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ABSTRACT 

The: research on view mechanisms for object-oriented databases can be classified 
into two independent issues, languages to define views and the underlying object 
model~,;. This paper presents an object model at the conceptual level of abstraction. We 
call it the view class and real-world object model ( V - R  model). The major goal of the 
V - R  model is intended to support updatable views efficiently for the object-oriented 
database systems. The V - R  model elaborates a special method to describe the instance- 
of relationship between stored objects and classes so that a stored object can be the 
instance of several classes simultaneously. Query results and views can be managed like 
classes without creating temporary objects or tuples since the V - R  model is closed 
against query operations. In this way, updates on views can be supported easily. 

This paper also explores the update semantics in depth. By utilizing the specialty of 
the V - R  model, a more eligible update translation is proposed for the updates on 
classes, with or without inheritance relationships and for the updates on views. To show 
that the V - R  model is not only theoretical, how to implement the V - R  model and how 
to integrate the V - R  model into an object-oriented database system are illustrated. 
© Else vier Science Inc. 1996 

1. I N T R O D U C T I O N  

T h e  v i e w  m e c h a n i s m  has  b e e n  ve ry  successfu l  in r e l a t i o n a l  d a t a b a s e s  

( R D B s ) .  I t  can  h i d e  c e r t a i n  d a t a  f r o m  users  fo r  secur i ty ,  o r  h e l p  to  c r e a t e  
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derived relations that users are interested in. Views are intended to behave 
like relations; however, not all views can be updated as relations can. 
Views basically are defined by applying powerful relational operations, and 
they normally do not store data as relations do [2, 9]. An update to the 
view must be translated into an update to the actual relations in the 
conceptual model of the database. Reference [5] points out that a view can 
be updated only if it preserves base relations' keys. Therefore,  the view 
update problem greatly lowers the utilization and objective of views. 

Much research [1, 8, 10, 11, 15, 17] discusses the view mechanism in 
object-oriented database (OODBs), and we conclude two independent 
topics from it. The first topic concerns the way to define views. A common 
structure of view definition for OODBs contains the type definition and the 
instance population. The type definition describes the attributes and meth- 
ods of a view. The instance population describes what objects are the 
instances of a view, and it usually is a query. In the work of [1], the 
definition of views allows users to organize views into the uirtual class 
hierarchies, so that the roles that views play in the virtual class hierarchies 
are the same as classes do in the class hierarchies. 

The second topic concerns the object model underlying the query 
language. The object model defines the structures and management of the 
stored objects as well as classes. The query's results and uiew updates are 
two major issues closely related to views. To manage query's results, the 
flat tuple is the simplest approach [8]. Each tuple's attribute is atomic, that 
is, printable. Flat tuples are not stored in the database, but exist temporar- 
ily for viewing. They do not have object identifiers (OIDs) and their 
lifetimes are typically limited to a transaction. The drawback of fiat tuples 
is that users cannot query upon them anymore since their structures are 
different from stored objects. To overcome the flat tuple's drawback, [1] 
proposes the idea of imaginary objects. Each tuple can be converted into an 
imaginary object by creating a new OID for itself. Therefore,  views can be 
populated with imaginary objects as classes can be populated with objects. 
However, one subtle problem may arise while OIDs being created. Con- 
sider two SQL-like queries: 

QI: select F from Family where F.size > 5 and F.Father.Age < 25 
Q2: select F from Family where F.size > 5 and F in (select F from Family 

where F.Father.Age < 25) 

With the first query, we obtain as many objects as families that satisfy the 
criteria. With the second query, the result is implementation-dependent, 
and we may obtain an empty set if new OIDs are generated for imaginary 
objects. The solution is to assign the same OIDs to those imaginary objects 
representing the same real world things. Users must be very careful to 
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choose the core attributes of views to do that, especially when a view is 
derived from several classes. 

References [11, 15] suggest another approach to manage query results. 
The instances of a view are materialized, but not saved in the storage 
system. Materialized instances have the same data structure as stored 
objects. A hashing table is built to establish a one-to-one mapping between 
the materialized instances of a view and the stored objects of the class 
from which the view is derived. This hash table not only helps to maintain 
data consistency between stored objects and materialized instances, but 
also provides the tracking of materialized instances' OIDs. Nevertheless, 
users must specify the OlD-function to make the one-to-one mapping exist. 
This idea, actually, is the same as that of core attributes; hence, it suffers 
the same problem. 

In the work of [17], object preserving operators in the object model 
COCOON is proposed. In COCOON, an object can be the instance of 
several objects simultaneously, which is different from the previous two 
works. The query result is a set of existing objects, instead of creating 
objecl:s. This approach avoids duplicating data and saves the cost of 
creating objects. Furthermore,  view updates can be performed on existing 
objects directly. Consider this example: a view EmpSal is defined as "create 
view EmpSal (Name, Salary) as (select Name Salary from Employee)" and 
the class Employee has only one key, the ID#. Apparently, EmpSal is not 
updatable in RDBs because it does not preserve Employee's key. For the 
OOD,Bs with the object creating approach, EmpSal is updatable if a 
hashing table or some mechanisms else build up the one-to-one correspon- 
dence. In COCOON, EmpSal will contain the same set of stored objects 
as Employee does. So, update operations on EmpSal can be performed on 
the stored objects. Reference [14], however, argues that the database 
system will suffer the performance penalty while allowing an object to be 
the instance of several classes. One of difficulties is how to efficiently 
model the instance-of relationship such that an object can be the instance 
of several classes. COCOON, on the other hand, does not elaborate a 
concrete solution. 

An essential topic, the semantics of updates, is neglected in all previous 
works. Suppose that we delete a student from the class Student that 
inherits the class Person. Does this operation mean that the student is 
removed from the database or the student is no more a student but still a 
person? This problem arises in OODBs because object-oriented data 
models capture the inheritance relationship between classes. Conse- 
quently, the update semantics becomes ambiguous. In fact, the update 
sem~tntics for views are even more ambiguous in OODBs. Therefore,  it is 
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essential to study the update semantics for classes with or without inheri- 
tance relationships and for views in OODBs. 

In this paper, we propose a framework of the object model at the 
conceptual level of abstraction, called the view class and real-world object 
model ( V - R  model). The major goal is to support updatable views effec- 
tively. The V - R  model elaborates a special method to describe to in- 
stance-of relationship, so that an object can be the instance of several 
classes and views simultaneously without performance reduction. The 
query's results and updates of views can be manipulated easily by this 
approach. We also address the implementation techniques about the V - R  
model to show that the V - R  model is not only theoretical. Besides, based 
on the V - R  model, we discuss the update semantics for OODBs thor- 
oughly. 

The organization of this paper is as follows. In Section 2, we introduce 
the basic concepts and formal definitions of the V - R  model. We illustrate 
how an object can be the instance of many classes. We also prove that 
essential query operations are closed in the V - R  model. In Section 3, the 
update semantics in the V - R  model are discussed. We first clarify the 
update semantics, and then we define the view update translation based on 
the V - R  model. Since views in the V - R  model can be materialized, we 
present an efficient approach to keep materialized views up to date. In 
Section 4, we illustrate how to integrate the V - R  model into an OODB 
system, and suggest two possible approaches to implement the V - R  
model. Finally, we give the conclusions in Section 5. 

2. T H E  VIEW CLASS AND REAL-WORLD OBJECT M O D E L  
( V - R  MODEL)  

The original idea of the V - R  model comes from the real world. In the 
real world, people may see different aspects of an entity from different 
viewpoints. When the entity's information varies, all the people can per- 
ceive the changes. In the V - R  model, people, viewpoints, and entities 
correspond to users, view classes, and real-world objects, respectively. 
Real-world objects denote concrete or abstract entities in the real world 
and convey entities' information, while view classes are viewpoints to 
observe real-world objects. For example, in Figure 1, users observe three 
different images of the real-world object Jack via three view classes. No 
matter how many view classes are created to observe Jack, his information 
is not duplicated. Consequently, all the view cla~ses that observing Jack 
can see changes made to Jack automatically. 

Note that Jack is perceptible via three classes, but Mary is only 
perceptible via the view class Citizen. The function of the perceptibility 
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name: Jack ~ []~: 123.4 "~ 

........... ..... I ~ :  ~To~,~ I 

..................... ::/ °::i : ov / 

images view classes perceptibility relationships real-world objects 

Fig. 1. The basic concepts on the V-R model. 

relationship is to describe which real-world objects and what portions of 
their information are perceptible to the view class, which is more than the 
function of the instance-of relationship that only states the former. 

DEFINITION 1. A real-world object (RO) is an entity, either concrete or 
logical, in the real world. It is represented as a tuple ( I ,D) ,  where 

1. I denotes the unique real-world object identifier (RID). 
2. D denotes the stored data and is define as a set of properties. A 

property is defined as " P : V , "  where P is the property name and V 
denotes its value. A value is a single or a set of integers, real number, 
strings, and RIDs. 

Definition 1 describes the RO's conceptual notation which captures 
three, essential features of OODBs [4, 13, 14], the unique object identifiers, 
complex objects, and set values. Methods are omitted in Definition 1 
because they can be treated as stored data as properties. Besides, compos- 
ite objects, one feature of OODBs, do not appear in Definition 1. From the 
discussion of [12], composite objects result from applying a sort of integrity 
constraints. Therefore,  it is the query processor's responsibility to support 
them. 

ROs serve as the data source in the V - R  model, and convey their own 
data. They are assumed to be stored on the permanent storage device, and 
their RIDs are the access keys to retrieve specific ROs. 

DEFINITION 2. A view class C is represented as a tuple (S ,N,T ,E) ,  
where 

1. S denotes the superclass of C. It is a set of view classes and can be 
empty. 

2. N denotes the class name. 
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3. T denotes the intension. It is a set of attributes. An attribute is 
denoted as " A : D , "  where A is the attribute name and D denotes the 
domain of the attribute that can be integers, real numbers, strings, and 
view classes. 

4. E denotes the extension. It is a set of conceptual objects (CO). Each 
conceptual object is represented as a tuple ((r, uf)), where r is an RID, uf 
is the view function that is defined as "uf: D ---, T," D denotes RO's stored 
data, and uf is an onto function. 

5. For each view class C i in S, Ci's intension is included in or equal 
to T. 

Definition 2 describes the conceptual notation of view classes. A view 
class has intensional and extensional notions [4]. The intensional notion 
corresponds to the definition of an abstract data type in object-oriented 
programming. It defines a viewpoint to "observe" ROs. The extensional 
notion serves as the basis for formulating queries. COs play the role of the 
perceptibility relationships illustrated in Figure 1. The mapping pair (r, rf) 
in a CO describes which properties of the RO with RID r are perceptible 
in the view class. A real object OR is perceptible to a view class C if and 
only if OR's stored data can be mapped onto C's intension since the view 
function is defined to be an onto mapping. For example, Mary in Figure 1 
can be mapped onto the view class Citizen only. 

The ways to compute a view class's extension depend on how the V - R  
model is implemented, and will be discussed in Section 4. We illustrate an 
example in Figure 2 which shows a conceptual database by the V - R  
model. There are three view classes and seven ROs. Arrow lines denote 

< Pta'~on, { name: STRING, ,~ ;  STRING }, El  > ~ < S ~ ,  {~&ool: School, I~cm: REAL }, E2 > E2: ~ ~  

El: ~ f ~  <F~mlty, {mira'y: INTEGER, coup©: STRING },E3> 

I I 
. . . . . . . . . . . . . . . .  : . . : . . . 7  : / . . . ~ # : ~ ' a a , J ~ c ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

r5 r4 r3 
r7 

Fig. 2. A simple database presented by V-R model. 
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inheritance relationships and point to superclasses. They organize view 
classe,; into class hierarchies. The class extensions are presented as tables, 
and the view functions are denoted by vectors. The ith number x in a 
vector indicates that the xth property of an RO is mapped to the ith 
attribute of a view class. For example, the CO (r7,(1253)) in E3 will 
present the image "name: Pan, sex: Male, salary: 6K, course: DB." 

Note that the RO r7 is perceptible to the view class Student and 
Facuhy. The V - R  model allows the RO to contain more information than 
the view classes in a specific class hierarchy. It is not necessary to create a 
subclass TA of both Student and Faculty. 

If an RO is perceptible to the view class C1 and C is the superclass of 
C1, then the RO must be perceptible to C. This property results from the 
inheritance relationship. 

LEVlMA 1. I f  the view class C1 inherits C, then for each conceptual object 
((r,  l f ) )  in E(C1), there exists a conceptual object ( ( r ' , v f ' ) )  in E(C)  such 
that r is equal to r'. 

The proof of Lemma 1 is straightforward. The view class Person, 
Student, and Faculty in Figure 2 can illustrate this property. 

The conceptual notion of views is very similar to that of view classes. 
Views, actually, have the same functionality as view classes. They both 
provide users with various viewpoints to observe ROs. 

DEFINITION 3. A view C is represented as a tuple (N ,T ,Q,E) ,  where 

1. N denotes the view name. 
2. T denotes the intension. Its representation is the same as the view 

class's intension. 
3. Q is the instance population. It is a query. 
4. E denotes the extension. It is a set of conceptual objects. Each 

conceptual object is represented as a tuple ((rl ,vf l ) ,  (r  2, of 2) . . . . .  (r~,~fn)), 
where n >/1, r i is an RID, and cf~ is the view function. Let vf= Lfl U 
of 2 U ... U of,; then cf will be an onto function. 

Tile CO of a view may contain several mapping pairs. The number of 
mapping pairs in a CO, the RO's retrieval speed, and the implementation 
of the view function will determine the speed of computing a CO's image. 
A view's extension is the result of its instance population, a query. It 
normally is not stored in the storage system as the view class's extension. 
However, users sometimes may want to store a view's extension for the 
performance. A view is called semi-materialked if its extension is stored in 
the storage system. 
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Since the instance population of a view is a query, we need to prove an 
essential property, the closure property, for Definition 3. The closure 
property ensures that the result of  query operations can be expressed as a 
set of COs defined in Definition 3. In the following, we show how the 
view's intension and extension can be computed and expressed as a set of 
COs for each operation. Some shorthand notations are defined first. Let o 
be a CO in a view class C or in a view V; then 

• Rids(o)  = { r l ,  r 2 . . . . .  r,} and v f (o)  = vfl U tf2 U " .  U cf,. 
• M ( r  i) denotes the stored data of the RO with RID r i. 
• M ( o )  denotes all the RO's  stored data that o refers to. They are 

equal to U iM(r~).. 
• I M ( o )  denotes the image presented by o. It is equal to U icfi(M(ri)). 
• IM(o) .  Attr  denotes the value of the attribute Attr  in the image. 
• E ( V )  denotes the extension of V, and T ( V )  denotes the intension 

of V. 

Let V/and V/, view classes or views, denote the operands of operations and 
V denote the resulting view of the operation. 

(a) Restriction: V =  ~rered~( Vi), where Preds denotes the restriction predi- 
cate. Then 
• T ( V )  = T(V~) .  

• For each conceptual object o e E ( V i ) ,  if I M ( o )  satisfies Preds, 
add o to E ( V ) .  

(b)  Projection: V =  ~rA,r,(Vi), where Attrs denotes the projected at- 
tributes. Then 
• T ( V ) - -  (Attrs}. 
• For each conceptual object o ~E(V/i), add o' to E ( V ) ,  where 

Rids(o')  =Rids (o )  and vf(o ' )  = L,', where c': M ( o )  --* T (V ) .  

Since V's intension is a subset of V,'s the resulting CO may contain one or 
more mapping pairs whose view functions are null. In other words, those 
mapping pairs do not constitute the CO's  image. The reason for keeping 
such mapping pairs in a CO is to establish a one-to-one correspondence 
for the view updates. We will explain this later. 

(c) Union: V= ~ U ~.  Then 
• T(V) = T(V i) n T(V:). 
• For each o ~E(V i) or o eE(V:), add o' to E(V), where Rids(o') = 

Rids(o) and cf(o') = v', where v': M(o') --* T(V). 

The requirement of a legal union operation in the V - R  model is that the 
intensions of V~ and ~ are compatible; that is, they have common at- 
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tributes. Note that the intension of the resulting view is the intersection of 
those of V/ and ~ .  

(d) Difference: V = V i - Vj. Then 
• T ( V )  = T(V~) .  

• For each o~E(Vi),  if V o'~E(Vj)ARids(o')-~Rids(o), add o to 
E(V). 

The V - R  model makes use of RIDs to determine whether two COs are 
equal or not. This approach, called RID-equal, is different form using CO's 
images, which correspond to using instance's values, called value-equal, in 
tradJ:tional RDBs and OODBs. Suppose the view class Person does not 
have a key in Figure 2; then it is ambiguous to determine whether the CO 
(r7,,(1253)) in Faculty differs from the CO (r7,(1246)) in Student by the 
traditional approach with the operation (Student-Faculty). However, in 
the V - R  model, we can get rid of (r7,(1246)) in the result since they refer 
to tile same real-world entity. Thus, the difference operation will not suffer 
the :ambiguity even if V/and Vj do not have a key in common. Actually, the 
RID-equal is conceptually the same as the referential-equal [16] that tests 
whether two database objects refer to the same real-world entity. The 
V - R  model can directly support it instead of using methods to simulate it. 

(e) Cartesian product: V= V/X ~.  Then 

• T(V)  = T(V i) U rename(T(Vi)). 
• For each o ~ E ( V ) A o ' E E ( V j ) ,  add o" to E(V), where Rids(o") 

= Rids(o) u Rids(o') and uf(o") = uf(o) U uf(o'). 

The: "rename( )" denotes the renaming operation that will make T ( ~ )  
different from T(V/). 

( f )  Natural join: V= V/M Vj. Let Attrs = T(V/) C~ T(~) ;  then 
• T(V)=T(V~)UT(Vj).  
• For each o~E(Vi )Ao '~E(Vj ) ,  if IM(o).Attr=IM(o') .Attr,  add 

o" to E(V), where Rids(o")=Rids(o)URids(o') and c f (o " )=  
vf(o) u cf(o') 

The natural join can be expressed by a projection, a restriction, and a 
Cartesian product: V/N ~ - 7rr(vp u r(vp(O'v. Attrs= Vj. Attrs(Vi X Vj)). 

(g) Navigation: V=Vi.Attr.  Attr is V/'s nonatomic attribute whose 
domain is the view class C. Then 
• T ( V )  = T ( C ) .  

• For each o~E(Vi),  let r'=IM(o).Attr,  add o' to E(V), where 
Rids(o')=Rids(o)U{r'} and uf(o')=u', where u': M(o')--) T(C). 
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The navigation operation also can be expressed by a projection, a restric- 
tion, and a Cartesian product: V,. A t t r -  % , r (  O-v,. A,,= C RH) (Vi × C)). 

(h) Intersection: V= V i ~ Vj. Then 
• T ( V )  = T(V~) A T ( ~ ) .  

• For each o~E(V/),  if 3o '~E(Vj )ARids(o ' )=Rids(o) ,  add o" to 
E(V), where Rids(o")=Rids(o)  and Lf(o")=c ' ,  where L,: 
M(o") ~ T(V) .  

The intersection operation can be expressed by one union and two differ- 
ence operations: V/i n ~ -= V/i - ( ( ~  u Vjj)- ~). 

Apparently, the result of query operations can be expressed as a set of 
COs defined in Definition 3. Hence, the V - R  model is closed under these 
query operations. Furthermore, two conclusions can be obtained from the 
discussion. First, there always exist a one-to-one mapping between each 
CO of the view and a corresponding set of COs of operands on which the 
view is defined. The reason is that for each operation, the mapping pairs of 
operands' COs are kept in the corresponding CO of the resulting view. 
This property is essential to make a view updatable. A brief algebraic 
explanation is as follows. A view's definition, in general, can be expressed 
as %,r,(O-erej,(T 1 X T2X "'" X Tn)), where T, denotes a view class, the 
union of view classes, or the difference of view classes [5]. According to the 
operation (c) and (d), all the COs in each T~ contain only one mapping 
pair. Then a CO in the view will be ((r 1, tf~), (r2, vf2) . . . . .  (rn, cfn)) accord- 
ing to the operation (a), (b), and (e), where each mapping pair corre- 
sponds t o a C O i n  ~ forl~<i~<n. 

Second, projections, unions, differences, and Cartesian products only 
need to manipulate class extensions to calculate the extension of the view. 
So, it is not necessary to retrieve ROs' stored data to compute a view's 
extension if a view's definition only involves these four operations. 

3. UPDATES IN THE V - R  MODEL 

Three update operations, create, delete, and modify, are considered in 
the V - R  model. They can be performed on ROs, view classes, and views; 
for simplicity, we call them RO updates, view class updates, and view 
updates, respectively. Since ROs possess stored data, RO updates can be 
performed directly without doubt. Therefore, we will concentrate on the 
view class and view updates in this section. 

Two separate processes will occur while performing the view class or 
view updates. The first one is the translation of the view class or view 
updates into RO updates because only ROs possess stored data. The 
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second process is the extension maintenance for the view classes and 
semi-materialized views due to ROs' changes. In the following, we first 
clarify the semantics of view class and view updates in Section 3.1, and 
then we define the update translation in Section 3.2 according to the 
clarified semantics. Finally, we introduce an efficient way to do the 
extension maintenance in Section 3.3. 

3.1. THE SEMANTICS OF VIEW CLASS AND VIEW UPDATES 

3.1.1. View Class Updates 

Since the CO in a view class contains only one mapping pair, view class 
upd~ttes clearly should be performed on the referred RO. However, the 
semantics of create and delete are not clear. Consider a creation on the 
view class Faculty in Figure 2: "create(name: John, sex: Male, salary: 6K, 
teach: X ) i n t o  Faculty." If the view class Person does not have a key, then a 
new RO can be created and the database will contain two ROs having the 
same name and sex, John and Male, respectively. Otherwise, this operation 
should be rejected because the RO r3 already exists in the database and is 
a student. The V - R  model introduces the notion of object evolution that 
can gracefully deal with the second condition instead of rejecting it. Object 
evolution means that an RO may change the amount of its stored data. As 
for 1;his example, the RO John will be extended to have the extra stored 
data, "salary: 6K, teach: X."  Formally, suppose C is a view class in the 
class hierarchy H, and CR is the root of H. When performing a creation 
on C, the system needs to check the condition: " 3 0  ~E(CR),  IM(O).Key 
=IM(O').Key," where O' is the CO to be created and Key is one of CR's 
candidate keys. If this condition stands, then the RO referred in O should 
be extended. 

On the other hand, consider a deletion on the view class Student: 
"dei'ete from Student where name = Pan." Does this operation mean that the 
student Pan is removed from the database or he is no longer a student? 
To proceed with the idea of object evolution, the RO Pan should be 
shrunk to drop the stored data, "schook 0 2, gpa: 3.8." Note that it is 
not necessary to actually delete those stored data from the database to 
achieve it. 

Object evolution will cause some changes to the class extensions. For 
instance, when an RO is extended to a view class, a new CO must be 
added to that view class. 
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3.1.2. View Updates 

The semantics of view updates is more ambiguous. Figure 3 shows an 
EMP LOYEE database. It contains three view classes, (O, Emp,{name: 
String, dept: Dept}, E l ) ,  (O, Manager, {name: String, manage: Dept}, E3 ), 
and (O, Dept,{name: String, location: String},E2). The "IDx" and "IDy" 
are the object identifiers of two department instances. The view EM is 
defined a s  "ITEm p . . . . . . .  Manag . . . . . . .  ( O'Emp.dept=Manag . . . . . . .  g~( Emp x Manag- 
er)). Consider the update ul  in Figure 3. Does it mean to remove John 
and Mary out of the database or only break the association imposed upon 
them? Reference [15] claims to remove the root object of the navigation 
path only to handle the deletion on views. This approach only works for 
those views derived from the navigation operation. As this example, there 
is no root object because the view EM is a join view. The V - R  model 
adopts the latter, breaking the imposed association, to handle the deletion 
on views. Therefore,  either John's attribute dept or Mary's attribute 
manage should become null value. Users have the responsibility for choos- 
ing the appropriate one. 

In addition to clarifying the view update semantics, we have to revise 
the notion of a correct view update translation that proposed for RDBs [2, 
9]. Suppose the view f is updated by a view update u; then the database 
must instead be updated by a database update T. Consequently, T is a 
translation of u if and only if the following constraints stand. 

(1) u o f ( s ) = f ( T o  s), where s denotes a database state. (consistent 
constraint) 

(2) V s, u o f(s)  = f ( s )  then T o s =s. (acceptable constraint) 

In these two constraints, a view is treated as a mapping from the database 
status to the view scheme. The first one indicates that T takes the 
database to a state that maps onto the update view. Is every consistent T 
acceptable? Consider a database update "Create(Joe, ID z)into Manager." 
It is consistent with u2 in Figure 3, but not acceptable. It changes the 
database, although no changes are made in the view. Therefore,  the 
second constraint makes sure that T will not change the database if u 

n~ le  dept I =  = Immage na~me locatim 
Jctm IDx H Q L.A. 

Freak IDx Acer E.C. N.Y. 

v.lta my Manager Dept 
Emp 

i n~ne i name i 

i ............................ , 

E M  

ul: d c l e ~  ¢5 ohn, Mary> from EM. 

u2: modify <Peter, Jane> to <Peter, Mla~> in EM 

u3: modify <John. Ma~'> to <loire, Linda> in EM. 

Fig. 3. The EMPLOYEE database. 
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does not change f(s). However, this notion of view update translation is 
too restricted sometimes. Consider the view update u3 in Figure 3. It 
means to change John's department manager to Mary; then a reasonable 
database update T' will be "Change(Mary, IDa)to(Mary, null}" and plus 
"Create(Linda, IDx)into Manager." T' actually means to break the associa- 
tion; nevertheless, it is not consistent with u2 because the entry 
(Frank, Mary) in EM will also be changed to (Frank, Linda). 

In conclusion, to establish or to break the association between the ROs 
in a CO is the fundamental semantics for view updates. In the following, 
we propose a new view update translation on this basis. 

3.2. VIEW UPDATE TRANSLATION 

From the discussion at the end of Section 2, a view V's definition can 
be expressed as zrAttrs(O'p~eds(TlXT2× "'" ×Tn)), and its CO is ((rl,~fl), 
(r2, t~'f2) . . . . .  ( rn ,  vfn)). The Preds denotes a Boolean predicate that enforces 
restrictions either upon individual mapping pairs or between two of them. 
We call these two kinds of restrictions the indiuidual restrictions and the 
associated restrictions, respectively. The associated restriction, furthermore, 
is either a navigation restriction, expressed as "lM(((r x, Vfx))).al = ry," or a 
join restriction, expressed as "IM(((rx, vfx))).a 1 ~ IM(((ry, vfy))).a2," where 
" ~ "  denotes a comparator; a 1 and a 2 are attributes. 

The translation of a deletion on a view is to break the associated 
restrictions imposed on a CO. To simplify the discussion of view update 
translation, we assume that all associated restrictions are conjunct. Conse- 
quently, we only need to break one of the associated restrictions in Preds 
to accomplish the translation. Users have the responsibility to indicate 
which associated restriction r in Preds to break in the deletion operation. 
Suppose the indicated associated restriction r is a join restriction ex- 
pre,;sed as above; then a null value is assigned to either M(rx).Vf~l(al) or 
M(ry).vfy l(a2). Otherwise, r is a navigation restriction; then a null value is 

assigned to M(rx).vf~ l(a l) without doubt. The shorthand "M(rx).vff I (a~)" 
indicates M(rx)'s property to which the attribute a 1 is mapped by vfx. 

~Fhe translation of a modification on a view will depend on the changes 
of the images. Suppose two mapping pairs, (rx, vf~) and (ry, Vfy), in a CO 
contain parts of images that will be modified; then we may end up with 
four possible conditions. We list each of them and their corresponding 
translations below. 

o, (r~, Vfx) and (ry, Vfy): Both mappings pairs still refer to the original 
ROs; then the modifications on IM(((rx,vf~))) and 1M(((ry,Vfy))) 
are performed on M(r~) and M(ry), respectively. 
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• (r'~,tf;) and (rv,Vfy): One of the mapping pairs refers to a new RO; 
then the following steps are executed if one or more associated 
restrictions exist between IM((rx, t f ,)))  and IM(((ry, Lfv))): 

1) Given an associated restriction p between (r~, cf~) and (ry, tf~.). 
2) If p is a join restriction, then perform 

" M ( r ~ ) . t f f ~ ( a l ) ~ n u l l  '' and 

"M( r'.). L f~ (  a~) ~- M( ry). Lfy ~ (a2) . "  

3) Otherwise, if p is "IM(((r~, tf~))).a 1 = ry," then perform 

"M(r~).~f~l(a,)*--null  '' and "M(r ' x ) .L fx ' (a l )~ry . "  

4) Otherwise, if p is "IM(((rv , ~fy))).a 2 =r~," then perform 

"M(t~).Lfy '( a2) ~r'x." 

• ( rx , t fx)  and (r~,~f~): It is symmetrical to the above one. 
• (r'x,Lf~) and (r 'y,tfy): Both of the two mapping pairs refer to new 

ROs; then a deletion is performed to break the association between 
(r~,vf~) and (ry,~fy). 

The modifications discussed above are assumed not to create new COs. If 
they do, the above processes should be performed after creating new COs. 
For example, the translation of u2 in Figure 3 will be as follows: 

1. Create an RO of Linda in the database. 
2. Insert a CO, ( r L i n d a , b f L i n d a ) )  , into the E( Manager). 
3. Assign null to M(rMary).VfMa~y ,(manage). 
4. Assign M(rjohn).VfJoh n ,(dept) to M(rci,aa).rfCi,d~ ,(manage). 

Finally, the translation of a creation on a view is to insert a new CO 
with the format of ((rl,vfl),(rz,vf2) . . . . .  (rn,t.f,)). To do that, users need 
to create all referred ROs if necessary. After a new CO is constructed, all 
the restrictions imposed on the view should be validated. 

3.3. EXTENSION MAINTENANCE BY THE CHANGES OF ROS 

There are four conditions to maintain view classes' extensions, creating 
ROs, deleting ROs, evolving ROs, and modifying ROs. For clearness, the 
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derived views of a view class are those views whose definitions involve that 
view class. When a view class's extension is changed, all its superclasses 
and derived semi-materialized views must be updated recursively. The 
extension maintenance of the former  is much simpler than that of the 
latter. In the following discussion, we mean semi-materialized views when 
addressing views. 

DEFINITION 4. The view class C r is the target class of the real-world 
object 0 n if and only if O is perceptible to C T, but not perceptible to all 
subclasses of C T. 

When an RO is created, new COs should be added to its target class C T 
and all CT'S superclasses. The way to know an RO's  target class depends 
on ~Ehe implementation of the V - R  model. The derive views of those 
updated view classes can be updated by the computation of a view's 
extension in Section 2. However, the following two views must be handled 
differently. Suppose the CO ((r,  Lf)) is added to E(C);  then 

• if V=  C - C',  then add ((r,  t f ) )  to E(V)  while no COs in E(C')  refer 
to RO(r). 

• if V = C n C ' ,  then add ((r, vf '))  to E(V)wh i l e  there exists a CO in 
E(C')  referring to RO(r). The ~f' is the mapping: M(r)  ~ T(V).  

When an RO is deleted, all the COs referring to it should be removed. 
It will cost a great deal of time to search such COs. Therefore,  we 
introduce a more efficient approach, deferred-deletion. Suppose that each 
RO has a deletion mark and a counter that records the number  of COs 
that refer to it. When deleting a real-world object O R, the system can 
remove it safely if its counter is equal to zero, or the system marks it 
instead. Those COs referring to O R become im, alid, but they will not be 
removed until the system performs the operations that need to retrieve 
OR'S stored data. At that time, the system can detect whether a CO is valid 
or not. While an invalid CO is found, it can be removed and the counter of 
referred RO is decreased by one. If the counter is equal to zero, then the 
R(3 can be removed safely. One subtle problem is that not all referred 
ROs in a CO need to be retrieved when computing the CO's  images 
because view functions may be null, as we mentioned in Section 2. 
Therefore,  such an invalid CO cannot be detected. To remedy this prob- 
lern, we can mark all the derived views of OR's target class such that they 
will be forced to check the deletion mark of all referred ROs in a CO 
when computing the CO's  images. Marked views need to do so only once, 
and then their marks can be reset. 

i[n the V - R  model, only four operations need to retrieve ROs '  data: 
displays, restrictions, joins, and navigations. In contrast, other operations 
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cannot detect invalid COs in deferred-deletion. Therefore,  invalid COs 
may propagate  when new views are derived from those operations. Figure 
4 tabulates the propagation of invalid COs. For example, the last row 
indicates that the invalid CO remains in E ( V )  only when both E(C1) and 
E(C2)  contain the same invalid CO; otherwise, it will not propagate to 
E ( V ) .  The" Cartesian product will produce more invalid COs, but it is 
seldom used in queries alone. Navigations and joins are much more 
frequently used instead. 

Object evolution also will add new COs or make existing COs invalid. 
The view update of creating ROs can handle the former  case, and the idea 
of deferred-deletion can handle the latter case. We can validate the view 
function to detect invalid COs. Consider the example in Figure 2; while 
the student Pan  is shTunk to be a faculty, the view function in (r7,(1246)) 
will become invalid because Pan ' s  fourth and sixth properties are no 
longer available. 

In contrast to the previous three conditions, when the RO's  stored data 
are modified, all the view classes remain unchanged, but some COs in 
views may become inconsis tent  with the constraints imposed on views. For 
example, a view A d u l t  is defined as ~rage> = ~8(Person). If we change a 
person's age from 20 to 15, then that person becomes inconsistent with 
Adul t .  On the contrary, if we change a person's  age from 15 to 20, then 
that person becomes perceptible to Adul t .  The view update of creating RO 
can handle the latter case, and we adapt the deferred-deletion to detect 
inconsistent COs as follows. Let O R be the modified RO and let C v be 
OR's target class. We can mark all the derived views of OR's target class. 
Note that this mark is different from the deletion mark. Marked views are 
forced to evaluate their imposed constraints for each CO once when CO's  
image is computed. 

Here  is an example of  a modification. The translation of u2 in Figure 3 
is "Create ( L inda ,  I D  x ) in to  Manager;  Change  ( Mary,  1D x ) to  ( Mary,  n u l l ) . "  

The former  adds a CO to E (  Manager) .  Consequently, two COs, ((rjoh~, 

an invalid CO in ~ E(CI) only E(C2) only Both 
v = x (c1 )  1 . . . .  

V = C1 ~ C2 1 1 I 

V =CI - C 2  1 0 0 

V = CI x C2 card(C2) ca rd(C/ )  card(C1)+card(C2) 
V= C1 ~ C2 0 0 1 

Fig. 4. The propagation of invalid COs for different views. 
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CfJoh,),(rLind ~, vfLind,)) and ((rFrank, UfFrank ),(rLinda, UfLinda)), will be added 
to E ( E M )  by the join operation. Their  images are "name: John, name: 
Linda" and "name: Frank, name: Linda," respectively. The latter causes 
the view EM to be marked. When we want to display the content of 
EM, two inconsistent COs, ((rjohn,UfJohn),(rMary,UfMary)) and ((rFrank, 
U f F r a , t k ) , ( r M a r y ,  UfMary)), will be detected and removed. 

4. I MP LEMENTATION 

T]ae V - R  model can be implemented as a kernel in a OODB system. 
Figure 5 shows a simplified database's system architecture that incorpo- 
rates, the V - R  model and two service interfaces. The view-class service 
interface provides the query processor with four kinds of operations to 
inquire and maintain the database. The RO service interface allows the 
V--lq: model to read, write, create, and delete the ROs in a storage system. 
The access key of ROs is the RID. The object-based storage systems, such 
as WiSS [7], can be used to implement the RO service interface. 

The constructions of ROs, view functions, and extensions are essential 
to implement the V - R  model. A flexible way of constructing ROs is the 
typeless approach, that is, each RO stores the format of its own stored data. 
The ROs in Figure 2 are typeless, for example. When creating an RO, 
users must determine its target class and the view function. The merit of 
the typeless approach is flexible since the format of stored data depends 
on the characteristics of individual ROs. For example, one object can store 
its picture in bitmap format, while another object can store its in the 
compressed picture format. The typeless approach is also good to dynami- 
cally add or delete RO's properties. However, its major disadvantage is the 
overhead to describe the format of properties in each RO. 

,A~ alternative to constructing ROs is the typed approach, that is, each 
RO belongs to a type. Assume that the management of types is supported. 
To create an RO, users simple select a type. One of the typed approach's 
merits is that the view function for a CO can be determined on the fly if 

view-class 
service interface 

quay operatioe~ 
Quory . . . .  update operations 

PTOCO~;~OT ~¢w class rn~=nal~cmcnt 

view manal~n~nt 

view classes ROs real-world objoct 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  service interface 

oid,,vy, I oid,,~ ( ~  ..... 
oid,, vfi oidj, v)'~j read 
oid3,vfi old~,vfk " ' "  ~ whte ~ Objc~et-Basod 

: : : cte, ate ~ S t o r a g e  System 
: . : delete 

rc, vc: 6 - ~  : : :  

Fig. 5. Two service interfaces and the V-R model. 
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the system can know an RO's type either by the information stored on the 
RO or by some other mechanisms since the system can prepare the onto 
mapping from each type to each view class in advance. Figure 6 shows that 
same database as the one in Figure 2 by typed implementation. The types 
t 2 and t 3 inherit tl, and t 4 inherits both t 2 and t 3. The mappings from the 
RO of t 4 to Person, Faculty, and Student will be (12), (1234), and (1256). A 
table lookup can find out the desired view function for a CO. 

A variant of typed implementation is to make view classes serve as 
types. This approach prohibits an RO from having more attributes or 
behaviors than its target class. For example, the RO r7 in Figure 6 cannot 
exist unless a view class TA that inherits Faculty and Student exists in the 
schema. 

The typed approach usually achieves better performance and requires 
less storage space than typeless one. 

The extensions of view classes and views are the basis of performing 
query operation and update operations. Four kinds of processes performed 
on the extensions are: adding a CO, deleting a CO, processing each CO, 
and searching the COs that refer to a specific set of RIDs. The last process 
is necessary for differences and intersections. It is also useful if we want to 
ensure that each CO in an extension is unique. Moreover, it becomes 
feasible to immediately remove the invalid and inconsistent COs men- 
tioned in Section 3 if this process is implemented fast enough. The 
nonorder  array, the B + tree, and the extensible linear hashing table are 
three major techniques to implement the extensions. We do not intend to 
study their advantages and disadvantages in this paper. Currently, we use 
the first one to program the V - R  model, and the hashing index on RIDs 

< Pers(~, {. . .},El > " ~ - - -  <Student,  {...},E2 > < t l ,  {name: STRING, sex: STRING} > 

E1 inherita < t2, {salm'y: INTEGER, < t3, {sdaool: Sdaool, 
\ \  course: STR/IqG} > ~ a :  REAL} > 

< Fa~tlty, {... }, E3 > ~ ' ~ .  / 

E3: < t4 ,  {} > 

real-world objects 

. . . . . . . .  r.1 . . . . . . . . . . . . . . .  . r5 . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . .  r 4  . . . . . . . . . . . . . . . . . . .  ~.? . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . .  ~7  . . . . . . . . . . .  

Fig. 6. Typed implementation for the V-R model. 
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will be dynamically built to obtain reasonable performance while the last 
process is performed.  

5. C O N C L U S I O N S  

In this paper, we present an object model, the V - R  model, at the 
conceptual level of abstraction. The notions of real-world objects, view 
classes, views, and conceptual objects are defined formally. Based on the 
V-lq', model, we explore three important issues about the views. First, we 
prove that the V - R  model is closed under the essential query operations. 
Second, we clarify the update semantics and formally define the view 
update translation for O O D B  systems. Third, we show how the V - R  
model can be integrated in an O O D B  system and discuss the V - R  model 
implementation techniques. 

We summarize the specific features of the V - R  model and make a brief 
comparison with previous works on view mechanisms. 

• The V - R  model manages the derived objects which correspond to the 
conceptual objects at a low cost. It does not assign object identifiers 
for derived objects. Also, neither query results nor semi-materialized 
views duplicate stored data. 

• The V - R  model introduces a clear and complete solution for the 
update operations. The semantics of updates are different from 
traditional ways. Object evolution and the update translation make 
the update semantics more precise and reasonable. 

• The extensions of view classes and views are different from the 
indices, such as nested indices and path indices [3]. An index provides 
a method of object retrieval based on some attributes for a special 
purpose. In the V - R  model, the functions of extensions include the 
perceptibility relationship and the basis for performing query opera- 
tion and update operations. 
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