..

. ..
. ..

.

~yyn ~yy 0
n � � � ~yy

ðn�1Þ
n

0
BBBBB@

1
CCCCCA:

Thus, to determine the matrix ðaijÞ it su‰ces to evaluate y
ðkÞ
i and ~yy

ðkÞ
i at a common point.

To do it numerically, we expand the Frobenius bases into power series and assume that the
domains of convergence for the power series have a common point z0. We then truncate and
evaluate the series at z0. This gives us approximation of the matrices of basis changes. We
will discuss some practical issues of this method in Section 5.

4. The hypergeometric cases

Throughout this section, we fix the branch cut of log z to be ð�y; 0� so that the argu-
ment of a complex variable z is between �p and p.

Recall that a hypergeometric function pFp�1ða1; . . . ; ap; b1; . . . ; bp�1; zÞ is defined for
bi 3 0;�1;�2; . . . by

pFp�1ða1; . . . ; ap; b1; . . . ; bp�1; zÞ ¼
Py
n¼0

ða1Þn . . . ðapÞn

ð1Þnðb1Þn . . . ðbp�1Þn

zn;

where

ðaÞn ¼ aðaþ 1Þ . . . ðaþ n � 1Þ; if n > 0;

1; if n ¼ 0:

�

It satisfies the di¤erential equation

½yðyþ b1 � 1Þ . . . ðyþ bp�1 � 1Þ � zðyþ a1Þ . . . ðyþ apÞ� f ¼ 0:ð11Þ

Moreover, it has an integral representation

1

2pi

Gðb1Þ . . .Gðbp�1Þ
Gða1Þ . . .GðapÞ

Ð
C

Gðs þ a1Þ . . .Gðs þ apÞ
Gðs þ b1Þ . . .Gðs þ bp�1Þ

Gð�sÞð�zÞs
ds

for jargð�zÞj < p, where C is any path from �iy to iy such that the poles of Gð�sÞ lie on
the right of C and the poles of Gðs þ akÞ lie on the left of C. (See [21], Chapter 5.) Then one
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can obtain the analytic continuation of pFp�1 by moving the path of integration to the far
left of the complex plane and counting the residues arising from the process. It turns out
that this method can be generalized.

Lemma 1. Let m be the number of 1’s among bk. Set

Fðh; zÞ ¼
Py
n¼0

ða1 þ hÞn . . . ðap þ hÞn

ð1 þ hÞnðb1 þ hÞn . . . ðbp�1 þ hÞn

znþh:

Then, for j ¼ 0; . . . ;m, the functions

q j

qh j
Fðh; zÞjh¼0

are solutions of (11). Moreover, if jargð�zÞj < p and h is a small quantity such that ak þ h are

not zero or negative integers, then Fðh; zÞ has the integral representation

Fðh; zÞ ¼ � zh

2pi

Gðb1 þ hÞ . . .Gðbp�1 þ hÞGð1 þ hÞ
Gða1 þ hÞ . . .Gðap þ hÞ

Ð
C

Gðs þ a1 þ hÞ . . .Gðs þ ap þ hÞ
Gðs þ b1 þ hÞ . . .Gðs þ bp�1 þ hÞGðs þ 1 þ hÞ

p

sin ps
ð�zÞs ds;

where C is any path from �iy to iy such that the integers 0; 1; 2; . . . lie on the right of C and

the poles of Gðs þ ak þ hÞ lie on the left of C.

Proof. The first part of the lemma is just a specialization of the Frobenius method
(see [14]) to the hypergeometric cases. We have

yðyþ b1 � 1Þ . . . ðyþ bp�1 � 1ÞFðh; zÞ ¼ hðh þ b1 � 1Þ . . . ðh þ bp�1 � 1Þzh

þ
Py
n¼1

ða1 þ hÞn . . . ðap þ hÞ
ð1 þ hÞn�1ðb1 þ hÞn�1 . . . ðbp�1 þ hÞn�1

znþh

and

zðyþ a1Þ . . . ðyþ apÞFðh; zÞ ¼
Py
n¼0

ða1 þ hÞnþ1 . . . ðap þ hÞnþ1

ð1 þ hÞnðb1 þ hÞn . . . ðbp�1 þ hÞn

znþ1þh:

It follows that

½yðyþ b1 � 1Þ . . . ðyþ bp�1 � 1Þ � zðyþ a1Þ . . . ðyþ apÞ�Fðh; zÞ

¼ hðh þ b1 � 1Þ . . . ðh þ bp�1 � 1Þzh:

If the number of 1’s among bk is m, then the first non-vanishing term of the Taylor expan-
sion in h of the last expression is hmþ1. Consequently, we see that
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q j

qh j
Fðh; zÞjh¼0

are solutions of (11) for j ¼ 0; . . . ;m.

The proof of the second part about the integral representation is standard. We refer
the reader to [21], Chapter 5. r

We now prove Theorem 1. Here we will only discuss the cases

ðA;BÞ ¼ ð1=2; 1=2Þ; ð1=3; 1=3Þ; ð1=4; 1=2Þ; and ð1=6; 1=3Þ;

representing the four classes whose indicial equations at z ¼ y have one root with multi-
plicity 4, two distinct roots, each of which has multiplicity 2, one repeated root and two
other distinct roots, and four distinct roots, respectively. The other cases can be proved in
the same fashion.

Proof of the case ðA;BÞ ¼ ð1=6; 1=3Þ. Let h denote a small real number, and let
Fðh; zÞ be defined as in Lemma 1 with p ¼ 4, a1 ¼ 1=6, a2 ¼ 1=3, a3 ¼ 2=3, a4 ¼ 5=6, and
bk ¼ 1 for all k. Then, by Lemma 1, the functions

yjðzÞ ¼
1

j!

q j

qh j

�
C�hFðh;CzÞ

�
; j ¼ 0; . . . ; 3;

are solutions of

y4 � 11664zðyþ 1=6Þðyþ 1=3Þðyþ 2=3Þðyþ 5=6Þ;

where C ¼ 11664. In fact, by considering the contribution of the first term, we see that these
four functions make up the Frobenius basis at z ¼ 0.

We now express C�hFðh;CzÞ using Lemma 1. By the Gauss multiplication theorem
we have

Gðs þ 1=6ÞGðs þ 1=3ÞGðs þ 2=3ÞGðs þ 5=6Þ

¼

Q6
k¼1

Gðs þ k=6Þ

Gðs þ 1=2ÞGðs þ 1Þ ¼
ð2pÞ5=26�1=2�6sGð6s þ 1Þ
ð2pÞ1=22�1=2�2sGð2s þ 1Þ

:

Thus, restricting z to the lower half-plane �p < arg z < 0, by Lemma 1, we may write

C�hFðh;CzÞ ¼ � zh

2pi

Gð1 þ hÞ4Gð1 þ 2hÞ
Gð1 þ 6hÞ

�
Ð
C

Gð6s þ 1 þ 6hÞ
Gðs þ 1 þ hÞ4Gð2s þ 1 þ 2hÞ

p

sin ps
episzs ds;
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where C is the vertical line Re s ¼ �1=12. Now move the line of integration to
Re s ¼ �13=12. This is justified by the fact that the integrand tends to 0 as Im s tends to
infinity. The integrand has four simple poles s ¼ �n=6 � h, n ¼ 1; 2; 4; 5, between these
two lines. The residues are

ð�1Þn�1

6GðnÞ
pe�piðn=6þhÞ

Gð1 � n=6Þ4Gð1 � n=3Þ sin pðn=6 þ hÞ
z�n=6�h:

Thus, we see that the analytic continuation of C�hFðh; zÞ to jzj > 1 with �p < arg z < 0 is
given by

C�hFðh; zÞ ¼
P

n¼1;2;4;5

anBnðhÞz�n=6 þ ðhigher order terms in 1=zÞ;

where

an ¼ ð�1Þnpe�pin=6

6GðnÞGð1 � n=6Þ4Gð1 � n=3Þ
; BnðhÞ ¼

Gð1 þ hÞ4Gð1 þ 2hÞe�pih

Gð1 þ 6hÞ sin pðn=6 þ hÞ :

On the other hand, since the local exponents at z ¼ y are 1=6, 1=3, 2=3, and 5=6, the Fro-
benius basis at z ¼ y consists of

~yynðzÞ ¼ z�n=6gnð1=zÞ; n ¼ 1; 2; 4; 5;

where gn ¼ 1 þ � � � are functions holomorphic at 0. It follows that for z with �p < arg z < 0

yjðzÞ ¼
1

j!

P
n¼1;2;4;5

anBð jÞ
n ðhÞ~yynðzÞ:

Set fjðzÞ ¼ yjðzÞ=ð2piÞ j for j ¼ 0; . . . ; 3 and ~ffn ¼ an~yyn=sinðnp=6Þ for n ¼ 1; 2; 4; 5. Then
using the evaluation

G 0ð1Þ ¼ �g; G 00ð1Þ ¼ g2 þ zð2Þ; G 000ð1Þ ¼ �g3 � 3zð2Þg� 2zð3Þ;

we find

f3

f2

f1

f0

0
BBB@

1
CCCA¼ M

~ff1

~ff2

~ff4

~ff5

0
BBB@

1
CCCA;

where

M ¼

h� io=4 hþ 5
ffiffiffi
3

p
io2=36 hþ 5

ffiffiffi
3

p
io4=36 h� io5=4

�5=12 � io=2 1=4 � io2=2
ffiffiffi
3

p
1=4 � io4=2

ffiffiffi
3

p
�5=12 � io5=2

io io2=
ffiffiffi
3

p
io4=

ffiffiffi
3

p
io5

1 1 1 1

0
BBB@

1
CCCA

with
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o ¼ epi=6; h ¼ 68zð3Þ
ð2piÞ3

:

Now let P be the path traveling along the real axis with arg z ¼ �pþ from z ¼ �2 to �y
and then coming back along the real axis with arg z ¼ p� to z ¼ �2. The monodromy ef-
fect on ~yynðzÞ ¼ z�n=6gnð1=zÞ is

~yynðzÞ 7! ~yynðe2pizÞ ¼ e�2pin=6~yynðzÞ:

Therefore, the matrix representation of the monodromy along P relative to the ordered
basis f f3; f2; f1; f0g is

Ty ¼ M

o�2 0 0 0

0 o�4 0 0

0 0 o4 0

0 0 0 o2

0
BBB@

1
CCCAM�1:

Now the path P is equivalent to that of circling once around z ¼ 1=C and then once around
z ¼ 0, both in the counterclockwise direction. Therefore, if we denote by T0 and T1=C the
monodromy matrices relative the basis f f3; f2; f1; f0g around z ¼ 0 and z ¼ 1=C, respec-
tively, then we have

Ty ¼ T1=CT0:

Since T0 is easily seen to be

T0 ¼

1 1 1=2 1=6

0 1 1 1=2

0 0 1 1

0 0 0 1

0
BBB@

1
CCCA;

we find

T1=C ¼ M

o�2 0 0 0

0 o�4 0 0

0 0 o4 0

0 0 0 o2

0
BBB@

1
CCCAM�1T�1

0 ¼

1 þ a 0 ab=d a2=d

�b 1 �b2=d �ab=d

0 0 1 0

�d 0 �b 1 � a

0
BBB@

1
CCCA;

where

a ¼ � 204

ð2piÞ3
zð3Þ; b ¼ 7

4
; d ¼ 3:

Comparing these numbers with the invariants, we find the matrix T1=C indeed takes the
form (7) specified in the statement of Theorem 1. This proves the case ðA;BÞ ¼ ð1=6; 1=3Þ.

r

Proof of the case ðA;BÞ ¼ ð1=4; 1=2Þ. Apply Lemma 1 with p ¼ 4, a1 ¼ 1=4,
a2 ¼ 3=4, a3 ¼ a4 ¼ 1=2, bk ¼ 1 for all k, and set C ¼ 1024. Then
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yjðzÞ ¼
1

j!

q j

qh j

�
C�hFðh;CzÞ

�
; j ¼ 0; . . . ; 3;

form the Frobenius basis for

y4 � 1024zðyþ 1=4Þðyþ 3=4Þðyþ 1=2Þ2:

Assuming that �p < arg z < 0, we have

C�hFðh;CzÞ ¼ � zh

2pi

Gð1 þ hÞ6

Gð1 þ 2hÞGð1 þ 4hÞ

�
Ð
C

Gð4s þ 1 þ 4hÞGð2s þ 1 þ 2hÞ
Gðs þ 1 þ hÞ6

p

sin ps
episzs ds;

where C is the vertical line Re s ¼ �1=8. The integrand has simple poles at �k � h � 1=4
and �k � h � 3=4, and double poles at �k � h � 1=2 for k ¼ 0; 1; 2; . . . : The residues at
s ¼ �h � n=4, n ¼ 1; 3, are anCnðhÞz�h�n=4, where

an ¼ ð�1Þðnþ1Þ=2 pGð1=2Þe�pin=4

4Gð1 � n=4Þ6
; CnðhÞ ¼

e�pih

sin pðh þ n=4Þ :

At s ¼ �h � 1=2 we have

Gð4s þ 1 þ 4hÞGð2s þ 1 þ 2hÞ
Gðs þ 1 þ hÞ6

¼ � 1

8Gð1=2Þ6
ðs þ h þ 1=2Þ�2 � 3 log 2 þ 1

2Gð1=2Þ6
ðs þ h þ 1=2Þ�1 þ � � � ;

p

sin ps
¼ � p

cos ph
þ p2 sin ph

cos2 ph
ðs þ h þ 1=2Þ þ � � � ;

and

episzs ¼ z�1=2�he�piðhþ1=2Þ�1 þ ðpi þ log zÞðs þ h þ 1=2Þ þ � � �
�
:

Thus, the residue at s ¼ �h � 1=2 is

pe�piðhþ1=2Þ

8Gð1=2Þ6 cos ph
pi þ log z þ 12 log 2 þ 4 � p

sin ph

cos ph

� �
z�h�1=2:

Set

a2 ¼ � pe�pi=2

8Gð1=2Þ6
; C2ðhÞ ¼

e�pih

cos ph
; C �

2 ðhÞ ¼ C2ðhÞðpi þ 12 log 2 þ 4 � p tan phÞ:

We find
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C�hFðh;CzÞ ¼ �a1B1ðhÞz�1=4 � a2B2ðhÞz�1=2 log z � a2B�
2 ðhÞz�1=2

� a3B3ðhÞz�3=4 þ ðhigher order terms in 1=zÞ;

where

BnðhÞ ¼
Gð1 þ hÞ6

Gð1 þ 2hÞGð1 þ 4hÞCnðhÞ; B�
2 ðhÞ ¼

Gð1 þ hÞ6

Gð1 þ 2hÞGð1 þ 4hÞC �
2 ðhÞ:

Let yjðzÞ, j ¼ 0; . . . ; 3, be the Frobenius basis at z ¼ 0, and

~yy1ðzÞ ¼ z�1=4ð1 þ � � �Þ; ~yy3ðzÞ ¼ z�3=4ð1 þ � � �Þ;

~yy�
2 ðzÞ ¼ z�1=2ð1 þ � � �Þ; ~yy2ðzÞ ¼

�
log z þ gð1=zÞ

�
~yy�

2ðzÞ

be the Frobenius basis at y, where gðtÞ is a function holomorphic and vanishing at t ¼ 0.
Set fjðzÞ ¼ yjðzÞ=ð2piÞ j for j ¼ 0; . . . ; 3, ~ffnðzÞ ¼ �an~yynðzÞ=sin pðn=4Þ for n ¼ 1; 2; 3, and
~ff �
2 ðzÞ ¼ �a2~yy

�
2 ðzÞ. Using the fact that

yjðzÞ ¼
1

j!

q j

qh j

�
C�hFðh;CzÞ

�
;

we find

f3

f2

f1

f0

0
BBB@

1
CCCA ¼

hþ ð1 � iÞ=48 h� 5=48 �5m=12 þ pihþ 4mh hþ ð1 þ iÞ=48

ð1 � 6iÞ=24 7=24 pi=24 þ 7m=6 ð1 þ 6iÞ=24

ði � 1Þ=2 �1=2 �2m �ði þ 1Þ=2

1 1 pi þ 4m 1

0
BBB@

1
CCCA

~ff1

~ff2

~ff �
2

~ff3

0
BBB@

1
CCCA

where

m ¼ 3 log 2 þ 1; h ¼ 22zð3Þ
ð2piÞ3

:

Let P be the path from z ¼ �1 with argument �p to �y and then back to z ¼ �1 with
argument p. The monodromy matrix for P relative to the ordered basis f ~ff1;

~ff2;
~ff �
2 ;

~ff3g is

�i 0 0 0

0 �1 �2pi 0

0 0 �1 0

0 0 0 i

0
BBB@

1
CCCA:

Thus, the matrix with respect to the ordered basis f f3; f2; f1; f0g is

Ty ¼

1 � 8h 1 � 8h 1=2 � 19h=3 1=6 � 11h=3 þ 8h2

�7=3 �4=3 �61=72 �41=72 þ 7h=3

0 0 1 1

�8 �8 �19=3 �8=3 þ 8h

0
BBB@

1
CCCA:
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Finally, it is easy to see that the monodromy around z ¼ 0 with respective to f f3; f2; f1; f0g
is

T0 ¼

1 1 1=2 1=6

0 1 1 1=2

0 0 1 1

0 0 0 1

0
BBB@

1
CCCA;

and after a short computation we find that the monodromy T1=C ¼ TyT�1
0 around z ¼ 1=C

indeed takes the form claimed in the statement of Theorem 1. r

Proof of the case ðA;BÞ ¼ ð1=3; 1=3Þ. Let z be a complex number with
�p < arg z < 0. By the same argument as before, we find that the Frobenius basis fyjg at
z ¼ 0 can be expressed as

yjðzÞ ¼
1

j!

q j

qh j

�
C�hFðh;CzÞ

�
;

where C ¼ 729 and

C�hFðh;CzÞ ¼ � zh

2pi

Gð1 þ hÞ6

Gð1 þ 3hÞ2

Ð
C

Gð3s þ 1 þ 3hÞ2

Gðs þ 1 þ hÞ6

p

sin ps
episzs ds:

Here h is assumed to be a real number and C denotes the vertical line Re s ¼ �1=6. Set

an ¼ � pe�pin=3

9Gð1 � n=3Þ6
; n ¼ 1; 2:

The residues at z ¼ �1=3 � h and z ¼ �2=3 � h are

a1

�
pi þ log z þ 9 log 3 � p

ffiffiffi
3

p
þ cot pð1=3 þ hÞ

�
z�1=3�he�pih

and

a2

�
pi þ log z þ 9 log 3 þ p

ffiffiffi
3

p
þ 6 þ cotpð2=3 þ hÞ

�
z�2=3�he�pih;

respectively. Let

BnðhÞ ¼
Gð1 þ hÞ6

Gð1 þ 3hÞ2

e�pih

sin pðn=3 þ hÞ ; n ¼ 1; 2;

and

B�
1 ðhÞ ¼ B1ðhÞ

�
pi þ 9 log 3 � p

ffiffiffi
3

p
þ p cotpð1=3 þ hÞ

�
;

B�
2 ðhÞ ¼ B2ðhÞ

�
pi þ 9 log 3 þ p

ffiffiffi
3

p
þ 6 þ p cot pð2=3 þ hÞ

�
:

Then we have
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C�hFðh;CzÞ ¼ �
P2
n¼1

an

�
BnðhÞz�n=3 log z þ B�

n ðhÞz�n=3
�
þ ðhigher order termsÞ:

Now the Taylor expansions of BnðhÞ and B�
nðnÞ are

sin
p

3
B1

h

2pi

� �
¼ 1 þ ioffiffiffi

3
p h � io

2
ffiffiffi
3

p þ 1

12

� �
h2 þ io

12
ffiffiffi
3

p þ h

� �
h3 þ � � � ;

sin
p

3
B2

h

2pi

� �
¼ 1 þ io2ffiffiffi

3
p h � io2

2
ffiffiffi
3

p þ 1

12

� �
h2 þ io2

12
ffiffiffi
3

p þ h

� �
h3 þ � � � ;

sin
p

3
B�

1

h

2pi

� �
¼ m1 þ

2poffiffiffi
3

p
� �

þ im1offiffiffi
3

p þ 2pio

3

� �
h � im1o

2
ffiffiffi
3

p þ m1

12
þ po

2
ffiffiffi
3

p
� �

h2

þ m1hþ
im1o

12
ffiffiffi
3

p þ 2phoffiffiffi
3

p � pio

6

� �
h3 þ � � � ;

sin
p

3
B�

2

h

2pi

� �
¼ m2 þ

2po2ffiffiffi
3

p þ 6

� �
þ im2o

2ffiffiffi
3

p � 2pio2

3
þ 2io2

ffiffiffi
3

p� �
h

� im2o
2

2
ffiffiffi
3

p þ m2

12
þ po2

2
ffiffiffi
3

p � o2 � 3

2

� �
h2

þ m2hþ
im2o

2

12
ffiffiffi
3

p þ 2pho2ffiffiffi
3

p þ pio2

6
þ 6hþ io2

2
ffiffiffi
3

p
� �

h3 þ � � � ;

where

o ¼ epi=3; h ¼ 16zð3Þ
ð2piÞ3

; m1 ¼ 9 log 3 � p
ffiffiffi
3

p
; m2 ¼ 9 log 3 þ p

ffiffiffi
3

p
:

From these we can deduce the matrix of basis change between the Frobenius basis

fjðzÞ ¼
1

ð2piÞ j
j!

q j

qh j
C�hFðh;CzÞ; j ¼ 0; . . . ; 3;

and the basis

~ff �
1 ðzÞ ¼ �a1z�1=3ð1 þ � � �Þ; ~ff �

2 ðzÞ ¼ �a2z�2=3ð1 þ � � �Þ;

~ff1 ¼
�
log z þ g1ð1=zÞ

�
~ff �
1 ðzÞ; ~ff2 ¼

�
log z þ g2ð1=zÞ

�
~ff �
2 ðzÞ;

where g1ðtÞ and g2ðtÞ are functions holomorphic and vanishing at t ¼ 0. The monodromy
matrix around y with respect to the ordered basis f ~ff1;

~ff �
1 ;

~ff2;
~ff �
2 g is easily seen to be

e�2pi=3 2pie�2pi=3 0 0

0 e�2pi=3 0 0

0 0 e2pi=3 2pie2pi=3

0 0 0 e2pi=3

0
BBB@

1
CCCA:
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By the same argument as before, we find that the monodromy matrix with respect to the
basis f f3; f2; f1; f0g indeed takes the form claimed in the statement. This proves the case
ðA;BÞ ¼ ð1=3; 1=3Þ. r

Proof of the case ðA;BÞ ¼ ð1=2; 1=2Þ. Let z be a complex number such that
�p < arg z < 0. We find that the Frobenius basis fyjg at z ¼ 0 can be expressed as

yjðzÞ ¼
1

j!

q j

qh j

�
C�hFðh;CzÞ

�
;

where C ¼ 256 and

C�hFðh;CzÞ ¼ � zh

2pi

Gð1 þ hÞ8

Gð1 þ 2hÞ4

Ð
C

Gð2s þ 1 þ 2hÞ4

Gðs þ 1 þ hÞ8

p

sin ps
episzs ds:

Here h is assumed to be a small real number and C denotes the vertical line Re s ¼ �1=4.
The integrand has quadruple poles at s ¼ �k � 1=2 � h for non-positive integers k. Moving
the line of integration to Re s ¼ �3=4 and computing the residue at s ¼ �1=2 � h, we see
that

C�hFðh;CzÞ ¼ a1

P3
n¼0

BnðhÞ
n!

z�1=2ðlog zÞn þ ðhigher order terms in 1=zÞ;

where

a1 ¼ pe�pi=2

16Gð1=2Þ8
; B3ðhÞ ¼

Gð1 þ hÞ8
e�pih

Gð1 þ 2hÞ4 cos ph
; B2ðhÞ ¼ B3ðhÞðm� p tan phÞ;

B1ðhÞ ¼ B3ðhÞ � 7

6
p2 þ m2

2
� pm tan ph þ p2 sec2 ph

� �
;

and

B0ðhÞ ¼ B3ðhÞ
m3

6
� p

2
m2 tan ph þ ðsec2 ph � 7=6Þp2mþ ð5=6 � sec2 phÞp3 tan ph þ 8zð3Þ

� �
;

where m ¼ 16 log 2 þ pi. Let

~ff0ðzÞ ¼ z�1=2ð1 þ � � �Þ; ~ff1ðzÞ ¼
1

2pi

�
log z þ g1ð1=zÞ

�
~ff0ðzÞ;

~ff2ðzÞ ¼
1

ð2piÞ2

�
log2 z=2 þ g1ð1=zÞ log z þ g2ð1=zÞ

�
~ff0ðzÞ;

~ff3ðzÞ ¼
1

ð2piÞ3

�
log3 z=6 þ g1ð1=zÞ log2 z=2 þ g2ð1=zÞ log z þ g3ð1=zÞ

�
~ff0ðzÞ

be the Frobenius basis at z ¼ y with gnð0Þ ¼ 0. Using the evaluation

G 0ð1Þ ¼ �g; G 00ð1Þ ¼ p2

12
þ g2

2
; G 000ð1Þ ¼ � 1

3
zð3Þ � p2g

12
� g3

6
;
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we can find the analytic continuation of the Frobenius at z ¼ 0 in terms of ~ffnðzÞ. Now the
monodromy around y relative to the basis f ~ff3ðzÞ; ~ff2ðzÞ; ~ff1ðzÞ; ~ff0ðzÞg is

�1 �1 �1=2 �1=6

0 �1 �1 �1=2

0 0 �1 �1

0 0 0 �1

0
BBB@

1
CCCA:

From this we can determine the monodromy matrix around z ¼ 1=C with respect to the
Frobenius basis at z ¼ 0. We find that the result agrees with the general pattern depicted
in Theorem 1, although the detailed computation is too complicated to be presented here.

r

Of course, there is no reason why our approach should be applicable only to order 4
cases. Consider the hypergeometric di¤erential equations of order 5 of the form

L : y5 � zðyþ 1=2Þðyþ AÞðyþ 1 � AÞðyþ BÞðyþ 1 � BÞ:ð12Þ

The cases ðA;BÞ ¼ ð1=2; 1=2Þ; ð1=4; 1=2Þ; ð1=6; 1=4Þ; ð1=4; 1=3Þ; ð1=6; 1=3Þ, and ð1=8; 3=8Þ
have been used by Guillera [12], [13] to construct series representations for 1=p2. Applying
the above method, we determine the monodromy of these di¤erential equations in the fol-
lowing theorem whose proof will be omitted.

Theorem 3. Let L be one of the di¤erential equations in (12). Let yi, i ¼ 0; . . . ; 4, be

the Frobenius basis at 0. Then the monodromy matrices around z ¼ 0 and z ¼ 1=C with re-

spect to the ordered basis fy4=ð2piÞ4; y3=ð2piÞ3; y2=ð2piÞ2; y1=ð2piÞ; y0g are

1 1 1=2 1=6 1=24

0 1 1 1=2 1=6

0 0 1 1 1=2

0 0 0 1 1

0 0 0 0 1

0
BBBBB@

1
CCCCCA;

a2 0 �ab ð1 � a2Þx �b2=2

�c2x=2 1 �acx c2x2=2 �ð1 � a2Þx
�ac 0 1 � 2a2 acx �ab

0 0 0 1 0

�c2=2 0 �ac c2x=2 a2

0
BBBBB@

1
CCCCCA;

respectively, where x is an integer multiple of zð3Þ=ð2piÞ3, a and c are positive real numbers

such that a2, ac, and c2 are rational numbers, and b is a real number satisfying a2 þ bc ¼ 1.

The exact values of a, c, and x 0 ¼ ð2piÞ3
x=zð3Þ are given in the following table.

A B a2 c2 x 0

1/2 1/2 25/36 64 10
1/2 1/4 8/9 32 24
1/4 1/6 289/288 8 80
1/3 1/4 27/32 24 28
1/3 1/6 75/64 12 70
1/8 3/8 529/288 8 150
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5. Di¤erential equations of Calabi-Yau type

The Picard-Fuchs di¤erential equations for families of Calabi-Yau threefolds known
in the literature have the common features that

(a) the singular points are all regular,

(b) the indicial equation at z ¼ 0 has 0 as its only solution,

(c) the indicial equation at one of the singularities has solutions 0, 1, 1, 2, corre-
sponding to a conifold singularity,

(d) the unique holomorphic solution y around 0 with yð0Þ ¼ 1 has integral coe‰-
cients in its power series expansion,

(e) the solutions l1 e l2 e l3 e l4 of the indicial equation at t ¼ y are positive ra-
tional numbers and satisfy l1 þ l4 ¼ l2 þ l3 ¼ r for some r A Q, and the characteristic
polynomial of the monodromy around t ¼ y is a product of cyclotomic polynomials.

(f) the coe‰cients riðzÞ, i ¼ 1; 2; 3; of the di¤erential equation satisfy

r1 ¼ 1

2
r2r3 �

1

8
r3

3 þ r 02 �
3

4
r 03r3 �

1

2
r 003 ;

(g) the instanton numbers are integers.

In [1] a fourth order linear di¤erential equation satisfying all conditions except (c) is said to
be of Calabi-Yau type. Using various techniques, Almkvist etc. found more than 300 such
equations. (See [2], Section 5, for an overview of strategies of finding Calabi-Yau equations.
The paper also contains a ‘‘superseeker’’ that tabulates the known Calabi-Yau equations,
sorted according to the instanton numbers.) Among them, there are 178 equations that have
singularities with exponents 0, 1, 1, 2. It is speculated that all such equations should have
geometric origins.

In [26] van Enckevort and van Straten numerically determined the monodromy for
these 178 equations. They were able to find rational bases for 145 of them, among which
there are 64 cases that are integral. Their method goes as follows. Let z1; . . . ; zk be the sin-
gularities of a Calabi-Yau di¤erential equation. They first chose a reference point p and
piecewise linear loops each of which starts from p and encircles exactly one of zi. Then the
problem of determining analytic continuation becomes that of solving several initial value
problems in sequences. This was done numerically using the dsolve function in Maple. Then
they used the crucial observation that the Jordan form for the monodromy around a coni-
fold singularity is unipotent of index one to find a rational basis. Finally, assuming that (5)
and (8) hold for general di¤erential equations of Calabi-Yau type, conjectural values of ge-
ometric invariants can be read o¤.

Here we present a di¤erent method of computing monodromy based on the approach
described in Section 3. Let 0 ¼ z0; z1; . . . ; zn be the singular points of a Calabi-Yau di¤er-
ential equation, and assume that fi;k, i ¼ 0; . . . ; n, k ¼ 1; . . . ; 4 form the Frobenius bases at
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zi. According to Section 3, to find the matrix of basis change between f fi;kg and f fj;kg, we
only need to evaluate f

ðmÞ
i;k and f

ðmÞ
j;k at a common point z where the power series expansions

of the functions involved all converge. In practice, the choice of z is important in order to
achieve required precision in a reasonable amount of time.

Let Ri denote the radius of convergence of the power series expansions of the Frobe-
nius basis at zi. In general, Ri is equal to the distance from zi to the nearest singularity
zj 3 zi, meaning that if we truncate the power series expansion of fi;k at the nth term, the
resulting error is

Oe ð1 þ eÞn jz� zijn

Rn
i

� �
:

Of course, the O-constants depend on the di¤erential equation and zi. Since we do not have
any control over them, in practice we just choose z in a way such that

jz� zij
Ri

¼ jz� zjj
Rj

:

If this does not yield needed precision, we simply replace n by a larger integer and do the
computation again.

Example. Consider

y4 � 5ð5yþ 1Þð5yþ 2Þð5yþ 3Þð5yþ 4Þ:

The singularities are z0 ¼ 0, z1 ¼ 1=3125, and z2 ¼ y. The radii of convergence for the
Frobenius bases at 0 and 1=3125 are both 1=3125. Thus, to find the matrix of basis change,
we expand the Frobenius bases, say, for 30 terms, and evaluate the Frobenius bases and
their derivatives at z ¼ 1=6250. Then we use the idea in Section 3 to compute the mono-
dromy matrix around z1 with respective to the Frobenius basis at 0. We find that the com-
putation agrees with (7) in Theorem 1 up to 7 digits.

The above method works quite well if the singularities of a di¤erential equation are
reasonably well spaced. However, it occurs quite often that a Calabi-Yau di¤erential equa-
tion has a cluster of singular points near 0, and a couple of singular points that are far away.
For example, consider EquationK19 in [1]:

529y4 � 23zð921y4 þ 2046y3 þ 1644y2 þ 621yþ 92Þ

� z2ð380851y4 þ 1328584y3 þ 1772673y2 þ 1033528yþ 221168Þ

� 2z3ð475861y4 þ 1310172y3 þ 1028791y2 þ 208932y� 27232Þ

� 68z4ð8873y4 þ 14020y3 þ 5139y2 � 1664y� 976Þ

þ 6936z5ðyþ 1Þ2ð3yþ 2Þð3yþ 4Þ:

The singularities are z0 ¼ 0, z1 ¼ 1=54, z2 ¼ ð11 � 5
ffiffiffi
5

p
Þ=2 ¼ �0:090 . . . , z3 ¼ �23=34, and

z4 ¼ ð11 þ 5
ffiffiffi
5

p
Þ=2 ¼ 11:09 . . . : In order to determine the monodromy matrix around z4,
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we need to compute the matrix of basis change between the Frobenius basis at 1=54 and
that at z4. The radius of convergence for the Frobenius basis at 1=54 is 1=54, while that at
z4 is z4 � 1=54 ¼ 11:07 . . . : Even if we choose z optimally, we still need to expand the Fro-
benius bases for thousands of terms in order to achieve a precision of a few digits. In such
situations, we can choose several points lying between the two singularities, compute bases
for each of them, and then use the same idea as before to determine the matrices of basis
change.

Take Equation 19 above as an example. We choose wk ¼ ð1 þ 3kÞ=54 and
zk ¼ ð1 þ 3k=2Þ=54 for k ¼ 0; . . . ; 5. The radius of convergence for the basis at wk is
3k=54. Thus, evaluating the first n terms of the power series expansions at zk and zkþ1 will
result in an error of

Oe

�
ð1=2 þ eÞn�;

which is good enough in practice.

Using the above ideas we computed the monodromy groups of the di¤erential equa-
tions of Calabi-Yau type that have at least one conifold singularity.1) Our result shows that
if a di¤erential equation comes from geometry, then the monodromy matrix around one of
the conifold singularities with respect to the Frobenius basis at the origin takes the form (7).
We then conjugate the monodromy matrices by the matrix (9) and find that the other ma-
trices are also in Spð4;QÞ. We now tabulate the results for the equations coming from geo-
metry in the following table. Note that the notations Gðd1; d2Þ and Gðd1; d2; d3Þ, d2; d3 j d1,
represent the congruence subgroups

Gðd1; d2Þ ¼ g A Spð4;ZÞ : g1

1 � � �
0 � � �
0 0 1 0

0 � � �

0
BBB@

1
CCCA mod d1

8>>><
>>>:

9>>>=
>>>;

X g A Spð4;ZÞ : g1

1 � � �
0 1 � �
0 0 1 0

0 0 � 1

0
BBB@

1
CCCA mod d2

8>>><
>>>:

9>>>=
>>>;

and

Gðd1; d2; d3Þ ¼
�
ðaijÞ A Spð4;QÞ : aij A Z Eði; jÞ3 ð1; 3Þ; a13 A

1

d3
Z;

a21; a31; a41; a32; a34 1 0 mod d1;

a42 1 0; a22; a44 1 1 mod d2;

a11; a33 1 1 mod
d1

d3

�
:

1) We have written a Maple program for the computation. It is available upon request.
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Note also that since the matrix

1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

is always in the monodromy groups, it is not listed in the table. The reader should be mind-
ful of this omission. The number under the columnK is referred to that in [1].

K H 3 c2 � H c3 generators in ref

15 18 72 �162

1 1 0 0

0 1 0 0

18 18 1 0

0 �9 �1 1

0
BBB@

1
CCCA

�2 3 1=2 �1

6 �5 �1 2

�18 18 4 �6

18 �18 �3 7

0
BBB@

1
CCCA Gð6; 3; 2Þ [4]

16 48 96 �128

1 1 0 0

0 1 0 0

48 48 1 0

0 �16 �1 1

0
BBB@

1
CCCA

�5 2 1=4 �1

24 �7 �1 4

�144 48 7 �24

48 �16 �2 9

0
BBB@

1
CCCA Gð24; 8; 4Þ [4]

17 90 108 �90

1 1 0 0

0 1 0 0

90 90 1 0

0 �24 �1 1

0
BBB@

1
CCCA

�17 3 1=3 1

�54 10 1 3

�972 162 19 54

162 �27 �3 �8

0
BBB@

1
CCCA

�11 3 1=3 �1

36 �8 �1 3

�432 108 13 �36

108 �27 �3 10

0
BBB@

1
CCCA

Gð18; 6; 3Þ [4]

18 40 88 �128

1 1 0 0

0 1 0 0

40 40 1 0

0 �14 �1 1

0
BBB@

1
CCCA

�5 4 1=2 �1

12 �7 �1 2

�72 48 7 �12

48 �32 �4 9

0
BBB@

1
CCCA Gð4; 2; 2Þ [4]

19 46 88 �106

1 1 0 0

0 1 0 0

46 46 1 0

0 �15 �1 1

0
BBB@

1
CCCA

�6 4 1=2 �1

14 �7 �1 2

�98 56 8 �14

56 �32 �4 9

0
BBB@

1
CCCA

�45 12 2 �6

138 �35 �6 18

�1058 276 47 �138

276 �72 �12 37

0
BBB@

1
CCCA

Gð2; 2; 2Þ [4]

20 54 72 �18

1 1 0 0

0 1 0 0

54 54 1 0

0 �15 �1 1

0
BBB@

1
CCCA

7 �1 �1=6 1

�6 1 0 �2

126 �18 �2 24

�36 6 1 �5

0
BBB@

1
CCCA Gð6; 3; 6Þ [4]
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21 80 104 �88

1 1 0 0

0 1 0 0

80 80 1 0

0 �22 �1 1

0
BBB@

1
CCCA

�11 5 1=2 �1

24 �9 �1 2

�288 120 13 �24

120 �50 �5 11

0
BBB@

1
CCCA

�19 4 1=2 �2

80 �15 �2 8

�800 160 21 �80

160 �32 �4 17

0
BBB@

1
CCCA

Gð8; 2; 2Þ [4]

22 70 100 �100

1 1 0 0

0 1 0 0

70 70 1 0

0 �20 �1 1

0
BBB@

1
CCCA

1 0 0 0

10 1 0 2

�50 0 1 �10

0 0 0 1

0
BBB@

1
CCCA

�9 5 1=2 �1

20 �9 �1 2

�200 100 11 �20

100 �50 �5 11

0
BBB@

1
CCCA

Gð10; 10; 2Þ [4]

23 96 96 �32

1 1 0 0

0 1 0 0

96 96 1 0

0 �24 �1 1

0
BBB@

1
CCCA

9 �1 �1=8 1

�8 1 0 �2

288 �32 �3 40

�64 8 1 �7

0
BBB@

1
CCCA Gð8; 8; 8Þ [4]

24 15 66 �150

1 1 0 0

0 1 0 0

15 15 1 0

0 �8 �1 1

0
BBB@

1
CCCA

�5 5 1 �2

12 �9 �2 4

�36 30 7 �12

30 �25 �5 11

0
BBB@

1
CCCA Gð3; 1Þ [3]

25 20 68 �120

1 1 0 0

0 1 0 0

20 20 1 0

0 �9 �1 1

0
BBB@

1
CCCA

�7 5 1 �2

16 �9 �2 4

�64 40 9 �16

40 �25 �5 11

0
BBB@

1
CCCA Gð4; 1Þ [3]

26 28 76 �116

1 1 0 0

0 1 0 0

28 28 1 0

0 �11 �1 1

0
BBB@

1
CCCA

�9 6 1 �2

20 �11 �2 4

�100 60 11 �20

60 �36 �6 13

0
BBB@

1
CCCA Gð4; 1Þ [3]

27 42 84 98

1 1 0 0

0 1 0 0

42 42 1 0

0 �14 �1 1

0
BBB@

1
CCCA

1 0 0 0

42 1 0 9

�196 0 1 �42

0 0 0 1

0
BBB@

1
CCCA

�13 7 1 �2

28 �13 �2 4

�196 98 15 �28

98 �49 �7 15

0
BBB@

1
CCCA

Gð14; 7Þ [3, 22]

28 42 84 �96

1 1 0 0

0 1 0 0

42 42 1 0

0 �14 �1 1

0
BBB@

1
CCCA

�41 12 2 �6

126 �35 �6 18

�882 252 43 �126

252 �72 �12 37

0
BBB@

1
CCCA Gð42; 2Þ [3]
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186 57 90 �84

1 1 0 0

0 1 0 0

57 57 1 0

0 �17 �1 1

0
BBB@

1
CCCA

�53 12 2 �6

162 �35 �6 18

�1458 324 55 �162

324 �72 �12 37

0
BBB@

1
CCCA

�17 8 1 �2

36 �15 �2 4

�324 144 19 �36

144 �64 �8 17

0
BBB@

1
CCCA

Gð3; 1Þ [25]

In the second table we list a few equations whose monodromy matrices with respect
to our bases have integers as entries. Note that the numbers H 3, c2 � H, and c3 are all con-
jectural, obtained from evaluation of the monodromy around a singularity of conifold type.
Note, again, that the matrix

1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA

is omitted from the table.

K H 3 c2 � H c3 generators in

29 24 72 �116

1 1 0 0

0 1 0 0

24 24 1 0

0 �10 �1 1

0
BBB@

1
CCCA

�47 20 4 �10

120 �49 �10 25

�576 240 49 �120

240 �100 �20 51

0
BBB@

1
CCCA Gð24; 2Þ

33 6 36 �72

1 1 0 0

0 1 0 0

6 6 1 0

0 �4 �1 1

0
BBB@

1
CCCA

1 0 0 0

2 1 0 2

�2 0 1 �2

0 0 0 1

0
BBB@

1
CCCA Gð2; 2Þ

42 32 80 �116

1 1 0 0

0 1 0 0

32 32 1 0

0 �12 �1 1

0
BBB@

1
CCCA

�15 6 1 �3

48 �17 �3 9

�256 96 17 �48

96 �36 �6 19

0
BBB@

1
CCCA Gð16; 4Þ

51 10 64 �200

1 1 0 0

0 1 0 0

10 10 1 0

0 �7 �1 1

0
BBB@

1
CCCA

�3 5 1 �2

8 �9 �2 4

�16 20 5 �8

20 �25 �5 11

0
BBB@

1
CCCA Gð2; 1Þ

63 5 62 �310

1 1 0 0

0 1 0 0

5 5 1 0

0 �6 �1 1

0
BBB@

1
CCCA

�1 5 1 �2

4 �9 �2 4

�4 10 3 �4

10 �25 �5 11

0
BBB@

1
CCCA Gð1; 1Þ
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73 9 30 12

1 1 0 0

0 1 0 0

9 9 1 0

0 �4 �1 1

0
BBB@

1
CCCA

2 0 0 1

3 �2 �1 0

0 3 2 3

�3 0 0 �2

0
BBB@

1
CCCA Gð3; 1Þ

99 13 58 �120

1 1 0 0

0 1 0 0

13 13 1 0

0 �7 �1 1

0
BBB@

1
CCCA

�5 4 1 �2

12 �7 �2 4

�36 24 7 �12

24 �16 �4 9

0
BBB@

1
CCCA Gð1; 1Þ

100 36 72 �72

1 1 0 0

0 1 0 0

36 36 1 0

0 �12 �1 1

0
BBB@

1
CCCA

1 0 0 0

12 1 0 4

�36 0 1 �12

0 0 0 1

0
BBB@

1
CCCA

�11 6 1 �2

24 �11 �2 4

�144 72 13 �24

72 �36 �6 13

0
BBB@

1
CCCA

Gð12; 12Þ

101 25 70 �100

1 1 0 0

0 1 0 0

25 25 1 0

0 �10 �1 1

0
BBB@

1
CCCA

�19 10 2 �4

40 �19 �4 8

�200 100 21 �40

100 �50 �10 21

0
BBB@

1
CCCA

1 0 0 0

60 1 0 16

�225 0 1 �60

0 0 0 1

0
BBB@

1
CCCA

Gð5; 5Þ

109 7 46 �120

1 1 0 0

0 1 0 0

7 7 1 0

0 �5 �1 1

0
BBB@

1
CCCA

�3 3 1 �2

8 �5 �2 4

�16 12 5 �8

12 �9 �3 7

0
BBB@

1
CCCA Gð1; 1Þ

117 12 36 �32

1 1 0 0

0 1 0 0

12 12 1 0

0 �5 �1 1

0
BBB@

1
CCCA

1 0 0 0

4 1 0 4

�4 0 1 �4

0 0 0 1

0
BBB@

1
CCCA

�59 21 9 18

�120 43 18 36

�400 140 61 120

140 �49 �21 �41

0
BBB@

1
CCCA

Gð4; 1Þ
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118 10 40 �50

1 1 0 0

0 1 0 0

10 10 1 0

0 �5 �1 1

0
BBB@

1
CCCA

1 0 0 0

30 1 0 18

�50 0 1 �30

0 0 0 1

0
BBB@

1
CCCA

�19 10 4 �8

40 �19 �8 16

�100 50 21 �40

50 �25 �10 21

0
BBB@

1
CCCA

Gð10; 5Þ

185 36 84 �120

1 1 0 0

0 1 0 0

36 36 1 0

0 �13 �1 1

0
BBB@

1
CCCA

�11 7 1 �2

24 �13 �2 4

�144 84 13 �24

84 �49 �7 15

0
BBB@

1
CCCA Gð12; 1Þ
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Appendix. The index of G(d1, d2) in Sp(4,Z)

By Cord Erdenberger at Hannover

In this appendix we will show that the groups Gðd1; d2Þ are indeed congruence sub-
groups in Spð4;ZÞ and provide a formula for their index.

Recall that for n A N the principal congruence subgroup of level n is defined by
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GðnÞ :¼ fM A Spð4;ZÞ jN 1 I4 ðmod nÞg:

It is the kernel of the map from Spð4;ZÞ to Spð4;Z=nZÞ given by reduction modulo n and
thus a normal subgroup in Spð4;ZÞ. It is a well-known fact that this map is surjective and
hence the sequence

I4 ! GðnÞ ,! Spð4;ZÞ ! Spð4;Z=nZÞ ! I4

is exact. So the index of GðnÞ in Spð4;ZÞ is just the order of Spð4;Z=nZÞ which is known to
be

½Spð4;ZÞ : GðnÞ� ¼ jSpð4;Z=nZÞj ¼ n10Qð1 � p�2Þð1 � p�4Þ;

where the product runs over all primes p such that p j n.

For d1; d2 A N, define

~GG1ðd1Þ :¼ M A Spð4;ZÞ : M 1

1 � � �
0 � � �
0 0 1 0

0 � � �

0
BBB@

1
CCCA mod d1

8>>><
>>>:

9>>>=
>>>;
;

~GG2ðd2Þ :¼ M A Spð4;ZÞ : M 1

1 � � �
0 1 � �
0 0 1 0

0 0 � 1

0
BBB@

1
CCCA mod d2

8>>><
>>>:

9>>>=
>>>;

and set

Gðd1; d2Þ :¼ ~GG1ðd1ÞX ~GG2ðd2Þ:

Note that

Gðd1ÞH ~GG1ðd1Þ and Gðd2ÞH ~GG2ðd2Þ:

Hence

GðdÞ ¼ Gðd1ÞXGðd2ÞH ~GG1ðd1ÞX ~GG2ðd2Þ ¼ Gðd1; d2Þ;

where d is the least common multiple of d1 and d2. This shows that Gðd1; d2Þ is a congru-
ence subgroup, i.e. it contains a principal congruence subgroup as a normal subgroup of
finite index. Moreover, this implies that Gðd1; d2Þ has finite index in Spð4;ZÞ and an upper
bound is given by the index of GðdÞ as given above.

We will from now on restrict to the case relevant to this paper, namely d2 j d1. Then
Gðd1; d2Þ is in fact a subgroup of ~GG1ðd1Þ, namely

Gðd1; d2Þ ¼

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

0
BBB@

1
CCCAA ~GG1ðd1Þ :

a22 a24

a42 a44

� �
1

1 �
0 1

� �
mod d2

8>>><
>>>:

9>>>=
>>>;
:
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To obtain a formula for the index of this group in Spð4;ZÞ, we first calculate the index
of ~GG1ðd1Þ. Note that

~GG1ðd1Þ=Gðd1Þ < Spð4;ZÞ=Gðd1ÞF Spð4;Z=d1ZÞ

and hence

½Spð4;ZÞ : ~GG1ðd1Þ� ¼ ½Spð4;Z=d1ZÞ : ~GG1ðd1Þ=Gðd1Þ�:

The quotient ~GG1ðd1Þ=Gðd1Þ considered as a subgroup of Spð4;Z=d1ZÞ via the above isomor-
phism is given by

~GG1ðd1Þ=Gðd1ÞF M A Spð4;Z=d1ZÞ : M ¼

1 � � �
0 � � �
0 0 1 0

0 � � �

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;
:

An element of this group has the following form

M ¼

1 a12 a13 a14

0 a a23 b

0 0 1 0

0 g a43 d

0
BBB@

1
CCCA:

Let J4 :¼ 0 �I2

I2 0

� �
. The symplectic relation that tMJ4 M ¼ J4 then implies that

a b

g d

� �
A SL2ðZ=d1ZÞ. Furthermore it gives rise to the following linear system:

a12 þ aa43 � ga23 ¼ 0;

a14 þ ba43 � da23 ¼ 0:

Writing this in matrix form, we have

a g

b d

� �
�a43

a23

� �
¼ a12

a14

� �
:

If we choose a12, a13, a14 freely, the above linear system has a unique solution a23, a43 as
a b

g d

� �
is in SL2ðZ=d1ZÞ. This shows that

j~GG1ðd1Þ=Gðd1Þj ¼ d 3
1 � jSL2ðZ=d1ZÞj ¼ d 6

1

Q
ð1 � p�2Þ

where the product runs over all primes p dividing d1. So we have the index formula

½Spð4;ZÞ : ~GG1ðd1Þ� ¼ ½Spð4;Z=d1ZÞ : ~GG1ðd1Þ=Gðd1Þ� ¼ d 4
1

Q
p j d1

ð1 � p�4Þ:

Now we are ready to calculate the index of Gðd1; d2Þ in Spð4;ZÞ. Since we assume that
d2 j d1, we have the following chain of subgroups:
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Gðd1Þ < Gðd1; d2Þ < ~GG1ðd1Þ < Spð4;ZÞ:

Note that

½~GG1ðd1Þ : Gðd1; d2Þ� ¼ ½~GG1ðd1Þ=Gðd1Þ : Gðd1; d2Þ=Gðd1Þ�

and by our above description this is just the index of the group

M A SL2ðZ=d1ZÞ : M 1
1 �
0 1

� �
mod d2

� �

in SL2ðZ=d1ZÞ. An easy calculation shows that this index is equal to

d 2
2

Q
p j d2

ð1 � p�2Þ:

Putting all these together, we get

½Spð4;ZÞ : Gðd1; d2Þ� ¼ ½Spð4;ZÞ : ~GG1ðd1Þ� � ½~GG1ðd1Þ : Gðd1; d2Þ�

¼ d 4
1

Q
p j d1

ð1 � p�4Þd 2
2

Q
p j d2

ð1 � p�2Þ:

We summarize the above calculation to obtain

Theorem. The group Gðd1; d2Þ is a congruence subgroup in Spð4;ZÞ and its index is

given by

jSpð4;ZÞ : Gðd1; d2Þj ¼ d 4
1

Q
p j d1

ð1 � p�4Þd 2
2

Q
p j d2

ð1 � p�2Þ:

In fact, we can do a similar calculation without the assumption that d2 j d1 and obtain
the same formula as given above where one has to replace d1 with the least common mul-
tiple of d1 and d2.
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