
Informatics and
~.~ ComputerScience

NORTH - HOIA.AND

An Object Model at Conceptual Level to Support Updatable Views on
Object-Oriented Databases

WEN-WEI PAN

and

WEI-P,MqG YANG*

Department of Computer and Information Science, National Chiao Tung University,
Hsinchu, Taiwan, R.O.C.

ABSTRACT

The: research on view mechanisms for object-oriented databases can be classified
into two independent issues, languages to define views and the underlying object
model~,;. This paper presents an object model at the conceptual level of abstraction. We
call it the view class and real-world object model (V - R model). The major goal of the
V - R model is intended to support updatable views efficiently for the object-oriented
database systems. The V - R model elaborates a special method to describe the instance-
of relationship between stored objects and classes so that a stored object can be the
instance of several classes simultaneously. Query results and views can be managed like
classes without creating temporary objects or tuples since the V - R model is closed
against query operations. In this way, updates on views can be supported easily.

This paper also explores the update semantics in depth. By utilizing the specialty of
the V - R model, a more eligible update translation is proposed for the updates on
classes, with or without inheritance relationships and for the updates on views. To show
that the V - R model is not only theoretical, how to implement the V - R model and how
to integrate the V - R model into an object-oriented database system are illustrated.
© Else vier Science Inc. 1996

1. I N T R O D U C T I O N

T h e v i e w m e c h a n i s m has b e e n ve ry successfu l in r e l a t i o n a l d a t a b a s e s

(R D B s) . I t can h i d e c e r t a i n d a t a f r o m users fo r secur i ty , o r h e l p to c r e a t e

*Corresponding author,

INFORMATION SCIENCES 95, 29-48 (1996)
© Elsevier Science Inc. 1996
655 Avenue of the Americas, New York, NY 10010

0020-0255/96/$15.00
PII S0020-0255(96)00125-9

30 W.-W. PAN AND W.-P. YANG

derived relations that users are interested in. Views are intended to behave
like relations; however, not all views can be updated as relations can.
Views basically are defined by applying powerful relational operations, and
they normally do not store data as relations do [2, 9]. An update to the
view must be translated into an update to the actual relations in the
conceptual model of the database. Reference [5] points out that a view can
be updated only if it preserves base relations' keys. Therefore, the view
update problem greatly lowers the utilization and objective of views.

Much research [1, 8, 10, 11, 15, 17] discusses the view mechanism in
object-oriented database (OODBs), and we conclude two independent
topics from it. The first topic concerns the way to define views. A common
structure of view definition for OODBs contains the type definition and the
instance population. The type definition describes the attributes and meth-
ods of a view. The instance population describes what objects are the
instances of a view, and it usually is a query. In the work of [1], the
definition of views allows users to organize views into the uirtual class
hierarchies, so that the roles that views play in the virtual class hierarchies
are the same as classes do in the class hierarchies.

The second topic concerns the object model underlying the query
language. The object model defines the structures and management of the
stored objects as well as classes. The query's results and uiew updates are
two major issues closely related to views. To manage query's results, the
flat tuple is the simplest approach [8]. Each tuple's attribute is atomic, that
is, printable. Flat tuples are not stored in the database, but exist temporar-
ily for viewing. They do not have object identifiers (OIDs) and their
lifetimes are typically limited to a transaction. The drawback of fiat tuples
is that users cannot query upon them anymore since their structures are
different from stored objects. To overcome the flat tuple's drawback, [1]
proposes the idea of imaginary objects. Each tuple can be converted into an
imaginary object by creating a new OID for itself. Therefore, views can be
populated with imaginary objects as classes can be populated with objects.
However, one subtle problem may arise while OIDs being created. Con-
sider two SQL-like queries:

QI: select F from Family where F.size > 5 and F.Father.Age < 25
Q2: select F from Family where F.size > 5 and F in (select F from Family

where F.Father.Age < 25)

With the first query, we obtain as many objects as families that satisfy the
criteria. With the second query, the result is implementation-dependent,
and we may obtain an empty set if new OIDs are generated for imaginary
objects. The solution is to assign the same OIDs to those imaginary objects
representing the same real world things. Users must be very careful to

OBJECT M O D E L AT CONCEPTUAL LEVE L 31

choose the core attributes of views to do that, especially when a view is
derived from several classes.

References [11, 15] suggest another approach to manage query results.
The instances of a view are materialized, but not saved in the storage
system. Materialized instances have the same data structure as stored
objects. A hashing table is built to establish a one-to-one mapping between
the materialized instances of a view and the stored objects of the class
from which the view is derived. This hash table not only helps to maintain
data consistency between stored objects and materialized instances, but
also provides the tracking of materialized instances' OIDs. Nevertheless,
users must specify the OlD-function to make the one-to-one mapping exist.
This idea, actually, is the same as that of core attributes; hence, it suffers
the same problem.

In the work of [17], object preserving operators in the object model
COCOON is proposed. In COCOON, an object can be the instance of
several objects simultaneously, which is different from the previous two
works. The query result is a set of existing objects, instead of creating
objecl:s. This approach avoids duplicating data and saves the cost of
creating objects. Furthermore, view updates can be performed on existing
objects directly. Consider this example: a view EmpSal is defined as "create
view EmpSal (Name, Salary) as (select Name Salary from Employee)" and
the class Employee has only one key, the ID#. Apparently, EmpSal is not
updatable in RDBs because it does not preserve Employee's key. For the
OOD,Bs with the object creating approach, EmpSal is updatable if a
hashing table or some mechanisms else build up the one-to-one correspon-
dence. In COCOON, EmpSal will contain the same set of stored objects
as Employee does. So, update operations on EmpSal can be performed on
the stored objects. Reference [14], however, argues that the database
system will suffer the performance penalty while allowing an object to be
the instance of several classes. One of difficulties is how to efficiently
model the instance-of relationship such that an object can be the instance
of several classes. COCOON, on the other hand, does not elaborate a
concrete solution.

An essential topic, the semantics of updates, is neglected in all previous
works. Suppose that we delete a student from the class Student that
inherits the class Person. Does this operation mean that the student is
removed from the database or the student is no more a student but still a
person? This problem arises in OODBs because object-oriented data
models capture the inheritance relationship between classes. Conse-
quently, the update semantics becomes ambiguous. In fact, the update
sem~tntics for views are even more ambiguous in OODBs. Therefore, it is

32 W.-W. PAN AND W.-P. YANG

essential to study the update semantics for classes with or without inheri-
tance relationships and for views in OODBs.

In this paper, we propose a framework of the object model at the
conceptual level of abstraction, called the view class and real-world object
model (V - R model). The major goal is to support updatable views effec-
tively. The V - R model elaborates a special method to describe to in-
stance-of relationship, so that an object can be the instance of several
classes and views simultaneously without performance reduction. The
query's results and updates of views can be manipulated easily by this
approach. We also address the implementation techniques about the V - R
model to show that the V - R model is not only theoretical. Besides, based
on the V - R model, we discuss the update semantics for OODBs thor-
oughly.

The organization of this paper is as follows. In Section 2, we introduce
the basic concepts and formal definitions of the V - R model. We illustrate
how an object can be the instance of many classes. We also prove that
essential query operations are closed in the V - R model. In Section 3, the
update semantics in the V - R model are discussed. We first clarify the
update semantics, and then we define the view update translation based on
the V - R model. Since views in the V - R model can be materialized, we
present an efficient approach to keep materialized views up to date. In
Section 4, we illustrate how to integrate the V - R model into an OODB
system, and suggest two possible approaches to implement the V - R
model. Finally, we give the conclusions in Section 5.

2. T H E VIEW CLASS AND REAL-WORLD OBJECT M O D E L
(V - R MODEL)

The original idea of the V - R model comes from the real world. In the
real world, people may see different aspects of an entity from different
viewpoints. When the entity's information varies, all the people can per-
ceive the changes. In the V - R model, people, viewpoints, and entities
correspond to users, view classes, and real-world objects, respectively.
Real-world objects denote concrete or abstract entities in the real world
and convey entities' information, while view classes are viewpoints to
observe real-world objects. For example, in Figure 1, users observe three
different images of the real-world object Jack via three view classes. No
matter how many view classes are created to observe Jack, his information
is not duplicated. Consequently, all the view cla~ses that observing Jack
can see changes made to Jack automatically.

Note that Jack is perceptible via three classes, but Mary is only
perceptible via the view class Citizen. The function of the perceptibility

OBJECT M O D E L AT CONCEPTUAL LEVE L 33

name: Jack ~ []~: 123.4 "~

........... I ~ : ~To~,~ I

..................... ::/ °::i : ov /

images view classes perceptibility relationships real-world objects

Fig. 1. The basic concepts on the V-R model.

relationship is to describe which real-world objects and what portions of
their information are perceptible to the view class, which is more than the
function of the instance-of relationship that only states the former.

DEFINITION 1. A real-world object (RO) is an entity, either concrete or
logical, in the real world. It is represented as a tuple (I ,D) , where

1. I denotes the unique real-world object identifier (RID).
2. D denotes the stored data and is define as a set of properties. A

property is defined as " P : V , " where P is the property name and V
denotes its value. A value is a single or a set of integers, real number,
strings, and RIDs.

Definition 1 describes the RO's conceptual notation which captures
three, essential features of OODBs [4, 13, 14], the unique object identifiers,
complex objects, and set values. Methods are omitted in Definition 1
because they can be treated as stored data as properties. Besides, compos-
ite objects, one feature of OODBs, do not appear in Definition 1. From the
discussion of [12], composite objects result from applying a sort of integrity
constraints. Therefore, it is the query processor's responsibility to support
them.

ROs serve as the data source in the V - R model, and convey their own
data. They are assumed to be stored on the permanent storage device, and
their RIDs are the access keys to retrieve specific ROs.

DEFINITION 2. A view class C is represented as a tuple (S ,N,T ,E) ,
where

1. S denotes the superclass of C. It is a set of view classes and can be
empty.

2. N denotes the class name.

34 W.-W. PAN AND W.-P. YANG

3. T denotes the intension. It is a set of attributes. An attribute is
denoted as " A : D , " where A is the attribute name and D denotes the
domain of the attribute that can be integers, real numbers, strings, and
view classes.

4. E denotes the extension. It is a set of conceptual objects (CO). Each
conceptual object is represented as a tuple ((r, uf)), where r is an RID, uf
is the view function that is defined as "uf: D ---, T," D denotes RO's stored
data, and uf is an onto function.

5. For each view class C i in S, Ci's intension is included in or equal
to T.

Definition 2 describes the conceptual notation of view classes. A view
class has intensional and extensional notions [4]. The intensional notion
corresponds to the definition of an abstract data type in object-oriented
programming. It defines a viewpoint to "observe" ROs. The extensional
notion serves as the basis for formulating queries. COs play the role of the
perceptibility relationships illustrated in Figure 1. The mapping pair (r, rf)
in a CO describes which properties of the RO with RID r are perceptible
in the view class. A real object OR is perceptible to a view class C if and
only if OR's stored data can be mapped onto C's intension since the view
function is defined to be an onto mapping. For example, Mary in Figure 1
can be mapped onto the view class Citizen only.

The ways to compute a view class's extension depend on how the V - R
model is implemented, and will be discussed in Section 4. We illustrate an
example in Figure 2 which shows a conceptual database by the V - R
model. There are three view classes and seven ROs. Arrow lines denote

< Pta'~on, { name: STRING, ,~ ; STRING }, El > ~ < S ~ , {~&ool: School, I~cm: REAL }, E2 > E2: ~ ~

El: ~ f ~ <F~mlty, {mira'y: INTEGER, coup©: STRING },E3>

I I
. : . . : . . . 7 : / . . . ~ # : ~ ' a a , J ~ c ~ .

r5 r4 r3
r7

Fig. 2. A simple database presented by V-R model.

OBJECT M O D E L AT CONCEPTUAL LEVEL 35

inheritance relationships and point to superclasses. They organize view
classe,; into class hierarchies. The class extensions are presented as tables,
and the view functions are denoted by vectors. The ith number x in a
vector indicates that the xth property of an RO is mapped to the ith
attribute of a view class. For example, the CO (r7,(1253)) in E3 will
present the image "name: Pan, sex: Male, salary: 6K, course: DB."

Note that the RO r7 is perceptible to the view class Student and
Facuhy. The V - R model allows the RO to contain more information than
the view classes in a specific class hierarchy. It is not necessary to create a
subclass TA of both Student and Faculty.

If an RO is perceptible to the view class C1 and C is the superclass of
C1, then the RO must be perceptible to C. This property results from the
inheritance relationship.

LEVlMA 1. I f the view class C1 inherits C, then for each conceptual object
((r, l f)) in E(C1), there exists a conceptual object ((r ' , v f ')) in E(C) such
that r is equal to r'.

The proof of Lemma 1 is straightforward. The view class Person,
Student, and Faculty in Figure 2 can illustrate this property.

The conceptual notion of views is very similar to that of view classes.
Views, actually, have the same functionality as view classes. They both
provide users with various viewpoints to observe ROs.

DEFINITION 3. A view C is represented as a tuple (N ,T ,Q,E) , where

1. N denotes the view name.
2. T denotes the intension. Its representation is the same as the view

class's intension.
3. Q is the instance population. It is a query.
4. E denotes the extension. It is a set of conceptual objects. Each

conceptual object is represented as a tuple ((rl ,vf l) , (r 2, of 2) (r~,~fn)),
where n >/1, r i is an RID, and cf~ is the view function. Let vf= Lfl U
of 2 U ... U of,; then cf will be an onto function.

Tile CO of a view may contain several mapping pairs. The number of
mapping pairs in a CO, the RO's retrieval speed, and the implementation
of the view function will determine the speed of computing a CO's image.
A view's extension is the result of its instance population, a query. It
normally is not stored in the storage system as the view class's extension.
However, users sometimes may want to store a view's extension for the
performance. A view is called semi-materialked if its extension is stored in
the storage system.

36 W.-W. PAN A N D W.-P. Y A N G

Since the instance population of a view is a query, we need to prove an
essential property, the closure property, for Definition 3. The closure
property ensures that the result of query operations can be expressed as a
set of COs defined in Definition 3. In the following, we show how the
view's intension and extension can be computed and expressed as a set of
COs for each operation. Some shorthand notations are defined first. Let o
be a CO in a view class C or in a view V; then

• Rids(o) = { r l , r 2 r,} and v f (o) = vfl U tf2 U " . U cf,.
• M (r i) denotes the stored data of the RO with RID r i.
• M (o) denotes all the RO's stored data that o refers to. They are

equal to U iM(r~)..
• I M (o) denotes the image presented by o. It is equal to U icfi(M(ri)).
• IM(o) . Attr denotes the value of the attribute Attr in the image.
• E (V) denotes the extension of V, and T (V) denotes the intension

of V.

Let V/and V/, view classes or views, denote the operands of operations and
V denote the resulting view of the operation.

(a) Restriction: V = ~rered~(Vi), where Preds denotes the restriction predi-
cate. Then
• T (V) = T(V~) .

• For each conceptual object o e E (V i) , if I M (o) satisfies Preds,
add o to E (V) .

(b) Projection: V = ~rA,r,(Vi), where Attrs denotes the projected at-
tributes. Then
• T (V) - - (Attrs}.
• For each conceptual object o ~E(V/i), add o' to E (V) , where

Rids(o') =Rids (o) and vf(o ') = L,', where c': M (o) --* T (V) .

Since V's intension is a subset of V,'s the resulting CO may contain one or
more mapping pairs whose view functions are null. In other words, those
mapping pairs do not constitute the CO's image. The reason for keeping
such mapping pairs in a CO is to establish a one-to-one correspondence
for the view updates. We will explain this later.

(c) Union: V= ~ U ~. Then
• T(V) = T(V i) n T(V:).
• For each o ~E(V i) or o eE(V:), add o' to E(V), where Rids(o') =

Rids(o) and cf(o') = v', where v': M(o') --* T(V).

The requirement of a legal union operation in the V - R model is that the
intensions of V~ and ~ are compatible; that is, they have common at-

OBJECT M O D E L AT CONCEPTUAL LEVE L 37

tributes. Note that the intension of the resulting view is the intersection of
those of V/ and ~ .

(d) Difference: V = V i - Vj. Then
• T (V) = T(V~) .

• For each o~E(Vi), if V o'~E(Vj)ARids(o')-~Rids(o), add o to
E(V).

The V - R model makes use of RIDs to determine whether two COs are
equal or not. This approach, called RID-equal, is different form using CO's
images, which correspond to using instance's values, called value-equal, in
tradJ:tional RDBs and OODBs. Suppose the view class Person does not
have a key in Figure 2; then it is ambiguous to determine whether the CO
(r7,,(1253)) in Faculty differs from the CO (r7,(1246)) in Student by the
traditional approach with the operation (Student-Faculty). However, in
the V - R model, we can get rid of (r7,(1246)) in the result since they refer
to tile same real-world entity. Thus, the difference operation will not suffer
the :ambiguity even if V/and Vj do not have a key in common. Actually, the
RID-equal is conceptually the same as the referential-equal [16] that tests
whether two database objects refer to the same real-world entity. The
V - R model can directly support it instead of using methods to simulate it.

(e) Cartesian product: V= V/X ~. Then

• T(V) = T(V i) U rename(T(Vi)).
• For each o ~ E (V) A o ' E E (V j) , add o" to E(V), where Rids(o")

= Rids(o) u Rids(o') and uf(o") = uf(o) U uf(o').

The: "rename()" denotes the renaming operation that will make T (~)
different from T(V/).

(f) Natural join: V= V/M Vj. Let Attrs = T(V/) C~ T(~) ; then
• T(V)=T(V~)UT(Vj).
• For each o~E(Vi)Ao '~E(Vj) , if IM(o).Attr=IM(o') .Attr, add

o" to E(V), where Rids(o")=Rids(o)URids(o') and c f (o ")=
vf(o) u cf(o')

The natural join can be expressed by a projection, a restriction, and a
Cartesian product: V/N ~ - 7rr(vp u r(vp(O'v. Attrs= Vj. Attrs(Vi X Vj)).

(g) Navigation: V=Vi.Attr. Attr is V/'s nonatomic attribute whose
domain is the view class C. Then
• T (V) = T (C) .

• For each o~E(Vi), let r'=IM(o).Attr, add o' to E(V), where
Rids(o')=Rids(o)U{r'} and uf(o')=u', where u': M(o')--) T(C).

38 W.-W. PAN AND W.-P. YANG

The navigation operation also can be expressed by a projection, a restric-
tion, and a Cartesian product: V,. A t t r - % , r (O-v,. A,,= C RH) (Vi × C)).

(h) Intersection: V= V i ~ Vj. Then
• T (V) = T(V~) A T (~) .

• For each o~E(V/), if 3o '~E(Vj)ARids(o ')=Rids(o) , add o" to
E(V), where Rids(o")=Rids(o) and Lf(o")=c ' , where L,:
M(o") ~ T(V) .

The intersection operation can be expressed by one union and two differ-
ence operations: V/i n ~ -= V/i - ((~ u Vjj)- ~).

Apparently, the result of query operations can be expressed as a set of
COs defined in Definition 3. Hence, the V - R model is closed under these
query operations. Furthermore, two conclusions can be obtained from the
discussion. First, there always exist a one-to-one mapping between each
CO of the view and a corresponding set of COs of operands on which the
view is defined. The reason is that for each operation, the mapping pairs of
operands' COs are kept in the corresponding CO of the resulting view.
This property is essential to make a view updatable. A brief algebraic
explanation is as follows. A view's definition, in general, can be expressed
as %,r,(O-erej,(T 1 X T2X "'" X Tn)), where T, denotes a view class, the
union of view classes, or the difference of view classes [5]. According to the
operation (c) and (d), all the COs in each T~ contain only one mapping
pair. Then a CO in the view will be ((r 1, tf~), (r2, vf2) (rn, cfn)) accord-
ing to the operation (a), (b), and (e), where each mapping pair corre-
sponds t o a C O i n ~ forl~<i~<n.

Second, projections, unions, differences, and Cartesian products only
need to manipulate class extensions to calculate the extension of the view.
So, it is not necessary to retrieve ROs' stored data to compute a view's
extension if a view's definition only involves these four operations.

3. UPDATES IN THE V - R MODEL

Three update operations, create, delete, and modify, are considered in
the V - R model. They can be performed on ROs, view classes, and views;
for simplicity, we call them RO updates, view class updates, and view
updates, respectively. Since ROs possess stored data, RO updates can be
performed directly without doubt. Therefore, we will concentrate on the
view class and view updates in this section.

Two separate processes will occur while performing the view class or
view updates. The first one is the translation of the view class or view
updates into RO updates because only ROs possess stored data. The

OBJECT M O D E L AT CONCEPTUAL LEVEL 39

second process is the extension maintenance for the view classes and
semi-materialized views due to ROs' changes. In the following, we first
clarify the semantics of view class and view updates in Section 3.1, and
then we define the update translation in Section 3.2 according to the
clarified semantics. Finally, we introduce an efficient way to do the
extension maintenance in Section 3.3.

3.1. THE SEMANTICS OF VIEW CLASS AND VIEW UPDATES

3.1.1. View Class Updates

Since the CO in a view class contains only one mapping pair, view class
upd~ttes clearly should be performed on the referred RO. However, the
semantics of create and delete are not clear. Consider a creation on the
view class Faculty in Figure 2: "create(name: John, sex: Male, salary: 6K,
teach: X) i n t o Faculty." If the view class Person does not have a key, then a
new RO can be created and the database will contain two ROs having the
same name and sex, John and Male, respectively. Otherwise, this operation
should be rejected because the RO r3 already exists in the database and is
a student. The V - R model introduces the notion of object evolution that
can gracefully deal with the second condition instead of rejecting it. Object
evolution means that an RO may change the amount of its stored data. As
for 1;his example, the RO John will be extended to have the extra stored
data, "salary: 6K, teach: X." Formally, suppose C is a view class in the
class hierarchy H, and CR is the root of H. When performing a creation
on C, the system needs to check the condition: " 3 0 ~E(CR), IM(O).Key
=IM(O').Key," where O' is the CO to be created and Key is one of CR's
candidate keys. If this condition stands, then the RO referred in O should
be extended.

On the other hand, consider a deletion on the view class Student:
"dei'ete from Student where name = Pan." Does this operation mean that the
student Pan is removed from the database or he is no longer a student?
To proceed with the idea of object evolution, the RO Pan should be
shrunk to drop the stored data, "schook 0 2, gpa: 3.8." Note that it is
not necessary to actually delete those stored data from the database to
achieve it.

Object evolution will cause some changes to the class extensions. For
instance, when an RO is extended to a view class, a new CO must be
added to that view class.

40 W.-W. PAN AND W.-P. YANG

3.1.2. View Updates

The semantics of view updates is more ambiguous. Figure 3 shows an
EMP LOYEE database. It contains three view classes, (O, Emp,{name:
String, dept: Dept}, E l) , (O, Manager, {name: String, manage: Dept}, E3),
and (O, Dept,{name: String, location: String},E2). The "IDx" and "IDy"
are the object identifiers of two department instances. The view EM is
defined a s "ITEm p Manag (O'Emp.dept=Manag g~(Emp x Manag-
er)). Consider the update ul in Figure 3. Does it mean to remove John
and Mary out of the database or only break the association imposed upon
them? Reference [15] claims to remove the root object of the navigation
path only to handle the deletion on views. This approach only works for
those views derived from the navigation operation. As this example, there
is no root object because the view EM is a join view. The V - R model
adopts the latter, breaking the imposed association, to handle the deletion
on views. Therefore, either John's attribute dept or Mary's attribute
manage should become null value. Users have the responsibility for choos-
ing the appropriate one.

In addition to clarifying the view update semantics, we have to revise
the notion of a correct view update translation that proposed for RDBs [2,
9]. Suppose the view f is updated by a view update u; then the database
must instead be updated by a database update T. Consequently, T is a
translation of u if and only if the following constraints stand.

(1) u o f (s) = f (T o s), where s denotes a database state. (consistent
constraint)

(2) V s, u o f(s) = f (s) then T o s =s. (acceptable constraint)

In these two constraints, a view is treated as a mapping from the database
status to the view scheme. The first one indicates that T takes the
database to a state that maps onto the update view. Is every consistent T
acceptable? Consider a database update "Create(Joe, ID z)into Manager."
It is consistent with u2 in Figure 3, but not acceptable. It changes the
database, although no changes are made in the view. Therefore, the
second constraint makes sure that T will not change the database if u

n~ le dept I = = Immage na~me locatim
Jctm IDx H Q L.A.

Freak IDx Acer E.C. N.Y.

v.lta my Manager Dept
Emp

i n~ne i name i

i ,

E M

ul: d c l e ~ ¢5 ohn, Mary> from EM.

u2: modify <Peter, Jane> to <Peter, Mla~> in EM

u3: modify <John. Ma~'> to <loire, Linda> in EM.

Fig. 3. The EMPLOYEE database.

OBJECT M O D E L AT CONCEPTUAL LEVE L 41

does not change f(s). However, this notion of view update translation is
too restricted sometimes. Consider the view update u3 in Figure 3. It
means to change John's department manager to Mary; then a reasonable
database update T' will be "Change(Mary, IDa)to(Mary, null}" and plus
"Create(Linda, IDx)into Manager." T' actually means to break the associa-
tion; nevertheless, it is not consistent with u2 because the entry
(Frank, Mary) in EM will also be changed to (Frank, Linda).

In conclusion, to establish or to break the association between the ROs
in a CO is the fundamental semantics for view updates. In the following,
we propose a new view update translation on this basis.

3.2. VIEW UPDATE TRANSLATION

From the discussion at the end of Section 2, a view V's definition can
be expressed as zrAttrs(O'p~eds(TlXT2× "'" ×Tn)), and its CO is ((rl,~fl),
(r2, t~'f2) (rn , vfn)). The Preds denotes a Boolean predicate that enforces
restrictions either upon individual mapping pairs or between two of them.
We call these two kinds of restrictions the indiuidual restrictions and the
associated restrictions, respectively. The associated restriction, furthermore,
is either a navigation restriction, expressed as "lM(((r x, Vfx))).al = ry," or a
join restriction, expressed as "IM(((rx, vfx))).a 1 ~ IM(((ry, vfy))).a2," where
" ~ " denotes a comparator; a 1 and a 2 are attributes.

The translation of a deletion on a view is to break the associated
restrictions imposed on a CO. To simplify the discussion of view update
translation, we assume that all associated restrictions are conjunct. Conse-
quently, we only need to break one of the associated restrictions in Preds
to accomplish the translation. Users have the responsibility to indicate
which associated restriction r in Preds to break in the deletion operation.
Suppose the indicated associated restriction r is a join restriction ex-
pre,;sed as above; then a null value is assigned to either M(rx).Vf~l(al) or
M(ry).vfy l(a2). Otherwise, r is a navigation restriction; then a null value is

assigned to M(rx).vf~ l(a l) without doubt. The shorthand "M(rx).vff I (a~)"
indicates M(rx)'s property to which the attribute a 1 is mapped by vfx.

~Fhe translation of a modification on a view will depend on the changes
of the images. Suppose two mapping pairs, (rx, vf~) and (ry, Vfy), in a CO
contain parts of images that will be modified; then we may end up with
four possible conditions. We list each of them and their corresponding
translations below.

o, (r~, Vfx) and (ry, Vfy): Both mappings pairs still refer to the original
ROs; then the modifications on IM(((rx,vf~))) and 1M(((ry,Vfy)))
are performed on M(r~) and M(ry), respectively.

42 W.-W. PAN AND W.-P. YANG

• (r'~,tf;) and (rv,Vfy): One of the mapping pairs refers to a new RO;
then the following steps are executed if one or more associated
restrictions exist between IM((rx, t f ,))) and IM(((ry, Lfv))):

1) Given an associated restriction p between (r~, cf~) and (ry, tf~.).
2) If p is a join restriction, then perform

" M (r ~) . t f f ~ (a l) ~ n u l l '' and

"M(r'.). L f~ (a~) ~- M(ry). Lfy ~ (a2) . "

3) Otherwise, if p is "IM(((r~, tf~))).a 1 = ry," then perform

"M(r~).~f~l(a,)*--null '' and "M(r ' x) .L fx ' (a l)~ry . "

4) Otherwise, if p is "IM(((rv , ~fy))).a 2 =r~," then perform

"M(t~).Lfy '(a2) ~r'x."

• (rx , t fx) and (r~,~f~): It is symmetrical to the above one.
• (r'x,Lf~) and (r 'y,tfy): Both of the two mapping pairs refer to new

ROs; then a deletion is performed to break the association between
(r~,vf~) and (ry,~fy).

The modifications discussed above are assumed not to create new COs. If
they do, the above processes should be performed after creating new COs.
For example, the translation of u2 in Figure 3 will be as follows:

1. Create an RO of Linda in the database.
2. Insert a CO, (r L i n d a , b f L i n d a)) , into the E(Manager).
3. Assign null to M(rMary).VfMa~y ,(manage).
4. Assign M(rjohn).VfJoh n ,(dept) to M(rci,aa).rfCi,d~ ,(manage).

Finally, the translation of a creation on a view is to insert a new CO
with the format of ((rl,vfl),(rz,vf2) (rn,t.f,)). To do that, users need
to create all referred ROs if necessary. After a new CO is constructed, all
the restrictions imposed on the view should be validated.

3.3. EXTENSION MAINTENANCE BY THE CHANGES OF ROS

There are four conditions to maintain view classes' extensions, creating
ROs, deleting ROs, evolving ROs, and modifying ROs. For clearness, the

OBJECT M O D E L AT C O N C E P T U A L L E V E L 43

derived views of a view class are those views whose definitions involve that
view class. When a view class's extension is changed, all its superclasses
and derived semi-materialized views must be updated recursively. The
extension maintenance of the former is much simpler than that of the
latter. In the following discussion, we mean semi-materialized views when
addressing views.

DEFINITION 4. The view class C r is the target class of the real-world
object 0 n if and only if O is perceptible to C T, but not perceptible to all
subclasses of C T.

When an RO is created, new COs should be added to its target class C T
and all CT'S superclasses. The way to know an RO's target class depends
on ~Ehe implementation of the V - R model. The derive views of those
updated view classes can be updated by the computation of a view's
extension in Section 2. However, the following two views must be handled
differently. Suppose the CO ((r, Lf)) is added to E(C); then

• if V= C - C', then add ((r, t f)) to E(V) while no COs in E(C') refer
to RO(r).

• if V = C n C ' , then add ((r, vf ')) to E(V)wh i l e there exists a CO in
E(C') referring to RO(r). The ~f' is the mapping: M(r) ~ T(V).

When an RO is deleted, all the COs referring to it should be removed.
It will cost a great deal of time to search such COs. Therefore, we
introduce a more efficient approach, deferred-deletion. Suppose that each
RO has a deletion mark and a counter that records the number of COs
that refer to it. When deleting a real-world object O R, the system can
remove it safely if its counter is equal to zero, or the system marks it
instead. Those COs referring to O R become im, alid, but they will not be
removed until the system performs the operations that need to retrieve
OR'S stored data. At that time, the system can detect whether a CO is valid
or not. While an invalid CO is found, it can be removed and the counter of
referred RO is decreased by one. If the counter is equal to zero, then the
R(3 can be removed safely. One subtle problem is that not all referred
ROs in a CO need to be retrieved when computing the CO's images
because view functions may be null, as we mentioned in Section 2.
Therefore, such an invalid CO cannot be detected. To remedy this prob-
lern, we can mark all the derived views of OR's target class such that they
will be forced to check the deletion mark of all referred ROs in a CO
when computing the CO's images. Marked views need to do so only once,
and then their marks can be reset.

i[n the V - R model, only four operations need to retrieve ROs ' data:
displays, restrictions, joins, and navigations. In contrast, other operations

44 W.-W. PAN A N D W.-P. Y A N G

cannot detect invalid COs in deferred-deletion. Therefore, invalid COs
may propagate when new views are derived from those operations. Figure
4 tabulates the propagation of invalid COs. For example, the last row
indicates that the invalid CO remains in E (V) only when both E(C1) and
E(C2) contain the same invalid CO; otherwise, it will not propagate to
E (V) . The" Cartesian product will produce more invalid COs, but it is
seldom used in queries alone. Navigations and joins are much more
frequently used instead.

Object evolution also will add new COs or make existing COs invalid.
The view update of creating ROs can handle the former case, and the idea
of deferred-deletion can handle the latter case. We can validate the view
function to detect invalid COs. Consider the example in Figure 2; while
the student Pan is shTunk to be a faculty, the view function in (r7,(1246))
will become invalid because Pan ' s fourth and sixth properties are no
longer available.

In contrast to the previous three conditions, when the RO's stored data
are modified, all the view classes remain unchanged, but some COs in
views may become inconsis tent with the constraints imposed on views. For
example, a view A d u l t is defined as ~rage> = ~8(Person). If we change a
person's age from 20 to 15, then that person becomes inconsistent with
Adul t . On the contrary, if we change a person's age from 15 to 20, then
that person becomes perceptible to Adul t . The view update of creating RO
can handle the latter case, and we adapt the deferred-deletion to detect
inconsistent COs as follows. Let O R be the modified RO and let C v be
OR's target class. We can mark all the derived views of OR's target class.
Note that this mark is different from the deletion mark. Marked views are
forced to evaluate their imposed constraints for each CO once when CO's
image is computed.

Here is an example of a modification. The translation of u2 in Figure 3
is "Create (L inda , I D x) in to Manager; Change (Mary, 1D x) to (Mary, n u l l) . "

The former adds a CO to E (Manager) . Consequently, two COs, ((rjoh~,

an invalid CO in ~ E(CI) only E(C2) only Both
v = x (c1) 1

V = C1 ~ C2 1 1 I

V =CI - C 2 1 0 0

V = CI x C2 card(C2) ca rd(C/) card(C1)+card(C2)
V= C1 ~ C2 0 0 1

Fig. 4. The propagation of invalid COs for different views.

OBJECT M O D E L AT CONCEPTUAL LEVEL 45

CfJoh,),(rLind ~, vfLind,)) and ((rFrank, UfFrank),(rLinda, UfLinda)), will be added
to E (E M) by the join operation. Their images are "name: John, name:
Linda" and "name: Frank, name: Linda," respectively. The latter causes
the view EM to be marked. When we want to display the content of
EM, two inconsistent COs, ((rjohn,UfJohn),(rMary,UfMary)) and ((rFrank,
U f F r a , t k) , (r M a r y , UfMary)), will be detected and removed.

4. I MP LEMENTATION

T]ae V - R model can be implemented as a kernel in a OODB system.
Figure 5 shows a simplified database's system architecture that incorpo-
rates, the V - R model and two service interfaces. The view-class service
interface provides the query processor with four kinds of operations to
inquire and maintain the database. The RO service interface allows the
V--lq: model to read, write, create, and delete the ROs in a storage system.
The access key of ROs is the RID. The object-based storage systems, such
as WiSS [7], can be used to implement the RO service interface.

The constructions of ROs, view functions, and extensions are essential
to implement the V - R model. A flexible way of constructing ROs is the
typeless approach, that is, each RO stores the format of its own stored data.
The ROs in Figure 2 are typeless, for example. When creating an RO,
users must determine its target class and the view function. The merit of
the typeless approach is flexible since the format of stored data depends
on the characteristics of individual ROs. For example, one object can store
its picture in bitmap format, while another object can store its in the
compressed picture format. The typeless approach is also good to dynami-
cally add or delete RO's properties. However, its major disadvantage is the
overhead to describe the format of properties in each RO.

,A~ alternative to constructing ROs is the typed approach, that is, each
RO belongs to a type. Assume that the management of types is supported.
To create an RO, users simple select a type. One of the typed approach's
merits is that the view function for a CO can be determined on the fly if

view-class
service interface

quay operatioe~
Quory update operations

PTOCO~;~OT ~¢w class rn~=nal~cmcnt

view manal~n~nt

view classes ROs real-world objoct
. service interface

oid,,vy, I oid,,~ (~
oid,, vfi oidj, v)'~j read
oid3,vfi old~,vfk " ' " ~ whte ~ Objc~et-Basod

: : : cte, ate ~ S t o r a g e System
: . : delete

rc, vc: 6 - ~ : : :

Fig. 5. Two service interfaces and the V-R model.

46 W.-W. PAN AND W.-P. YANG

the system can know an RO's type either by the information stored on the
RO or by some other mechanisms since the system can prepare the onto
mapping from each type to each view class in advance. Figure 6 shows that
same database as the one in Figure 2 by typed implementation. The types
t 2 and t 3 inherit tl, and t 4 inherits both t 2 and t 3. The mappings from the
RO of t 4 to Person, Faculty, and Student will be (12), (1234), and (1256). A
table lookup can find out the desired view function for a CO.

A variant of typed implementation is to make view classes serve as
types. This approach prohibits an RO from having more attributes or
behaviors than its target class. For example, the RO r7 in Figure 6 cannot
exist unless a view class TA that inherits Faculty and Student exists in the
schema.

The typed approach usually achieves better performance and requires
less storage space than typeless one.

The extensions of view classes and views are the basis of performing
query operation and update operations. Four kinds of processes performed
on the extensions are: adding a CO, deleting a CO, processing each CO,
and searching the COs that refer to a specific set of RIDs. The last process
is necessary for differences and intersections. It is also useful if we want to
ensure that each CO in an extension is unique. Moreover, it becomes
feasible to immediately remove the invalid and inconsistent COs men-
tioned in Section 3 if this process is implemented fast enough. The
nonorder array, the B + tree, and the extensible linear hashing table are
three major techniques to implement the extensions. We do not intend to
study their advantages and disadvantages in this paper. Currently, we use
the first one to program the V - R model, and the hashing index on RIDs

< Pers(~, {. . .},El > " ~ - - - <Student, {...},E2 > < t l , {name: STRING, sex: STRING} >

E1 inherita < t2, {salm'y: INTEGER, < t3, {sdaool: Sdaool,
\ \ course: STR/IqG} > ~ a : REAL} >

< Fa~tlty, {... }, E3 > ~ ' ~ . /

E3: < t4 , {} >

real-world objects

. r.1 r5 ~ r 4 ~.? . ~ ~7

Fig. 6. Typed implementation for the V-R model.

OBJECT M O D E L AT C O N C E P T U A L L E V E L 47

will be dynamically built to obtain reasonable performance while the last
process is performed.

5. C O N C L U S I O N S

In this paper, we present an object model, the V - R model, at the
conceptual level of abstraction. The notions of real-world objects, view
classes, views, and conceptual objects are defined formally. Based on the
V-lq', model, we explore three important issues about the views. First, we
prove that the V - R model is closed under the essential query operations.
Second, we clarify the update semantics and formally define the view
update translation for O O D B systems. Third, we show how the V - R
model can be integrated in an O O D B system and discuss the V - R model
implementation techniques.

We summarize the specific features of the V - R model and make a brief
comparison with previous works on view mechanisms.

• The V - R model manages the derived objects which correspond to the
conceptual objects at a low cost. It does not assign object identifiers
for derived objects. Also, neither query results nor semi-materialized
views duplicate stored data.

• The V - R model introduces a clear and complete solution for the
update operations. The semantics of updates are different from
traditional ways. Object evolution and the update translation make
the update semantics more precise and reasonable.

• The extensions of view classes and views are different from the
indices, such as nested indices and path indices [3]. An index provides
a method of object retrieval based on some attributes for a special
purpose. In the V - R model, the functions of extensions include the
perceptibility relationship and the basis for performing query opera-
tion and update operations.

R E F E R E N C E S

1. S. Abiteboul and A. Bonner, Objects and views, in Proc. ACM SIGMOD Conf. on
Management of Data, May 1991, pp. 238-247.

2. F. Bancilhon and N. Spyratos, Update semantics and relational views, ACM Trans.
Database Syst. 6(4):557-575 (Dec. 1981).

3. E. Bertino and W. Kim, Indexing techniques for queries on nested objects, IEEE
Trans. Knowledge and Data Engrg. 1(2):196-214 (Oct. 1989).

4. E. Bertino, M. Negri, G. Pelagatti, and L. Sbattella, Object-oriented query lan-
guages. The notation and the issues. IEEE Trans. Knowledge and Data Engrg.
4(3):223-237 (June 1992).

48 W.-W. PAN A N D W.-P. Y A N G

5. J. A. Blakeley, N. Coburn, and P.-A. Larson, Efficiently updating materialized views
in Proc. ACM S1GMOD Conf. on Management of Data, May 1986, pp. 61-71.

6. J. A. Blakeley and N. L. Martin, Join index, materialized view, and hybrid-hash join:
A performance analysis, in Proc. IEEE 6th Int. Conf. on Data Engrg., Feb. 1990,
pp. 256-263.

7. H. Chou, D. DeWitt, R. Katz, and A. Klug, Design and implementation of the
Wisconsin storage system, Software Practice and Exp. 15(10) (Oct. 1985).

8. U. Dayal, Queries and views in a object-oriented data model in Proc. 2nd Int.
Workshop on Database Programming Language, June 1989, pp. 80-91.

9. U. Dayal and P. Bernstein, On the correct translation of update operations on
relational views, ACM Trans. Database Syst. 8(2):381-418 (Apr. 1988).

10. S. Heiler and S. Zdonik, Object views: Extending the vision, in Proc. IEEE 6th Int.
Conf. on Data Engrg., Feb. 1990, pp. 86-93.

11. M. Kifer, W. Kim, and Y. Sagiv, Querying object-oriented databases, in Proc. ACM
SIGMOD Conf. on Management of Data, June 1992, pp. 393-402.

12. W. Kim et al., Composite object support in an object-oriented database system, in
Proc. 2nd Int. Conf. on Object-Oriented Programming Syst., Languages, and Appl.,
Orlando, FL, Oct. 1987.

13. W. Kim, Object-oriented database: Definition and research directions, IEEE Trans.
Knowledge and Data Engrg. 2(3):327-341 (Sept. 1990).

14. W. Kim, Introduction of Object-Oriented Databases, MIT Press, 1992, ch. 2.
15. W. Kim, Modem Database Systems, Addison-Wesley, 1995, ch. 7.
16. Y. Masunaga, Object identity, equality and relational concept, in Proc. 2nd Int.

Conf. on Deductive and Object-Oriented Databases, North-Holland, 1990, pp. 185-202.
17. M. H. Scholl, C. Laasch, and M. Tresch, Updatable views in object-oriented

databases, in Proc. 4th Int. Conf. on Deductive and Object-Oriented Databases,
North-Holland, 1992, pp. 189-207.

Received 22 June 1995; revised 22 November 1995, 29 February 1996

