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OPSO: Orthogonal Particle Swarm Optimization and
Its Application to Task Assignment Problems

Shinn-Ying Ho, Member, IEEE, Hung-Sui Lin, Weei-Hurng Liauh, and Shinn-Jang Ho

Abstract—This paper proposes a novel variant of particle
swarm optimization (PSO), named orthogonal PSO (OPSO), for
solving intractable large parameter optimization problems. The
standard version of PSO is associated with the lack of a mechanism
responsible for the process of high-dimensional vector spaces. The
high performance of OPSO arises mainly from a novel move
behavior using an intelligent move mechanism (IMM) which ap-
plies orthogonal experimental design to adjust a velocity for each
particle by using a systematic reasoning method instead of the con-
ventional generate-and-go method. The IMM uses a divide-and-
conquer approach to cope with the curse of dimensionality in
determining the next move of particles. It is shown empirically
that the OPSO performs well in solving parametric benchmark
functions and a task assignment problem which is NP-complete
compared with the standard PSO with the conventional move
behavior. The OPSO with IMM is more specialized than the
PSO and performs well on large-scale parameter optimization
problems with few interactions between variables.

Index Terms—Orthogonal experimental design (OED), orthog-
onal PSO (OPSO), particle swarm optimization (PSO), task
assignment.

I. INTRODUCTION

PARTICLE swarm optimization (PSO) is one of the evolu-
tionary computation techniques. It is a population-based

search algorithm that exploits a population of individuals to
probe promising regions of the search space. In this context,
the population is called a swarm, and the individuals are called
particles. Each particle moves with an adaptable velocity within
the search space and retains in its memory the best position
it ever encountered. The standard version of PSO is briefly
described here [1]–[3].

Assume a D-dimensional search space S ⊂ RD and a swarm
consisting of Np particles. The position X = [x1, x2, . . . , xD]T

of a particle in the search space S is treated as a can-
didate solution. The current position of the ith particle is
a D-dimensional vector Xi = [xi1, xi2, . . . , xiD]T ∈ S. The
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velocity of this particle is also a D-dimensional vector Vi =
[νi1, νi2, . . . , νiD]T ∈ S. The best position encountered by the
ith particle is denoted as Pi = [pi1, pi2, . . . , piD]T ∈ S. As-
sume g to be the index of the particle that attained the best
position found by all particles in the ith particle’s neighbor-
hood. The swarm is manipulated in some form resembling the
following equations:

νid(t + 1) = wνid(t) + c1 · rand() · (pid(t) − xid(t))
+ c2 · rand() · (pgd(t) − xid(t)) (1)

xid(t + 1) = xid(t) + νid(t + 1) (2)

where i = 1, 2, . . . ,Np is the particle’s index, d = 1, 2, . . . , D
is the dimension index, and t = 1, 2, . . . indicates the iteration
number. The variable w is a parameter called inertia weight, c1

and c2 are positive constants, which are referred to as cognitive
and social parameters, respectively, and rand() is a function
which generates a random number that is uniformly distributed
within the interval [0,1]. There are two commonly used versions
of PSO, i.e., the global version and the local version. In the local
version of PSO, each particle’s neighborhood includes a limited
number of social neighbors, whereas in the global version of
PSO, it includes all the particles in the swarm.

The inertia weight w plays the role of balancing the global
and local searches. It can be a positive constant (e.g., 0.9) or
even a positive linear or nonlinear function of time [2], [3].
Although sometimes proper fine-tuning of the parameters c1

and c2 leads to an improved performance, an extended study
of the cognitive and social parameters is proposed in [4], and
c1 = c2 = 2 were proposed as default values.

Recently, Clerc and Kennedy [7] indicated that a constriction
factor χ may help ensure convergence. The new velocity of a
particle is manipulated by the following equation:

νid(t + 1) = χ [νid(t) + d1 · rand() · (pid(t) − xid(t))

+d2 · rand() · (pgd(t) − xid(t))] . (3)

The typical value of χ is

χ =
2κ∣∣∣2 − φ −
√

φ2 − 4φ
∣∣∣ ,

where φ = d1 + d2 > 4, and κ = 1. (4)

Generalized models and techniques for controlling the con-
vergence properties of PSO by fine-tuning its parameters are
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analyzed in [7]. Generally, d1 = d2 = 2.05 are often used, and
thus, χ = 0.72984 from (4). Therefore, (3) is equivalent to (1)
with w = 0.72984 and c1 = c2 = 1.4962.

To prevent an explosion of the velocity, the usual method is
simply to define a parameter Vmax and prevent the velocity from
exceeding it on each dimension d for particle i

If νid > Vmax, then νid = Vmax;

else if νid < −Vmax, then νid = −Vmax. (5)

The initialization of the swarm and velocities is usually
performed randomly in the search space, although more sophis-
ticated initialization techniques can enhance the overall perfor-
mance of PSO [5]. The initial velocities are often distributed
randomly over [−Vmax, Vmax]. According to the suggestion by
Eberhart and Shi [6], it is good to limit the maximum velocity
Vmax to the upper value of the dynamic range of search.

Many intractable engineering problems, such as task as-
signment problem [8]–[10], are characterized by a nonlinear
multimodal search space and a large number D of system
parameters. For a high-dimensional vector used as a potential
solution, there is a large probability that some partial vectors
move closer to the optimal solution, whereas others move away
from the optimal solution. Because the velocity is adjusted on
a full D-dimensional vector, a drawback of the standard PSO
is associated with the lack of a mechanism responsible for the
process of the high-dimensional vector space. van den Bergh
and Engelbrecht [11] proposed a cooperative particle swarm
optimizer which uses multiple swarms to optimize different
components of the solution vector cooperatively.

In this paper, we propose an entirely different approach
to improve the PSO performance for overcoming curse of
dimensionality. Although several improved versions of PSO
have been proposed, many of which have been based on the
original move behavior in (1). Different from the improvement
of convergence and regulation of tradeoff between the local
and global exploration abilities of swarm by tuning control
parameters, the proposed orthogonal PSO (OPSO) employs a
novel move behavior to significantly improve the performance
of PSO. The OPSO uses an intelligent move mechanism (IMM)
which applies orthogonal experimental design (OED) [12]–[14]
to adjust a velocity for each particle. Each particle using IMM
can adjust its flying velocity from the viewpoint of individual
parameters (partial vectors) rather than the full D-dimensional
vector.

The OED-based IMM uses a divide-and-conquer technique
to efficiently determine the next move of a particle. Generally, a
D-dimensional vector of the next move is divided into N(≤ D)
partial vectors. The IMM spends at most 2N objective function
evaluations to reason a potentially good solution to be the next
move consisting of N good partial vectors. The IMM generates
the next move by using a systematic reasoning method instead
of the generate-and-go method of the conventional PSO, re-
sulting in economically obtaining an accurate solution to the
intractable engineering problems.

OED with both orthogonal array (OA) and factor analysis
is a representative method of quality control, which is also an

efficient technique in the Taguchi method [15]. Tsai et al. [16]
proposed a hybrid Taguchi–genetic algorithm (GA) for global
numerical optimization where the Taguchi method is inserted
between the crossover and mutation operations of a GA.
Tanaka [17] proposed an orthogonal design algorithm using
GA-encoding and OED with no recombination or mutation.
Zhang and Leung [18] proposed an orthogonal GA (OGA).
Leung and Wang [19] proposed an improved OGA with quan-
tization (OGA/Q) using an OA-based initial population for
global numerical optimization. Both the OGA and the OGA/Q
use OA without factor analysis. Ho et al. [20]–[22] proposed
population-based evolutionary algorithms with an OED-based
recombination to efficiently solve large parameter optimization
problems. In addition, the OED also performs well in cooperat-
ing with the simulated annealing (SA) [23], [24]. The original
contribution of this paper is to apply the OED to the PSO rather
than the GA and the SA. The resultant OPSO is a population-
based algorithm with no recombination that is completely new
with respect to published research works.

The task assignment problem, which is known to be NP-
complete [25], is that of assigning tasks of a program among
different processors of a distributed computer system in order
to reduce the program turnaround time and to increase the
system throughput [8]–[10]. In this paper, the local version
of PSO with a constriction factor for parametric optimization
functions and the global version of PSO for the task assignment
problem [8] are selected for comparisons with the OPSO.
Performance comparisons show that the OPSO with IMM
is better than the PSO with the conventional move behavior
in a limited amount of computation time using these test
problems.

The rest of this paper is organized as follows. Section II
presents the OED used for the IMM of OPSO. Section III gives
the proposed OPSO with IMM. The performance comparisons
of OPSO using the parametric optimization functions are pre-
sented in Section IV. Section V describes the application of
OPSO to the task assignment problems. Finally, Section VI
concludes this paper.

II. ORTHOGONAL EXPERIMENTAL DESIGN

For self-completeness, the concise description of the used
OED is given. More information for the efficient use of OED
can be found in [20]–[24].

A. Concepts of OED

An efficient way to study the effect of several factors simul-
taneously is to use the OED with both the OA and the factor
analysis. The factors are the variables (parameters), which af-
fect response variables, and a setting (or a discriminative value)
of a factor is regarded as a level of the factor. A “complete facto-
rial” experiment would make measurements at each of all pos-
sible level combinations. However, the number of level combi-
nations is often so large that this is impractical, and a subset
of level combinations must be judiciously selected to be used,
resulting in a “fractional factorial” experiment [12]–[14]. The
OED utilizes properties of the fractional factorial experiments
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to efficiently determine the best combination of factor levels to
be used in design problems.

The OED can provide near-optimal quality characteristics for
a specific objective. Furthermore, there is a large saving in the
experimental effort. The OED uses well planned and controlled
experiments in which certain factors are systematically set and
modified, and then, the main effect of factors on the response
can be observed. The OED specifies the procedure of drawing
a representative sample of experiments with the intention of
reaching a sound decision [15]. Therefore, the OED using the
OA and the factor analysis is regarded as a systematic reasoning
method.

B. Orthogonal Array

OA is a fractional factorial array, which assures a balanced
comparison of levels of any factor. OA is an array of numbers
arranged in rows and columns where each row represents
the levels of factors in each combination, and each column
represents a specific factor that can be changed from each
combination. The term “main effect” designates the effect on
response variables that one can trace to a design parameter. The
array is called orthogonal because all columns can be evaluated
independently of one another, and the main effect of one factor
does not bother the estimation of the main effect of another
factor [12], [13].

The used OA in IMM is described next. Let there be N
factors with two levels each. The total number of level com-
binations is 2N for a complete factorial experiment. To use
an OA of N factors, we obtain an integer M = 2�log2(N+1)�

where the bracket represents an upper ceiling operation, build
an OA LM (2M−1) with M rows and M − 1 columns, use the
first N columns, and ignore the other M − N − 1 columns. For
example, if N ∈ {4, 5, 6, 7}, then M = 8, and L8(27) is used.
The numbers one and two in each column indicate the levels of
the factors. Each column has an equal number of ones and twos.
The array is orthogonal when the four pairs, i.e., (1, 1), (1, 2),
(2, 1), and (2, 2), appear the same number of times in any two
columns.

The OA can reduce the number of level combinations for
factor analysis. The number of OA combinations required to
analyze all individual factors is only M = O(N), where N +
1 ≤ M ≤ 2N . A simple algorithm for constructing the used
two-level OAs can be found in [22]. After a proper tabulation of
experimental results, the summarized data are analyzed using
the factor analysis to determine the relative level effects of
factors.

C. Factor Analysis

Factor analysis using the OA’s tabulation of experimental re-
sults can allow the main effects to be rapidly estimated, without
the fear of distortion of results by the effects of other factors.
Factor analysis can evaluate the effects of individual factors
on the evaluation function, rank the most effective factors, and
determine the best level for each factor such that the evaluation
function is optimized.

Let fz denote a function value of the combination z, where
z = 1, . . . , M . Define the main effect of factor j with level k as
Sjk, where j = 1, . . . , N , and k = 1, 2

Sjk =
M∑

z=1

fz · Fz (6)

where Fz = 1 if the level of factor j of combination z is k;
otherwise, Fz = 0. Considering the case that the optimization
function is to be maximized, the level 1 of factor j makes a
better contribution to the function than the level 2 of factor j
when Sj1 > Sj2. If Sj1 < Sj2, level 2 is better. On the contrary,
if the function is to be minimized, level 2 (level 1) is better
when Sj1 > Sj2(Sj1 < Sj2). If Sj1 = Sj2, levels 1 and 2 have
the same contribution. The main effect reveals the individual
effect of a factor. The most effective factor j has the largest
main effect difference MED = |Sj1 − Sj2|.

Note that the main effect holds only when no or weak in-
teraction exists, and that makes the experiment meaningful. An
actual experiment result is estimated based only on the factors
with the major effect. The difference between the estimated and
experimental results is the degree of interactions among factors.
In order to achieve an effective design, experiments should
be prepared so as to reduce the interactions among factors.
For generalized optimization problems with parameters having
more or less strong interactions, the OPSO can still work well
because the evolution ability of the PSO can compensate the
OED excluding the study of interactions.

After the better one of two levels of each factor is determined,
an intelligent combination consisting of all factors with the
better levels can be easily derived. The OED is effective for
the development design of efficient search for the intelligent
combination of factor levels, which can yield a high-quality
objective function value, compared with all values of generated
combinations.

III. PROPOSED OPTIMAL PSO

IMM is the main phase in adjusting the particles’ velocities
of OPSO. The major concerns of efficiently using the IMM are
the following: 1) how to encode system parameters into the
position X of a particle and 2) how to effectively divide X into
N partial vectors where each partial vector is treated as a factor
of the OED. The representation X plays an important role in
making the IMM efficient, as described in Section III-A. How
to efficiently use the IMM involving the division of X is given
in Section III-B. The proposed OPSO is given in Section III-C.

A. Particle Representation

A suitable way of encoding the system parameters into the
position X of a particle is important in efficiently using the
IMM. An experienced engineer of using IMM tries to use ap-
propriate parameter transformation for handling constraints in
order to confine searches within feasible regions. Considering
the properties of OED, the main effects of individual factors
are more accurate for unconstrained problems than constrained
problems if the constraints are not properly handled. Therefore,
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problem-specific particle representation and specialized oper-
ations are generally more efficient in solving the constrained
problems than any other methods using penalty approaches.
The necessity of maintaining feasibility can make the OED-
based operation more efficient than the penalty approach [22].

To accurately estimate the main effect of OED, the position
of a particle should be encoded so as to reduce the degree
of epistasis among parameters xi and maintain the feasibility
of all conducted combinations. A proper encoding scheme of
particles where the parameters with strong interactions (if prior
knowledge is available) are encoded together would enhance
the effectiveness of particle division. An illustrative example
using an effective parameter transformation to reduce the de-
gree of epistasis and confine searches within feasible regions
for designing genetic-fuzzy systems can be found in [20].
Consequently, the experiments can be prepared in order to
reduce the interactions among factors by properly assigning
partial vectors to individual factors.

B. Intelligent Move Mechanism

For the position of each particle Xi(t) = [xi1(t), . . . ,
xiD(t)]T, the IMM generates two temporary moves H =
[h1, h2, . . . , hD]T and R = [r1, r2, . . . , rD]T corresponding to
the cognitive and social parts, respectively

hd = xid(t) + wνid(t) + c1 · rand() · (pid(t) − xid(t)) (7)

rd = xid(t) + wνid(t) + c2 · rand()·(pgd(t)−xid(t)). (8)

The IMM aims at efficiently combining good partial vectors of
H and R to generate the next move Xi(t + 1), as described
here.

Divide the D-dimensional vector of Xi into N nonover-
lapping partial vectors using the same division scheme for H
and R. The proper value of N is problem-dependent. The
larger the value of N , the more efficient it is the IMM if the
interactions among partial vectors are weak. If the existing
interactions among partial vectors are not weak, the smaller the
value of N , the more accurate it is the estimated main effect of
individual partial vectors. Considering the tradeoff, an efficient
division criterion is to minimize the interactions among partial
vectors while maximizing the value of N . To efficiently use all
columns of OA excluding the study of intractable interactions,
the used OA is LN+1(2N ), and the largest value of N is
equal to 2�log2(D+1)� − 1 where the bracket represents a lower
ceiling operation. The N − 1 cut points are randomly specified
from the D − 1 candidate cut points which separate individual
parameters. Note that the parameter N at each call of the
following IMM operation can be a constant or variable value.
For example, a coarse-to-fine strategy using a variable value
of N is sometimes more efficient [21] (for a more detailed
study of efficiently assigning parameters to factors, please
refer to the OED-based optimization algorithms with real-world
applications [20]–[24]).

How to perform an IMM operation using Xi(t) with an
objective function f is described as follows.

Step 1) Generate two temporary moves H and R for Xi(t)
using (7) and (8).

Step 2) Divide each of H and R into N partial vectors
where each partial vector is treated as a factor.

Step 3) Use the first N columns of an OA LM (2M−1),
where M = 2�log2(N+1)�.

Step 4) Let levels 1 and 2 of factor i represent the ith partial
vectors of H and R, respectively.

Step 5) Compute the objective function value fz of the
combination z, where z = 1, . . . , M .

Step 6) Compute the main effect Sjk, where j = 1, . . . , N ,
and k = 1, 2.

Step 7) Determine the better one of two levels of each factor
based on the main effect.

Step 8) The next move Xi(t + 1) is formed using the com-
bination of the better partial vectors.

Step 9) Verify that Xi(t + 1) is superior to Xi(t) and the
M sampling solutions derived from the OA combi-
nations. If it is not true, let Xi(t + 1) be the best one
among Xi(t) and these M sampling solutions.

The OED has been proven optimal for additive and quadratic
models, and the selected combinations are good representations
for all of the possible combinations [12]. The OA specifies a
small number M of representative combinations that are uni-
formly distributed over the neighborhood of the position Xi(t).
The number of objective function evaluations is M + 1 per
IMM operation, which includes M evaluations in Step 5) and
one in Step 9). The IMM spends M + 1 function evaluations,
whereas the move mechanism of PSO spends one function
evaluation using the generate-and-go method to determine the
next move. However, the M sampling solutions and the factor
analysis make the IMM more efficient in obtaining the next
move. If interactions among partial vectors are weak, Xi(t + 1)
is a potentially good approximation to the best one of all the 2N

combinations in the neighborhood of Xi(t).

C. OPSO Algorithm

The simple OPSO algorithm with IMM for the optimization
function f is described here. All efficient strategies of control-
parameter specification and heuristics which are good for
PSO may be also good for OPSO.

Step 1) Randomly initialize Xi(t) and Vi(t), and compute
f(Xi), where i = 1, . . . ,Np, and t = 0.

Step 2) Compute Pi(t) for each particle and Pg(t) of the
swarm.

Step 3) Apply the IMM to generate Xi(t + 1) for each
Xi(t), i = 1, . . . ,Np.

Step 4) Vi(t + 1) = Xi(t + 1) − Xi(t), i = 1, . . . ,Np.
Step 5) If a prespecified stopping condition is met, stop the

algorithm; otherwise, increase the value of t by one
and go to Step 2).

The overhead of IMM in preparing the OA experiments
and the factor analysis is relatively small compared with the
cost of function evaluations. Let G be the number of total
iterations. The number of IMM operations is Np · G. The
time complexity of OPSO is Np + Np · G(M + 1) function
evaluations, where M + 1 is the number of function evaluations
per IMM operation. The complexity of PSO is Np + Np · G
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TABLE I
PERFORMANCE COMPARISONS OF VARIOUS ALGORITHMS FOR A PARAMETRIC FUNCTION WITH A GLOBAL OPTIMUM OF 121.598

function evaluations. When the OPSO is compared with the
PSO using the same number of function evaluations, the OPSO
uses a smaller number of iterations.

Generally, research works limited the value of Np to the
range of 20–60 [6]. It is suggested that even though there is
a slight improvement to the optimal solution with increasing
swarm size, it increases the number of function evaluations
to converge to an error limit. Since the IMM can efficiently
exploit the neighborhood of a particle, the OPSO generally uses
a relatively small value of Np.

IV. PERFORMANCE COMPARISONS OF OPSO

Kennedy [27] indicated that the local version of PSO might
perform better on complex problems, whereas the global
version of PSO would perform better on simple problems.
Mendes et al. [26] indicated that one cannot find an efficient and
general topology structure for any kinds of functions. Similarly,
there are two versions of OPSO. To avoid from involving the
specification of neighborhood topology and evaluate its gen-
eralization ability, the global version of OPSO with constants
w = 0.9 and c1 = c2 = 2 is used for all performance com-
parisons in this paper. Let the optimization functions have D
parameters. The used OA is LN+1(2N ), where N =
2�log2(D+1)� − 1.

Four versions of PSO using benchmark functions (see
Table II) are evaluated: global versus local version (with a
neighborhood size of five) and inertia weight (w = 0.9 and
c1 = c2 = 2) versus constriction factor (w = 0.72984 and c1 =
c2 = 1.4962). The best version of PSO is selected for com-
parisons with OPSO, which uses the local version with a
constriction factor. In this section, the PSO uses Np = 20,
and the OPSO uses Np = 5. Both the OPSO and the PSO
do not use any local search or heuristics which can improve
their performances for specific problems. For fair comparisons,
the OPSO and the PSO use the same prespecified number of
function evaluations (Neval) as the stopping condition.

A. Large Parameter Optimization Problem

KrishnaKumar et al. [28] proposed three approaches,
namely, stochastic GA, sensitivity GA, and GA-local search,
and provided reasonable success on the large parameter opti-

mization problems using the test function f(X) with D = 100
as follows:

max f(X) = −
D∑

i=1

[
sin(xi) + sin

(
2xi

3

)]
(9)

where X = [x1, . . . , xD]T, and variable xi ∈ [3, 13]. The per-
formances of the aforementioned three methods and a simple
GA (SGA) are obtained from [28]. To demonstrate a high
performance of OPSO, the OPSO is additionally compared
with the following popular GAs: SAGA [29], GA with adaptive
probabilities of crossover and mutation (AGA) [30], and SGA
with an elitist strategy using one-point crossover (OEGA) [31].
The results of SAGA, AGA, and OEGA are obtained from [22].
Since the performance of the stochastic GA is very good, both
the PSO and the OPSO use Neval = 12 000 for a direct com-
parison. The average performances of all compared algorithms
using ten independent runs are shown in Table I. The results
reveal that the OPSO can efficiently obtain the best solution
116.183 where the solution of PSO is 113.705.

B. Parametric Optimization Function

To evaluate the efficiency of OPSO for solving optimization
functions with various dimensions, 12 benchmark functions
gleaned from the literature, including unimodal and multimodal
functions, continuous and discontinuous functions, smooth and
nonsmooth functions, and function with and without interac-
tions among parameters, are tested in the experimental study.
The test function, the variable domain, and the global optimum
for each function with D parameters are obtained from [22] and
listed in Table II.

The average, best, and worst performances of PSO and
OPSO using 30 independent runs for D = 10 and 100 are listed
in Tables III and IV. A paired Wilcoxon test is applied to the
results of PSO and OPSO, and the p values are also given. The
experimental results reveal that the OPSO performs well and is
significantly better than the PSO for most functions in a limited
amount of computation time.

In order to show that the proposed IMM is effective, the
simple PSO and OPSO without heuristics are further com-
pared with the following GAs with elitist strategy and the
associated commonly used crossover, which are denoted as
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TABLE II
BENCHMARK FUNCTIONS

TABLE III
FUNCTION VALUE COMPARISONS FOR D = 10

OEGA (one-point), TEGA (two-point), UEGA (uniform), and
BLXGA (BLX-α) [32]. Each parameter is encoded using
10 bit for all test functions except that functions f9 and f12

use 24 bit. The dimensions of the 12 test functions vary on D =
10, 20, . . . , 100 in the experiments. The stopping condition uses
Neval = 10 000 for all compared algorithms.

To illustrate the performance comparisons on various num-
bers of parameters, we use a distance function Dist(D) for
describing the mean distance between the optimal solution

TABLE IV
FUNCTION VALUE COMPARISONS FOR D = 100

fopt(D) and the obtained best solution fbest(D) for one pa-
rameter as follows:

Dist(D) = |fopt(D) − fbest(D)| /D. (10)

The results of average Dist(D) for all test functions with
D = 10, 20, . . . , 100 using 30 independent runs are shown in
Fig. 1 and Tables V and VI. The results of all GAs are obtained
from [22]. Fig. 1 shows that the mean-distance values Dist(D)
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Fig. 1. Comparisons of various algorithms using Dist(D) curves for functions f1, f2, . . ., and f12 in (a), (b), . . ., and (l), respectively.
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TABLE V
FUNCTION VALUES AND RANKS FOR FUNCTIONS WITH D = 10

TABLE VI
FUNCTION VALUES AND RANKS FOR FUNCTIONS WITH D = 100

of OPSO and PSO slightly increase while D increases from
10 to 100 compared with other algorithms. Tables V and VI
reveal that the OPSO and the PSO have the best and second
performances with final ranks 1 and 2, respectively. From these
experimental results, it reveals that the OPSO performs well
in efficiently solving small and large parameter optimization
problems in a limited amount of computation time.

Recently, two OED-based algorithms, namely, IEA [22] and
OSA [24], which are efficient for solving the large parameter
optimization problems were proposed. All the three OED-based
algorithms have the same superiority for the large parameter
optimization problems. The common scenario is that the simple
IEA, OSA, and OPSO can significantly improve the conven-
tional GAs, SA, and PSO, respectively, for large parameter
optimization problems. Due to different aims and merits, the
comparisons among the three OED-based algorithms are not
discussed in this paper.

V. TASK ASSIGNMENT PROBLEMS

A. Problem Description [8]

Task assignment is one of the core steps to effectively exploit
the capabilities of distributed or parallel computing systems.

Fig. 2. TIG instance on a homogeneous system.

The task assignment problem is that of assigning tasks of a
program among different processors of a distributed computer
system in order to reduce the program turnaround time and to
increase the system throughput. A distributed program is char-
acterized by task interaction graph (TIG) G(VT, ET), where
VT = {1, . . . , m} represents the tasks of a program, and ET

models the interaction between these tasks. The edge weight
eij between nodes i and j denotes the information exchange
between these pair of tasks. The node weight wij corresponds
to the work to be performed by task i on processor j. In
a homogeneous system, processors have the same computing
power, and each task takes the same amount of time to execute
on each processor. Fig. 2 shows an instance of the problem on
a homogenous system.

The underling computing system is represented by a proces-
sor interaction graph (PIG) (VP, EP), where VP = {1, . . . , n}
represents the set of processors in the system, and EP represents
the set of communication links between these processors. An
edge weight dkj between any two nodes k and j represents the
length of the shortest path between the corresponding proces-
sors. The assignment problem can be formally represented as
follows:

A : VT → VP (11)

where A is a function that maps the set of tasks VT to the set
of processors VP. A(i) = j if task i is assigned to processor
j. Let m be the total number of tasks and n be the total
number of processors, where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and then,
the objective function (a minimax cost model) is described next.

Find a mapping instance A, such that when estimating the
total time required by each processor, the largest time among
all processors is minimized. Let Cexe(A)k be the total execution
time of all tasks assigned to processor k, such that

Cexe(A)k =
∑

i

wik ∀A(i) = k (12)

and let Ccom(A)k be the total interaction time between the tasks
assigned to processor k and those that are not assigned to that
processor in an assignment A, i.e.,

Ccom(A)k =
∑

i

∑
j

dA(i)A(j)eij

∀A(i) = k, and A(j) 
= k. (13)
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Fig. 3. Performance comparisons of PSO and OPSO for various numbers m of tasks. (a) m = 50. (b) m = 100. (c) m = 150. (d) m = 200. (e) m = 250.
(f) m = 300.

Then, for a given assignment A, Ctotal(A)k, which is the total
time of a processor k, will be equal to the sum of the execution
time and the interaction time for processor k, i.e.,

Ctotal(A)k = Cexe(A)k + Ccom(A)k. (14)

Then, the final cost of an assignment will be dominated by the
processor with the highest Ctotal(A)k, i.e.,

Cost(A) = max (Ctotal(A)k for 1 ≤ k ≤ n) . (15)

The goal of the task assignment problem is to find an assign-
ment A which has the minimum cost for a given TIG on a given
PIG, i.e.,

minimize Cost(A). (16)

B. Performance Comparison

The source code of the compared PSO and data sets is
obtained from Salman et al. [8]. A particle is represented as
X = [x1, . . . , xm]T, where m is the number of tasks. Each
variable xi has a discrete set of possible values belonging to
{1, . . . , n}, where n is the number of processors in the distrib-
uted system under consideration. The particle representations
(mapping between problem solution and particle) of PSO and
OPSO are the same. The control parameters of OPSO are as
follows: Np = 30, w = 0.9, and c1 = c2 = 2.0. If m > 100,
the OA table uses L16(215) with N = 15; otherwise, L8(27)
with N = 7. The stopping condition uses the same number
of Neval with that of PSO using Np = 2m and 150 gene-
rations [8].

The test data consist of six randomly generated TIGs. The
size of TIG is varied from m = 50 to 300 nodes with an
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TABLE VII
COST COMPARISONS FOR TASK ASSIGNMENT PROBLEMS WITH m TASKS

increment of 50. We compare the PSO with the OPSO using ten
fully connected homogeneous processors. Therefore, there is
no variable which is independent in the optimization problem.
For each TIG, both the PSO and the OPSO conducted 30
independent runs. Fig. 3 shows the average convergences of
PSO and OPSO for various numbers m of tasks. Table VII
shows the cost results of PSO and OPSO.

The performance of the PSO in solving the task assignment
problem is evaluated in comparison with the GA for a number
of randomly generated mapping problem instances in [8]. The
results showed that the solution quality of PSO is better than
that of GA in most of the test cases. According to the results of
convergence and cost value (Fig. 3 and Table VII), we can see
that the OPSO is significantly better than the PSO in solving
task assignment problems.

The task assignment problem with up to 300 tasks is a large
parameter optimization problem which is NP-complete. Fur-
thermore, there are strong interactions among the parameters
of the task assignment problem. These interactions will result
in the so-called linkage of GA. Linkage represents the ability
of building blocks to bind tightly together. For the problem
with strong interactions, the conventional crossover operator of
GA usually disrupts building blocks and, thus, reduces the GA
performance. The move mechanism can probe a wider region
of search space than the OEGA. Furthermore, the probed space
of the move mechanism is smoother than that of the crossover
of GA in the late evolution. It would increase the chance to
find a better solution than the current best solution. As results,
the PSO is better than the GA in solving the task assignment
problem, and the OPSO using the divide-and-conquer strategy
is better than the PSO in solving the large task assignment
problem.

VI. CONCLUSION

This paper has proposed a novel variant of PSO, which
is named orthogonal PSO. OPSO is more specialized than
PSO and performs well on large-scale parameter optimiza-
tion problems with few interactions between variables. In this
paper, it is shown that the OPSO performs well in solving
the real-valued parametric functions and the large discrete
task assignment problem which is NP-complete in a limited
amount of computation time. This is achieved by the proposed
novel move behavior in the swarm: an IMM using a divide-

and-conquer strategy. The OPSO-based method can be widely
used to efficiently solve various applications of optimization
problems. We believe that the problem-dependent learning
strategies and auxiliary techniques can further advance the
performance of OPSO. From our computer simulation results,
the intelligent multiobjective version of OPSO is also efficient
in solving multiobjective large-scale parametric optimization
functions compared with the existing multiobjective versions of
PSO [33].
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