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Movie scene segmentation using background information

Liang-Hua Chena,∗, Yu-Chun Laib, Hong-Yuan Mark Liaoc

aDepartment of Computer Science and Information Engineering, Fu Jen University, Taipei, Taiwan
bDepartment of Computer Science, Chiao Tung University, Hsinchu, Taiwan

cInstitute of Information Science, Academia Sinica, Taipei, Taiwan

Received 15 June 2006; received in revised form 24 July 2007; accepted 31 July 2007

Abstract

Scene extraction is the first step toward semantic understanding of a video. It also provides improved browsing and retrieval facilities to
users of video database. This paper presents an effective approach to movie scene extraction based on the analysis of background images. Our
approach exploits the fact that shots belonging to one particular scene often have similar backgrounds. Although part of the video frame is
covered by foreground objects, the background scene can still be reconstructed by a mosaic technique. The proposed scene extraction algorithm
consists of two main components: determination of the shot similarity measure and a shot grouping process. In our approach, several low-level
visual features are integrated to compute the similarity measure between two shots. On the other hand, the rules of film-making are used to
guide the shot grouping process. Experimental results show that our approach is promising and outperforms some existing techniques.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The advances in low cost mass storage devices, higher trans-
mission rates, and improved compression techniques have led
to the widespread use and availability of digital video. Video
data offer users of multimedia systems a wealth of informa-
tion and also serve as a data source in many applications
including digital libraries, publishing, entertainment, broadcast-
ing and education. However, because of the large amount of
data and unstructured format, efficient access to videos is not an
easy task. To make the original video data in a database avail-
able for browsing and retrieval, it must be analyzed, indexed
and reorganized. The suitably organized video data have the
right structure for non-linear browsing and for content-based
retrieval through large amount of data.

To derive a structured representation of a video, each video
sequence is usually decomposed into a hierarchical struc-
ture using shots and scenes as construction units. A shot is a
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sequence of frames that were continuously captured by the
same camera. The definition of a scene is not as straightforward
and usually refers to a common environment that is shared
by a group of consecutive shots [1]. For example, we could
see many consecutive shots (taken by different cameras) share
the similar visual content because they are produced in the
same environment such as a meeting room or a sports field.
Generally, a video scene is basically a story unit that shows
the same objects and allows one event to be fully presented.
Shots in a video are analogous to words in a language in that
they convey little semantic information in isolation. On the
other hand, scenes reflect the dramatic and narrative structure
of a video. One scenario is that humans remember different
events after having watched a digital movie. Such an event can
be a dialogue, an action scene, or a group of shots unified by
location. Therefore, scene extraction is the first step toward
greater semantic understanding of video content. The objective
of video scene extraction is to cluster video shots into several
groups, such that the shots within each group are related by
some common aspects.

Nowadays, there exist various types of videos, including
movies, news casts, sitcoms (situation comedies), commercials,
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sports, and documentary videos. Some of them have “story
units” such as movies, while others (e.g., sports) do not. In this
work, we concentrate on movies. Usually, there are two steps
to extract video scene structures after shot boundary detection.
The first step is to represent visual content of one shot and to
define the similarity measure between two shots. The second is
to group correlated consecutive shots into a scene. The compact
representation of video shot content for shot similarity measure
remains one of the most challenging issues. In our approach,
the similarity measure is based on the background information
obtained through a mosaic technique. By aligning all images
of a video sequence onto a common reference frame, the mo-
saic technique is able to generate the static background of a
video scene. Although the background image alone is not an
effective video content representation for some tasks such as
video retrieval, it is sufficient for the task of scene extraction.
It is also worth noting that the way shots are grouped into a
scene generally depends on the type of scene under analysis
as well as on the video genre. The scenes of a TV-news report
are different from the scenes of a basketball game, a documen-
tary, or a movie. Hence, it is important to aggregate the shots
by considering a model for the scene. In our approach, we ex-
ploit cinematic rules to devise a shot grouping algorithm. The
rest of this paper is organized as follows. In the next section,
we review some related works and explain the motivation for
our approach. In Section 3, we describe how to generate the
mosaic image of a video shot. Then, a new similarity measure
between two shots is introduced in Section 4. The proposed
video shot grouping algorithm is described in Section 5. The
performance evaluation of our approach is reported in Section
6. Finally, some concluding remarks are given in Section 7.

2. Background and motivation

Numerous methods for shot boundary detection have been
proposed [2]. While shots are marked by physical boundaries,
scenes are marked by semantic boundaries. Hence, scene
boundary detection is far more difficult than shot boundary
detection. Current techniques for video scene extraction can be
broadly classified into three categories. The first groups shots
that are visually similar and temporally close into a scene
[3–12]. In these approaches, video shots are mostly repre-
sented by a set of selected key-frames. Low level features such
as color, texture, motion, and shape are extracted directly from
key-frames. Then, a classic clustering algorithm or simple
peak detection is used to detect scene boundaries. However,
the limitation of key-frame-based shot representation is that a
frame taken from a shot often fails to represent the dynamic
contents within the shot. When a sequence of shots is consid-
ered as a scene, it is often because the shots are correlated by
the same environment rather than by visual similarity in terms
of key-frames. In the second category, emphasis is put on the
integration of audio and visual information. Various methods
have been proposed to determine a shot boundary as a scene
boundary if the visual and audio content change simultane-
ously [13,14]. However, how to determine scene boundary
efficiently still remains a difficult issue since the relationship

between audio segments and visual shots is complicated. The
third category exploits characteristics embedded in specific
video domains, such as sports and news casts [15–18]. Since
this approach is based on specific application models, it nor-
mally achieves high accuracy. The main drawback is that an
a priori model needs to be constructed beforehand for each
application. The modeling process is time consuming and
requires good domain knowledge and experience.

In this paper, we present a scheme for automatic video scene
extraction based on visual information only. When a scene is
composed of several shots, there will be at least one aspect
in common between these shots. To measure the common as-
pects between two shots, we define the shot similarity using
background information. Our approach is based on the follow-
ing observations: (i) each frame of a video can be divided into
foreground objects and background scenery; (ii) in most cases,
while objects may move, appear and disappear, the background
in a scene does not change significantly. These observations
suggest that it would be more effective to focus on the back-
ground to detect a scene, which is a collection of shots unified
by a common locale. However, in a single frame, most of the
physical location information is invisible since it is concealed
by the foreground objects. One solution to this problem is to use
a mosaic technique. A mosaic is a panoramic image obtained
by aligning all images of a video sequence onto a common ref-
erence frame [19,20]. The resulting mosaic is an efficient and
compact representation of a collection of frames [21]. In the
case of a static mosaic, the moving objects blur out or disap-
pear. Only the stationary objects and the background are dis-
played in the constructed mosaic. Therefore, in our approach,
we use a mosaic technique to reconstruct the background scene
of each video frame. Then, we compute the color and texture
distribution of all the background images in a shot to deter-
mine the shot similarity. Since our method does not depend on
the content of key-frames only, it is able to fully exploit the
spatiotemporal information contained in video sequences.

3. Mosaic construction

A shot is the basic unit for video indexing. To facilitate sub-
sequent video analysis, in our system, the original video se-
quences are segmented into shots [22]. We have also proposed
an algorithm to align frames from a video shot to build the
static mosaic of the background [23]. Here, we briefly describe
the generation of mosaics, and refer the reader to Ref. [23] for
further details.

We first need to derive the transformation between partially
overlapping frames. Assuming background motion (due to cam-
era motion) is the dominant motion in the video, the image
motion of the majority of scene points can be approximated by
the following transformation model:

u(x, y) = a1x + a2y + a3, (1)

v(x, y) = −a2x + a1y + a4, (2)

where (u(x, y), v(x, y)) is the motion vector at image posi-
tion (x, y). This model is a special case of an affine model
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Fig. 1. A frame of a baseball game sequence and its corresponding motion vectors.

Fig. 2. Sampled frames of a “Terminator II” sequence.

with six parameters. However, experimental results show that
our model is better than the general affine model. This is be-
cause we impose more constraints on the model’s parameters to
avoid some undesirable transformations implied in affine model
such as skewing. In this step, we need to obtain the motion
vectors (or displacements) between successive frames. Exist-
ing approaches are based on feature matching or optical flow
computation. These techniques are computationally intensive.
To reduce the processing time, we use the motion vectors en-
coded in the MPEG-1 [24] video stream directly. Fig. 1 shows
a frame of a baseball game sequence and its corresponding mo-
tion vectors.

Given the motion vector, the image motion parameters can be
estimated by a robust regression technique called least-median-
squares [25]. Let the motion vectors of each frame be denoted
as {[u1(x1, y1), v1(x1, y1)], . . . , [un(xn, yn), vn(xn, yn)]}. The
least-median-squares method can be described as

min
â

{median[(a1xi + a2yi + a3 − ui)
2

+ (−a2xi + a1yi + a4 − vi)
2]}, (3)

where â = (a1, a2, a3, a4) is the parameter vector. One distinc-
tive property of the algorithm is that it can tolerate up to 50%
of the outliers in the data set, i.e., half of the data set can be
arbitrary without significantly effecting the regression result.
Therefore, this technique can robustly estimate the motion of
the majority of scene points (background) and will not be bi-
ased by the minority scene points (moving object).

Once the transformations between successive frames have
been determined, the transformations can be composed to ob-
tain the alignment between any two frames of the video se-
quence, and in particular, between the current frame and the
reference frame. In most cases, we choose the first frame of the
sequence as a reference. After all the frames have been aligned
to a reference frame, the next step is the selection of pixels to

Fig. 3. The static mosaic of the “Terminator II” sequence.

be put into the resulting mosaic. The gray value of each pixel
of the mosaic is computed by applying an appropriate temporal
operator to the aligned frames. The temporal average operator
is effective in removing temporal noise, but the moving objects
appear blurred, with “ghost-like” traces in the resulting mosaic.
The temporal median operator can remove the moving objects
and produce a static mosaic of the background, but it is com-
putationally expensive and is an off-line process. Therefore, we
propose a novel scheme that is both effective in deleting mov-
ing objects and feasible for the on-line creation of panoramic
images. Our approach is based on the observation that each
overlapping pixel of the aligned frames will fall into one of
the two categories: background or moving object. Since back-
ground motion is the dominant motion of video and we want
to build the mosaic of background, we select the pixel that ap-
pears most frequently in the temporal domain. In Fig. 2, some
sampled frames of “Terminator II” sequence are shown. We
observe that the camera has large movement in this sequence.
Fig. 3 shows the static mosaic where only the background of
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the scene is visible. Using the background mosaic, the back-
ground scene image of each video frame is reconstructed. In
the subsequent processing, we focus on these background im-
age sequences.

4. Shot similarity measure

This section describes the color and texture features used in
our work and how these features are taken into account in the
formulation of shot similarity measure. A major requirement
for shot similarity measure is to define a content representation
that captures the common aspects or characteristics of the shot.
One common method is to select one key-frame from the shot
and use the image features of that key-frame as an abstract
representation of the shot. For shots with fast changing content,
one key-frame per shot is not adequate. Besides, the content
description it provides varies significantly with the key-frame
selection criterion. To avoid these problems, a more feasible
approach is to consider the visual content of all the frames
within a shot for shot representation.

Color is one of the most widely used visual features in video
content analysis. Most scene extraction algorithms compare
color histograms between key-frames to determine the shot
similarity measure. The histogram-based approach is relatively
simple to implement and provides reasonable results. However,
due to its statistical nature, the color histogram cannot capture
the spatial layout information of each color. When the image
collection is large, two different content images are likely to
have quite similar histograms. To remedy this deficiency, in
our approach, the distribution state of each color in the spatial
(image) domain is also taken into account.

The color histogram of an image is constructed by counting
the number of pixels of each color. The main issues regard-
ing the construction of color histograms involve the choice of
color space and quantization of the color space. The RGB color
space is the most common color format for digital images, but
it is not perceptually uniform. Uniform quantization of RGB
space yields perceptually redundant bins and perceptual holes
in the color space. Therefore, non-uniform quantization may
be needed. Alternatively, HSV (hue, saturation, intensity) color
space is chosen since it is nearly perceptually uniform. Thus,
the similarity between two colors is determined by their prox-
imity in the HSV color space. When a perceptually uniform
color space is chosen, uniform quantization may be appropriate.
Since the human visual system is more sensitive to hue than to
saturation and intensity [26], H should be quantized finer than
S and V. In our implementation, the hue is quantized into 20
bins. The saturation and intensity are each quantized into 10
bins. This quantization provides 2000 (=20 ×10 ×10) distinct
colors (bins), and each bin with non-zero count corresponds to
a color object.

Since we are interested in the whole shot rather than single
image frame, only one histogram is used to count the color
distribution of all background images within a shot. Then, each
bin of the resulting histogram is divided by the number of
frames in a shot to obtain the average histogram. Next, several
spatial features are calculated to characterize the distribution

state of each color object in each image frame. Assuming a set
of pixels S = {(x1, y1), . . . , (xn, yn)} belong to color object ci ,
k is the image size, and m is the total number of 4-connected
pixels in S. Then, we define

(i) the density of distribution as

fi1 = n

k
,

(ii) the compactness of distribution as

fi2 = m

n
,

(iii) the scatter as

fi3 = 1

n
√

k

n∑
j=1

√
(xj − x�)2 + (yj − y�)2,

where x� = (1/n)
∑n

i=1 xi and y� = (1/n)
∑n

i=1 yi .

To define the fourth feature, the image is partitioned equally
into p blocks of size 16 × 16. A block is active if it contains
some subsets of S. Let the number of active blocks in the image
frame be q, we define

(iv) the ratio of active block as

fi4 = q

p
.

After the spatial features of all images are computed, we take
average of these values, respectively. Let fi1, fi2, fi3, and fi4
be the average feature values of a color object ci in a shot,
for two color objects ci and cj , the difference in the spatial
distribution within a shot is defined as

Ds(ci, cj ) = 1
4 (|fi1 − fj1| + |fi2 − fj2|
+ |fi3 − fj3| + |fi4 − fj4|). (4)

Texture refers to the visual patterns that have properties of
homogeneity that do not result from the presence of only a sin-
gle one color or intensity only. It contains important information
about the structural arrangement of objects and their relation-
ship to the surrounding environment. We define the coarseness
of an image’s texture in term of the distribution density of the
edges. The Canny edge detector is used to extract edges from
an image. The edge location indicates sharp intensity variation.
Psychophysical experiments have shown that the human visual
system is sensitive to the high-frequency regions of an image
such as edges. The detected edge image is partitioned into a set
of 16 × 22 blocks. A block is textured, if the number of edge
points in the block is greater than a threshold (=30, in our set-
ting). Then, we can compute the ratio of the textured block of
each image and its average value over a shot. The texture simi-
larity between two shots is determined by the minimum of the
two average values. In Fig. 4, two images with different level
of texture coarseness are shown. Fig. 5 shows the detected edge
image partitioned into a set of 16 × 22 blocks.
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Fig. 4. Two images with different texture coarseness.

Fig. 5. The detected edge image is partitioned into a set of 16 × 22 blocks.

Histogram intersection is a popular similarity measure used
for color-based image matching [27]. It yields the number of
pixels that have same color in two images. In our work, we
extend this idea to shot similarity measure. Let A, B be the set
of all color objects in shot S1 and S2, respectively, for a given
u ∈ A, its similar color object in B is some v ∈ B such that
‖u − v‖ < �, where ‖u − v‖ denotes the Euclidean distance
between u and v in the HSV color space, and � is a threshold (=3,
in our setting). Then, (u, v) is called a similar color pair. Let
� = {(u, v)|(u, v) ∈ A × B, (u, v) is a similar color pair}, the
shot similarity measure between S1 (with the average histogram
H1) and S2 (with the average histogram H2) is defined as

ShotSim(S1, S2) = 1

k

∑
(u,v)∈�

{W(Ds(u, v)) min(H1(u), H2(v))}

+ wt × min(t1, t2), (5)

where k is the image size; t1 and t2 are the average ratios of
textured block for shot S1 and S2, respectively; wt is the weight
of texture feature; Ds is the difference in spatial features as
defined in Eq. (4); and W is a weight function defined as

W(x) = 1

1 + ea×x+b
.

The weight function W is the general form of the sigmoid func-
tion which is frequently used in neural networks computation
[28], where a and b are parameters. In our work, it is used to
fuse the spatial distribution information with a histogram. The
construction of this weight function is motivated by the psy-
chophysical observation that the effect of spatial distribution

Fig. 6. Sigmoid function with parameters a = 10 and b = −5.

Fig. 7. Finding similar color object pairs.

on human perception is progressive [29]. Only when the dif-
ference in spatial features is greater than a threshold, humans
perceive significant visual variation. The property of the sig-
moid function fulfills this requirement. In our system, we set
a = 10 and b = −5. As shown is Fig. 6, the function’s value
becomes significantly small for x > 0.75.

It is noted that a given color object in shot S1 may have
more than one similar color objects in shot S2 as illustrated
in Fig. 7. To avoid the overlapping contribution in calculating
shot similarity, after each step of min(H1(u), H2(v)), H1(u)

and H2(v) are all subtracted by min(H1(u), H2(v)).
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5. Scene extraction

This section describes the details of applying the cinematic
model to group correlated consecutive shots into one scene.
Movies directors, while filming scenes, also control the pace
of a film in order to sustain the viewers interest. One important
factor known to influence the pace of a movie is the Montage.
Montage usually refers to a model that defines the usage of
editing effects to assemble the shots into a smooth sequence in
physical time and/or space and in the psychological association
of ideas [30]. In order to convey an idea that has a strong
resonance with viewers, Montage is widely used as the basis to
model scenes. In most situations, Montage can be simplified as
a set of cinematic rules. Commonly used rules include [31,32]:

• Parallel rule: It is used to compose scenes involving multiple
themes, where shots from different themes are shown alter-
nately. This rule is frequently used to model interactions be-
tween two parties such as conversations, hunting, and chas-
ing.

• Concentration rule: It starts with long distance shot, and pro-
gressively zooms into close-up shots of the main objects. It
is used to introduce the main objects and their context.

• Enlargement rule: It is the reverse of the concentration rule.
It is used to introduce the context of the current main object
before switching to other objects that possibly share a similar
context. Thus, it typically signals the transition to a new
scene.

• Serial Content rule: It is used to model scenes that preserve
the continuity of location, time, space, and topic.

Together, these rules can be used to model most types of scenes.
We use this knowledge to develop a two-pass algorithm for
scene boundary detection suitable for feature movies.

The first pass of the algorithm deals with the detection of po-
tential scene boundaries. This is achieved by computing the shot
similarity between two consecutive shots (see Fig. 8). Given a
sequence of shots {S1, . . . , Sn}, if ShotSim (Si+1, Si) < T� then
a potential scene boundary is detected. The threshold T� is em-
pirically set to be the mean of all shot similarities, i.e.,

T� = 1

n − 1

n−1∑
i=1

ShotSim(Si+1, Si). (6)

Any two adjacent potential scene boundaries delineate a candi-
date scene. Thus, all shots are grouped into a set of candidate
scenes (see Fig. 9).

The above algorithm assumes that all shots in a scene
take place in the same location and share many common

Fig. 8. Computing the similarity between every two adjacent shots.

Fig. 9. Shots are grouped into several candidate scenes.

Fig. 10. An expanding scene and the two subsequent scenes.

backgrounds. This is true for most of the scenes composed
using the serial content rule and parallel rule (such as a con-
versation in a studio). However, the algorithm tends to over-
segment the more complex scenes composed using parallel or
concentration/enlargement rules. In the outdoor chasing scene
(also modeled by parallel rule), the escapee and pursuer shots
are shown alternatively. But the background of both types of
shots may be different. One important component of a scene
defined by the concentration/enlargement rule is the close-up
shot where more than half of the frame is occupied by the fore-
ground object. Because of the limitations of the mosaic tech-
nique, the background information can not be recovered com-
pletely. Thus, the close-up shot will be identified as belonging
to another scene. To handle such scenes, we need to merge the
candidate scenes further.

Let G1 = {S11, . . . , S1m} and G2 = {S21, . . . , S2n} be two
candidate scenes consisting of m and n shots, respectively. The
scene similarity between G1 and G2 is

SceneSim(G1, G2) = 1

m × n

m∑
i=1

n∑
j=1

ShotSim(S1i , S2j ). (7)

Two scenes G1 and G2 are visually similar, if SceneSim
(G1, G2) > T� − �/2, where T� (defined in Eq. (6)) and � are,
respectively, the mean and variance of all similarity measures
between every two adjacent shots. Because several simple
scenes are merged into one complex scene, this threshold
should be smaller than that of the first pass. Given a sequence
of candidate scenes, the second pass of the scene extraction
algorithm mainly consists of the following merging process:

Step 1: Set the expanding scene to be the first scene.
Step 2: Compare the expanding scene with two subsequent

scenes B and C (see Fig. 10).
Step 3: If the expanding scene and scene C are visually sim-

ilar, then

• merge the expanding scene, scene B and scene C into one
scene;

• set the expanding scene to be the merged scene;
• go to Step 2.
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Step 4: If the expanding scene and scene B are visually sim-
ilar, then

• merge the expanding scene and scene B into one scene;
• set the expanding scene to be the merged scene;
• go to Step 2.

Step 5: Set the expanding scene to be scene B and go to
Step 2.

This process is repeated until no more scenes can be merged.
It is noted that B and C always refer to the two scenes im-
mediately following the current expanding scene and they are
always updated in Step 2.

6. Experimental results

Six test videos in MPEG-1 format were used to evaluate our
scene extraction algorithm: one home video and five full-length
movies. The home video “Lgerca_lisa_1” is an MPEG stan-
dard test video with ground truth from original video provider.
The genres of movies include action, drama, comedy, thriller,
and music. The testing with five different genres of movies
would ensure that the overall performance of the algorithm is
not biased toward a specific movie kind. To get the ground
truth of other videos, two graduate students were invited to
watch the movies and then asked to give their own scene
boundaries. The intersection of their segmentation was used
as the ground truth for the experiments. In movies, there is
usually not a concrete or clear boundary between two adja-
cent scenes due to editing effects. Therefore, we follow Han-
jalic’s evaluation criterion [5]: if the detected scene boundary
is within four shots from the boundary detected manually, this
boundary is counted as a correct boundary. Basic information
about the test videos and the experimental results are shown in
Table 1.

As shown in Table 1, our algorithm correctly extracts all the
six scenes of the first video (Lgerca_lisa_1) without any missed
or false detection. Fig. 11 shows the shot grouping result of
the first video, where the first frame of each shot is displayed.
Fig. 12 shows one extracted scene (consisting of 4 shots) from
another video “Little Voice”. This scene is composed by the par-
allel rule and has different backgrounds in the first and second
shot. Our shot group algorithm is able to identify both shots as
belonging to the same scene. However, our algorithm has some

Table 1
Accuracy measures for the six test videos

Video title Genre Duration (in min) No. of Scenes (ground truth) Correct detection Missed detection False detection

Lgerca_lisa_1 Home video 15 6 6 0 0
Dungeons & Dragons Action 107 66 54 12 6
Little Voice Drama 96 141 110 31 24
Hot Chick Comedy 104 104 71 33 52
Bugs Thriller 82 76 58 18 26
Walk the Line Music 136 118 70 48 35

false and missed detections in the other test videos. The false
detection is due to the significant change of lighting such as
explosions and flashing lights. This could perhaps be improved
by a more sophisticated visual similarity measure. The missed
detection is mainly caused by inappropriate setting of the merg-
ing threshold. As the threshold depends on the variance (�) of
all similarity measures between every two adjacent shots, a too
large � results in under-segmentation of the video. This type
of error occurs in some video scenes with very inconsistent
pace.

For performance comparison, we implement the well-known
scene extraction algorithm proposed by Yeung et al. [3]. In their
approach, a video sequence is first segmented into shots. Then,
a time-constrained clustering algorithm is used to group visu-
ally similar and temporally adjacent shots into clusters. The
visual similarity between two shots is measured by comparing
color histograms of the respective key-frames. Finally, a scene
transition graph is constructed based on the clusters, and cut-
ting edges are identified to construct the scene structure. For
fair comparison, the parameters of Yeung’s algorithm are tuned
to achieve the best performance. To measure the performance
quantitatively, two metrics are used:

recall = D

D + MD
, precision = D

D + FD
,

where D is the number of scene boundaries detected correctly,
MD is the number of missed detection and FD is the number
of false detection. Table 2 shows the performance comparison.

As “Lgerca_lisa_1” is an MPEG standard test video, some
related works have also used it as test video. According to the
reports of Lin [7] and Ngo [8], their approaches have three and
two false detections, respectively.

7. Conclusion

We have proposed a mosaic-based algorithm for extracting
scene structures from digital movies. Our approach is based
on the idea that shots belonging to one particular scene often
have similar backgrounds. Using a mosaic technique, the back-
ground of each video frame can be recovered. The color feature
and texture feature of each background image are integrated to
compute shot similarities. Based on the movie making model,
our algorithm is able to group correlated shots into one scene.
The computation is costly, but the spatiotemporal information
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Fig. 11. Shot grouping result of “Lgerca_lisa_1”.

of videos is fully exploited to achieve scene extraction. Ex-
perimental results show that the proposed approach works rea-
sonably well in detecting most of the scene boundaries. Com-
pared with some existing techniques [3,7,8], our approach is
promising. Our approach can be applied directly to organize
videos and can be utilized to provide browsing/retrieval facili-
ties to the users. As scene is a subject concept to reflect human

perception, our future work will focus on investigating an adap-
tive technique to perform user-oriented scene extraction. The
proposed shot similarity measure does not use motion feature
to capture temporal variation in a video. Thus, another future
research issue will be the integration of motion information
into the proposed shot similarity measure for other tasks such
as video retrieval.
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Fig. 12. A scene extracted from “Little Voice”.

Table 2
Performance comparison for scene extraction

Video title Our approach Yeung’s approach

Recall (%) Precision (%) Recall (%) Precision (%)

Lgerca_lisa_1 100 100 100 85.7
Dungeons & Dragons 81.8 90.0 74.2 81.6
Little Voice 78.0 82.1 72.3 72.3
Hot Chick 68.3 57.7 54.8 50.9
Bugs 76.3 69.0 59.2 64.3
Walk the Line 59.3 66.7 47.5 56.0
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