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Abstract—This paper proposes an intelligent multiobjective
simulated annealing algorithm (IMOSA) and its application to
an optimal proportional integral derivative (PID) controller de-
sign problem. A well-designed PID-type controller should satisfy
the following objectives: 1) disturbance attenuation; 2) robust
stability; and 3) accurate setpoint tracking. The optimal PID
controller design problem is a large-scale multiobjective opti-
mization problem characterized by the following: 1) nonlinear
multimodal search space; 2) large-scale search space; 3) three
tight constraints; 4) multiple objectives; and 5) expensive objective
function evaluations. In contrast to existing multiobjective algo-
rithms of simulated annealing, the high performance in IMOSA
arises mainly from a novel multiobjective generation mechanism
using a Pareto-based scoring function without using heuristics.
The multiobjective generation mechanism operates on a high-
score nondominated solution using a systematic reasoning method
based on an orthogonal experimental design, which exploits its
neighborhood to economically generate a set of well-distributed
nondominated solutions by considering individual and overall
objectives. IMOSA is evaluated by using a practical design exam-
ple of a super-maneuverable fighter aircraft system. An efficient
existing multiobjective algorithm, the improved strength Pareto
evolutionary algorithm, is also applied to the same example for
comparison. Simulation results demonstrate high performance of
the IMOSA-based method in designing robust PID controllers.

Index Terms—Evolutionary computation, genetic algorithm
(GA), multiobjective optimization, Pareto solution, proportional
integral derivative (PID) controller, simulated annealing.

I. INTRODUCTION

THIS paper proposes an intelligent multiobjective simu-
lated annealing algorithm (IMOSA) and its application

to a three-objective optimal proportional integral derivative
(PID) controller design problem. The PID controllers have
found extensive industrial applications for several decades [1].
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Despite the strong academic interest in modern control
methods in recent decades, PID controllers are still preferred
in industrial process control because they are simple, easy
to implement, and easy to retune online [2]. The theoretical
design of accurate and robust optimal controllers for multiple-
input multiple-output systems has recently received significant
attention. Well-designed controllers should satisfy the follow-
ing objectives: 1) disturbance attenuation; 2) robust stability;
and 3) accurate setpoint tracking [1]–[3]. Because the three
competing objectives cannot be measured by using the same
units, optimal control design is a multiobjective optimization
problem [3], [4].

The multiobjective optimal control design problem is gener-
ally cast as a single-objective problem by constructing a utility
function describing the relative importance of each objective
[4]–[10]. A genetic algorithm (GA) is commonly used to solve
the single-objective optimization problem of PID controller
design [1], [3], [5]–[8]. Chen et al. [1] adopted GA to de-
sign mixed H2/H∞ optimal PID controllers but applied it
to a single-input single-output system. Krohling and Rey [5]
investigated the same problem using GA with a different perfor-
mance index, i.e., time-weighted square error for a short settling
time. Chen and Cheng [6] adopted GA to design structure-
specified H∞ optimal controllers for practical applications,
but their procedure requires prior domain knowledge, i.e., the
Routh–Hurwitz criterion for reducing the domain size of each
design parameter. Kitsios et al. [7] adopted a GA-based method
blended with multiobjective characteristics to improve the per-
formance of the method [6]. Kitsios and Pimenides [8] adopted
GA to design a structure-specified robust-multivariable con-
troller. Ho et al. [9] adopted a single-objective orthogonal simu-
lated annealing algorithm to design mixed H2/H∞ optimal PID
controllers efficiently. Takahashi et al. [3], in employing group
properties of the Pareto set, developed a multiobjective GA
approach to the mixed H2/H∞ optimal control design using
the solutions of linear matrix inequalities or bilinear matrix
inequalities as an initial population of the GA.

Ulungu et al. [11] proposed a tool of multiobjective sim-
ulated annealing, adopting a new acceptance strategy using
a weighted-sum objective function to construct its accepted
probability. To obtain a set of nondominated solutions, the
multiobjective simulated annealing must modify its objective
weight for every run. A uniform spread of weights cannot be
guaranteed to provide a good spread of nondominated solutions.
The Pareto simulated annealing adopts an automatic step to tune
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the weight of the accepted probability [12]. The procedure of
the Pareto simulated annealing is similar to performing many
runs of multiobjective simulated annealing at once. The gener-
ation mechanisms of multiobjective simulated annealing [11],
Pareto simulated annealing [12], and fast simulated annealing
[13] adopt a generate-and-test technique to obtain a candi-
date solution for the next move. However, the generate-and-
test technique performs poorly when exploring an extremely
large and multimodal search space in a limited amount of
computation time and, therefore, is not acceptable for many
intractable engineering applications [14]. The orthogonal sim-
ulated annealing adopts an intelligent generation mechanism
that can efficiently generate a good candidate solution for
the next move by using a systematic reasoning method based
on orthogonal experimental designs [9], [15]. The orthogonal
simulated annealing performs better than the fast simulated
annealing [13] in solving large parameter optimization prob-
lems [9] and performs well in solving intractable engineering
problems [15].

This paper adopts the proposed IMOSA without using
heuristics, domain knowledge, and differentiability assumption
to obtain a set of accurate Pareto solutions to the three-objective
PID controller design problems. The high performance in
IMOSA arises mainly from a novel multiobjective generation
mechanism based on orthogonal experimental designs and
an associated Pareto-based scoring function, which does
not utilize heuristics or relative preferences among multiple
objectives. The performance of the IMOSA-based method
was compared with that of an efficient multiobjective GA,
the improved strength Pareto evolutionary algorithm (SPEA2)
[16], by designing a super maneuverable fighter aircraft system
[6]–[9]. Simulation results indicate that the IMOSA-based
method performs well in designing the three-objective robust
PID controllers.

The remainder of this paper is organized as follows.
Section II presents the concept of Pareto solutions and the
investigated problem. Section III presents the IMOSA-based
design method. Section IV shows the performance of the
proposed approach using IMOSA and SPEA2 in designing a
super maneuverable fighter aircraft system. Finally, Section V
concludes this paper.

II. PROBLEM DESCRIPTION

A. Definitions of Pareto-Optimal Solution

Real-world problems require the simultaneous optimization
of several conflicting objectives. A set of alternative solutions
should ideally be obtained and are known as Pareto-optimal
solutions [17]. These solutions are optimal in the sense that no
other solutions in the search space are superior to another when
considering all objectives. Without loss of generality, let min.
f = {f1, f2, . . . , fn} be an n-objective function where fi is to
be minimized.

When the following inequalities hold between two feasible
solutions X1 and X2, X2 is said to weakly dominate X1 [18]:

∀i : fi(X1) ≥ fi(X2). (1)

Fig. 1. Control system with plant perturbation and external disturbance.

When the following inequalities hold between X1 and X2,
X2 is said to dominate X1:

∀i : fi(X1) ≥ fi(X2) ∃j : fj(X1) > fj(X2). (2)

A feasible solution X∗ is said to be a Pareto-optimal
solution if and only if no feasible solution X exists where X
dominates X∗. The objective vectors of the Pareto-optimal
solutions in the objective space are called the Pareto-optimal
front. The objective vectors of the solutions that are nondom-
inated within a limited set of solutions are called the Pareto
front. The ultimate goal of solving the investigated multiob-
jective optimization problem is to efficiently find an accurate
set of well-spread nondominated solutions (Pareto solutions),
particularly in an environment where no preference or scaling
information of objective functions is available.

B. Robust PID Controllers

Consider a multiple-input multiple-output control system
with ni inputs and no outputs, as shown in Fig. 1, where P (s) is
the nominal plant, ∆P (s) is the plant perturbation, C(s) is the
controller, r(t) is the reference input, u(t) is the control input,
e(t) is the tracking error, d(t) is the external disturbance, and
y(t) is the output of the system [6]. Without loss of generality,
the plant perturbation ∆P (s) is assumed to be bounded by a
known stable function matrix W1(s)

σ (∆P (jw)) ≤ σ (W1(jw)) , ∀w ∈ [0,∞) (3)

where σ(A) denotes the maximum singular value of a
matrix A.

If a controller C(s) is designed such that the nominal closed
loop system (∆P (s) = 0 and d(t) = 0) is asymptotically sta-
ble, the robust stability performance satisfies the following
inequality

f1 = ‖W1(s)T (s)‖∞ < 1 (4)

and the disturbance attenuation performance satisfies the fol-
lowing inequality

f2 = ‖W2(s)S(s)‖∞ < 1 (5)

then the closed loop system is also asymptotically stable with
∆P (s) and d(t), where W2(s) is a stable weighting function
matrix specified by designers. S(s) and T (s) = I − S(s) are
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the sensitivity and complementary sensitivity functions of the
system, respectively

S(s) = (I + P (s)C(s))−1 (6)

T (s) =P (s)C(s) (I + P (s)C(s))−1 . (7)

Robust stability and disturbance attenuation are often insuf-
ficient in the control system design for advancing the system
performance. The minimization of tracking error f3 (i.e., H2

norm) should be considered

minimize f3 =
∫ ∞

0

eT(t)e(t)dt (8)

where e(t) = r(t) − y(t) is the error that can be obtained from
the inverse Laplace transformation of E(s) with ∆P (s) = 0
and d(t) = 0

E(s) = (I + P (s)C(s))−1 R(s). (9)

In this paper, the three objectives f1, f2, and f3 are minimized
simultaneously

minimize f = {f1, f2, f3}. (10)

The order of the derived optimal controller is very high when
using conventional methods, making it hard to implement. To
alleviate this difficulty, the mixed H2/H∞ optimal control
problem was investigated from the suboptimal perspective. A
structure-specified controller of the form [3]

C(s) =
Nc(s)
Dc(s)

=
Busu + Bu−1s

u−1 + · · · + B0

sz + az−1sz−1 + · · · + a0
(11)

is assigned with some desired orders u and z to minimize f ,
where

Bk =




bk11 · · · bk1ni

...
. . .

...
bkno1 · · · bknoni


 (12)

for k = 0, 1, . . . , u. Most conventional controllers employed in
industrial control systems have fundamental structures such as
PID and lead/lag configurations and are special cases of the
structure-specified controllers. A PID controller (ni = 3 inputs
and no = 3 outputs) has z = 1, u = 2, and a0 = 0, i.e.,

C(s) =
B2s

2 + B1s + B0

s
. (13)

A PID controller has 27 design parameters. A PI controller with
18 design parameters is a special case of a PID controller where
B2 = 0.

III. IMOSA-BASED DESIGN METHOD

The high performance in IMOSA arises mainly from a novel
multiobjective generation mechanism based on orthogonal ex-
perimental designs [19]–[24]. Chou et al. [21] first used a
Taguchi-genetic single-objective approach in designing an op-
timal gray-fuzzy controller of a constant turning force system.

The multiobjective generation mechanism utilizes a Pareto-
based scoring function to measure the performance of candidate
solutions in a multiobjective search space. Section III-A briefly
introduces concepts of the orthogonal experimental design. The
scoring function is described in Section III-B. Section III-C
presents the used orthogonal experimental design in IMOSA.
The multiobjective generation mechanism and a concise ex-
ample are presented in Sections III-D and E, respectively.
Section III-F presents the IMOSA-based design method.

A. Concepts of Orthogonal Experimental Design

The effect of several factors can be investigated simul-
taneously by using an orthogonal experimental design with
both orthogonal arrays and factor analysis. The factors are
the variables (parameters), which affect response variables. A
setting (or a discriminative value) of a factor is regarded as a
level of the factor. A “complete factorial” experiment would
perform measurements at each of all possible level combi-
nations. However, the number of level combinations is often
so large that the complete factorial approach is impracticable.
Therefore, a subset of level combinations must be carefully se-
lected, producing a “fractional factorial” experiment [19], [20].
An orthogonal experimental design utilizes the properties of
fractional factorial experiments to efficiently determine the best
combination of factor levels for use in design problems.

Orthogonal array is a fractional factorial array, which ensures
a balanced comparison of levels of any factor. Orthogonal array
is an array of numbers arranged in rows and columns where
each row represents the levels of factors in each combina-
tion, and each column represents a specific factor that can
be changed from each combination. The term “main effect”
indicates the effect on response variables that can be traced to a
design parameter. The main effect of one factor does not affect
the estimation of the main effect of another factor [19]–[21].

Factor analysis using the orthogonal array’s tabulation of
experimental results enables rapid estimation of the main
effects, without fear of distortion of results by the effects of
other factors. Factor analysis can evaluate the effects of individ-
ual factors on the evaluation function, rank the most effective
factors, and determine the best level for each factor such that the
evaluation function is optimized. An orthogonal experimental
design uses well-planned and controlled experiments in which
certain factors are systematically set and modified, and the
main effect of factors on the response can then be observed.
Therefore, the orthogonal experimental design is regarded as a
systematic reasoning method.

B. Scoring Function

To develop an efficient multiobjective simulated annealing
algorithm from extending the conventional simulated annealing
to solve multiobjective optimization problems, the evaluation
step of simulated annealing must contain an effective scoring
function for evaluating candidate solutions in the multiobjec-
tive space. The scoring function of IMOSA uses a set E to
evaluate the candidate solution (individual) belonging to E
in the multiobjective space, which most effectively exploits
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Fig. 2. Scores of 12 participant individuals in the objective space of a
biobjective minimization problem. The score of the dominated individual A
using the scoring function is F = 3 − 2 + 12 = 13 [24].

the Pareto dominance relationship using a single performance
measure. Simply, an individual has a high score if it dominates
many individuals. Conversely, an individual has a low score if
many individuals dominate it. The tournament-like score of an
individual X can be obtained by using the following scoring
function F [24]:

F (X) = {p − q + c|p = |U |, q = |V |, c = |E|
s.t. X ≺ U, V ≺ X,U ⊆ E and V ⊆ E} (14)

where ≺ denotes domination, c is the size of E, p is the number
of individuals in U that can be dominated by X , and q is the
number of individuals in V that can dominate X in the objective
space.

The function F , which utilizes a pure Pareto-ranking assign-
ment strategy, can assign discriminative scores to both non-
dominated and dominated individuals. Fig. 2 shows an example
of assigning scores using F for a biobjective minimization
problem. For example, A dominates three individuals (p = 3)
and is dominated by two individuals (q = 2). Therefore, the
score of A is F = 3 − 2 + 12 = 13. The score assignment
strategy works for both IMOSA and the intelligent multiobjec-
tive evolutionary algorithm of Ho et al. [24].

C. Orthogonal Experimental Design in IMOSA

This section describes the orthogonal experimental design
with three-level orthogonal arrays in IMOSA. All the design
parameters are generally assigned into N groups. One group is
regarded as a factor. The number of factors is thus N , and each
factor has three levels. The number of total experiments is 3N

for the popular “one-factor-at-once” study. To utilize an orthog-
onal array of N factors, obtain an integer M = 3�log3(2N+1)�,
build a three-level orthogonal array LM (3(M−1)/2) with M
rows and (M − 1)/2 columns, use the first N columns, and
ignore the remaining (M − 1)/2 − N columns. Table I shows
an example of an orthogonal array L9(34) with M = 9 for
three-objective design problems. Orthogonal arrays can reduce
the number of experiments for factor analysis. The number
of orthogonal experiments required to analyze all solution

factors is only M = O(N), where 2N + 1 ≤ M ≤ 6N − 3,
which is much smaller than 3N . An algorithm for constructing
orthogonal arrays can be found in [9] and [25]. After tabulating
the experimental results, the summarized data were analyzed
by using the factor analysis to determine the relative effects of
levels of various factors, as described next.

Let Fj denote a value of a response variable (objective func-
tion F ) for the combination corresponding to the experiment
j, where j = 1, . . . , M . Define the main effect of factor i with
level k as Sik, where i = 1, . . . , N and k = 1, 2, 3

Sik =
M∑

j=1

Fj · δj (15)

where δj = 1 if the level of factor i of combination j is k,
and δj = 0 otherwise. If the objective function is to be maxi-
mized, then level k of factor i makes the best contribution to F
when Sik = max{Si1, Si2, Si3}. If the objective function
is to be minimized, then level k of factor i is best if Sik =
min{Si1, Si2, Si3}. The main effect represents the individual
effect of a factor. The most effective factor has the largest
main effect difference, which is given by MEDi = max{Si1,
Si2, Si3} − min{Si1, Si2, Si3}, i = 1, . . . , N . A reasoned so-
lution consisting of all factors with the best levels can be easily
derived after the best level of each factor is determined. An
orthogonal experimental design is a representative quality
control method and can also work to improve the move mecha-
nism of simulated annealing [9] and crossover operator of GA
[24] efficiently. Ho et al. [9], [24] provide concise examples of
utilizing orthogonal experimental designs.

Let n be the number of objectives for the optimization
problem. The multiobjective generation mechanism operates
on a nondominated solution X with a high score F using
orthogonal experimental designs to exploit its neighborhood
and to economically generate a set of promising nondominated
solutions by considering individual and overall objectives. If the
overall objectives are considered, then the scoring function F to
be maximized is treated as the objective function, and the rea-
soned solution Q is derived by using Fj = F (Xj), where Xj is
the generated combination corresponding to the experiment j,
j = 1, . . . , M . If only the individual objective function fh

is considered, then the reasoned solution Qh is derived by
using the main effect Sh

ik based on fhj = fh(Xj), where
h = 1, . . . , n

Sh
ik =

M∑
j=1

fhj · δj . (16)

D. Multiobjective Generation Mechanism

The multiobjective generation mechanism operates on a
current solution X to generate a set of nondominated solu-
tions and to select one good candidate solution Q for the
next move. Consider a parametric optimization problem of m
parameters. Assuming that X = [x1, . . . , xm]T, where xi is
a system parameter, the multiobjective generation mechanism
generates two temporary solutions X1 = [x1

1, . . . , x
1
m]T and
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TABLE I
EXAMPLE OF L9(34) FOR THREE-OBJECTIVE DESIGN PROBLEMS

X2 = [x2
1, . . . , x

2
m]T from perturbing X , where x1

i and x2
i are

generated by perturbing xi as follows:

x1
i = xi + xi x2

i = xi − xi, i = 1, . . . ,m. (17)

The values of x = [x1, . . . , xm]T are generated by the
Cauchy–Lorentz probability distribution [13].

By using the same grouping scheme for X , X1, and X2, all
the m parameters are assigned into N nonoverlapping groups.
The proper value of N is problem-dependent. A larger N
increases the efficiency of the generation mechanism if the
interaction effects among the groups are weak. If the existing
interaction effect is not weak, then a larger group size increases
the accuracy of the estimated main effect of groups. An efficient
biobjective grouping criterion based on this tradeoff minimizes
the interaction effects between groups and maximizes the value
of N . To use all columns of an orthogonal array, N is generally
specified as N = (3log3(2m+1)� − 1)/2, and the used orthog-
onal array is L2N+1(3N ) excluding the study of intractable
interaction effects. More information of determining the proper
value of N can be referred to the works of Ho et al. [9], [24].

IMOSA utilizes an elite set E to maintain the best non-
dominated individuals generated so far and to compute scores
in the objective space for all individuals in E. The multiob-
jective generation mechanism aims at efficiently combining
good parameter values from solutions X , X1, and X2 to
generate a good next move Q. Since there are n minimization
objectives, f1, . . . , fn, and a combined maximization objective
F , n + 1 good move directions are potentially available for
IMOSA. Therefore, n + 1 candidate solutions, Q1, . . . , Qn and
Q, are first generated by using orthogonal experimental designs
based on the n + 1 individual objectives, f1, . . . , fn and F ,
respectively. Consequently, Q is selected from the best one
of the n + 1 generated solutions and M combinations of the
orthogonal experiments.

Performing a multiobjective generation mechanism on a cur-
rent solution X with m parameters using a scoring function F
and n objective functions f1, . . . , fn is described as follows.

Step 1) Generate two temporary solutions X1 and X2 using
X from (17). For each of X , X1, and X2, randomly
assign all parameters to N groups using the same
grouping scheme where each group is treated as a
factor.

Step 2) Utilize the first N columns of an orthogonal ar-
ray LM (3(M−1)/2), where M = 3�log3(2N+1)�. Let
levels 1, 2, and 3 of factor i represent the ith groups
of X1, X , and X2, respectively.

Step 3) Compute fhj = fh(Xj), where Xj is the gener-
ated combination corresponding to the experiment
j, where h = 1, . . . , n and j = 1, . . . ,M . Add all
Xj’s to the elite set E.

Step 4) Compute Fj = F (Xj) using fh(e), where e ∈ E.
Let Xbest be the best of Xi according to their scores.

Step 5) Compute the main effects Sik and Sh
ik using Fj and

fhj , respectively, where i = 1, . . . , N , k = 1, 2, 3,
and h = 1, . . . , n. The reasoned solutions Q and
{Q1, . . . , Qn} are formed using the combination
of the best groups from the derived corresponding
solutions X , X1, and X2.

Step 6) Add Q and {Q1, . . . , Qn} into E. Q is the non-
dominated solution with the highest score selected
from {Q1, . . . , Qn}, Q, and Xbest, but Q is not
equal to X .

The multiobjective generation mechanism on X can system-
atically generate M candidate solutions Xj uniformly sampled
from the neighborhood of X , and n + 1 reasoned solutions Q
and {Q1, . . . , Qn}. Consequently, a good candidate solution Q
is obtained as the new current solution for the next move. There-
fore, there are M + n + 1 function evaluations per operation of
the multiobjective generation mechanism. A good set of non-
dominated solutions in E is also generated simultaneously. The
multiobjective generation mechanism combines the advantages
of local exploitation and global exploration, helping to generate
wild-spread Pareto solutions.
1) Local Exploitation: Since an orthogonal array specifies a

small number of representative combinations that are uniformly
distributed over the whole space of all possible combinations in
the neighborhood of X , the uniform sampling method of using
orthogonal experimental designs is also helpful for objective
functions with a high correlation among parameters. By using
factor analysis, the multiobjective generation mechanism can
select a number of combinations from the orthogonal experi-
ments and reason some potentially good solutions with the best
score performance as parts of the current Pareto solutions. The
neighborhood of X can be adaptively specified in generating
X1 and X2 using (17).

2) Global Exploration: The simultaneous search for the
n + 1 directions of objectives f1, . . . , fn and F helps maintain
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TABLE II
CONCISE EXAMPLE OF THE MULTIOBJECTIVE GENERATION MECHANISM USING L9(34)

high diversity in E. The main goals of designing novel multi-
objective simulated annealing algorithms are to maintain high
diversity and to pursue the Pareto front simultaneously. The
multiobjective generation mechanism achieves these goals by
a systematic and automatic method without tuning weights,
which is necessary in the multiobjective simulated annealing
[11] and Pareto simulated annealing [12]. This advantage is
particularly important in an environment with no preference or
scaling information of objective functions.
3) Convergence to Pareto Front: Simulated annealing is a

point-based method, in contrast with the population-based GA.
The main concern of multiobjective simulated annealing is
the efficient convergence to a wild-spread Pareto front. The
multiobjective generation mechanism, which operates on a
current solution without the recombination of GA, can cope
with the difficulty of tight constraints. The advantages of local
exploitation and global exploration are helpful for an efficient
convergence to a wild-spread Pareto front using a fairly small
number of function evaluations. The size of the neighborhood
can be larger in the early iterations to focus on global explo-
ration and small in the late iterations for local exploitation.
By incorporating the temperature of simulated annealing as
a control parameter into the function that adaptively defines
the neighborhood of X , IMOSA can stably converge to a
satisfactory Pareto front.

E. Concise Example

An illustrative example of the multiobjective generation
mechanism using a biobjective function is given as follows:

f(x1, x2, x3) = min . {f1, f2}
f1(x1, x2, x3) = 100 x1 − 10 x2 − x3

f2(x1, x2, x3) = 100 x3 + 10 x2 − x1. (18)

Consider that the multiobjective generation mechanism oper-
ates on an initial solution X = [x1, x2, x3]T = [2, 5, 8]T and
that the elite set E is empty. Table II shows the result. Fig. 3
shows the sampling and reasoned solutions obtained. In Step 1),
assume that x = [1, 1, 1]T. Therefore, X1 = [3, 6, 9]T and
X2 = [1, 4, 7]T form perturbing X . In Step 2), let N = 3,
and assign x1, x2, and x3 to factors 1, 2, and 3, respectively.
Therefore, the first three columns of L9(34) are utilized. A com-
plete factorial experiment would evaluate 33 = 27 level com-
binations, where the best combination (x1, x2, x3) = (1, 6, 9)
with f1 = 31 considering the first objective and (x1, x2, x3) =
(3, 4, 7) with f2 = 737 considering the second objective only.

A fractional factorial experiment uses a well-balanced subset
of nine out of 27 combinations (X1, . . . , X9). Table II shows
the level settings for each factor. In Step 5), all the values
of f1(Xj) and f2(Xj) corresponding to the experiment j,
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Fig. 3. Sampling and reasoned solutions obtained by one operation of the
multiobjective generation mechanism.

j = 1, . . . , 9, are calculated, and then X1, . . . , X9 are added
to E where c = 9. The scores Fj = F (Xj) are then cal-
culated. For example, X9 = [1, 4, 8]T and f1(X9) = 52 and
f2(X9) = 839. F9 = 4 − 1 + 9 = 12 where X9 dominates
four individuals X1, X2, X4, and X6 and is dominated by X7.
The Xbest is X7 with F7 = 6 − 0 + 9 = 15.

The main effects Sik and Sh
ik are calculated using Fj and

fjh in Step 6). For example, considering f1 only, S1
21 = f11 +

f14 + f17 = 396, and the best level of factor 1 is level 3, since
S1

13 < S1
12 < S1

11. Therefore, x1 = 1. Finally, the best solution
Q1 = [1, 6, 9]T with f1 = 31 can be obtained. The most effec-
tive factor is x1 with MED1 = 600. Equation (18) confirms that
x1 has the largest coefficient of 100. Similarly, Q2 = [3, 4, 7]T

with f2 = 737 can be obtained. The best levels of factors 1
and 3 obtained by the scoring function F are 3 and 3, re-
spectively. Therefore, x1 = 1 and x3 = 7. Since all three levels
of factor 2 have the same main effect, all intermediate com-
binations Q1, Q2, and Q3 using x2 = 4, 5, 6 are considered.
Finally, the solution Q = Q = Q3 = [1, 6, 7]T with F = 15 is
obtained.

Some observations are described next: 1) the representative
nine solutions sampled from the neighborhood of the current
solution X have the scores 3, 6, 6, 9, 9, 9, 12, 12, and 15,
where F (X) = 9; the generated combinations and their scores
are uniformly distributed; 2) the reasoned solutions Q1 and Q2

are the best solutions considering the individual objectives f1

and f2 only. It is beneficial to obtain a well-spread Pareto front;
3) the multiobjective generation mechanism generates a very
good nondominated solution Q for the next move; and 4) a
set of nondominated solutions {Q1, Q2, Q,Q1, and Q2} is
generated simultaneously.

F. Design of Controllers Using IMOSA

Designing an optimal control system is equivalent to finding
an optimal solution X = [x1, . . . , xm]T in a high-dimensional
search space, where each point represents a vector of m de-

Fig. 4. Three-objective Pareto front of IMOSA by merging the results of ten
independent runs.

sign parameters. For convenience and simplicity, the following
equation is derived from the controller with (11):

X = [a0 · · · az−1b011 · · · b01ni
b021 · · · b02ni

· · · bunoni
]T

= [x1, . . . , xm]T (19)

as the controller parameter vector, where m = z + (u + 1) ×
ni × no, is the number of total design parameters. Denote Θ as
the search space consisting of all admissible xi, i = 1, . . . ,m.
The structure-specified mixed H2/H∞ optimal control design
problem is equivalent to finding an optimal X from Θ to min-
imize the objective function f in (10) subject to the inequality
constraints (4) and (5). Chen and Cheng [6] used a prior domain
knowledge, i.e., the Routh–Hurwitz criterion, to reduce the
domain size of each design parameter xi. The search space
consists of all admissible xi ∈ [−20000, 20000], i = 1, . . . ,m
[6]–[9]. To demonstrate the strong search ability of IMOSA
in efficiently obtaining a good Pareto front to the investigated
problem, this paper does not confine the search space Θ using
any domain knowledge.

IMOSA is based on a traditional single-objective simulated
annealing algorithm for solving multiobjective optimization
problems. Four choices must be made when implementing
IMOSA to solve an optimization problem: 1) solution represen-
tation; 2) objective function definition; 3) design of generation
mechanism; and 4) design of a cooling schedule. In this paper,
the solution representation is X = [x1, . . . , xm]T, and the order
of xi in X is not critical, because according to the orthogonal
experimental design property, the different assignments of xi

to factors do not result in different reasoned combinations. The
scoring function F acts as a good objective function. IMOSA
utilizes the multiobjective generation mechanism and F to
efficiently search for a candidate solution for the next move and
a good set of nondominated solutions. The three parameters are
usually specified in designing a cooling schedule: 1) an initial
temperature T0; 2) a temperature update rule; and 3) a stopping
criterion of the IMOSA algorithm. The design of an efficient
cooling schedule for IMOSA depends on the objectives of the
decision makers.

IMOSA also needs a multiobjective version of the decision
step of simulated annealing. If the nondominated solution
Q dominates X and thus F (Q) > F (X), then Q is always
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TABLE III
ALL OF THE PARETO SOLUTIONS OF IMOSA

Fig. 5. Pareto fronts of IMOSA and SPEA2 by merging results of ten
independent runs and the single-objective solutions obtained by Chen and
Cheng [6], Kitsios et al. [7], and Ho et al. (OSA) [9]. Notably, the H∞ optimal
controller [6] has J2 < 1.0, where the exact value of J2 is not available.

accepted. If Q does not dominate X but F (Q) ≥ F (X), then Q
is also accepted, because Q compared with X dominates more
individuals in E. If F (Q) < F (X) (i.e., Q does not dominate
X), some fi exists such that fi(X) < fi(Q). Therefore, the
acceptance criterion is defined to accept Q with probability
P (Q) as follows:

P (Q)=




1, if F (Q)≥F (X)
min.

(
exp

(
f1(X)−f1(Q)

T

)
,

. . . , exp
(

fn(X)−fn(Q)
T

))
, if F (Q)<F (X).

(20)

A variable Count denotes the number of trials for the same
solution X , a constant Nmax denotes the maximal number of
trials for the same solution X , and a constant NE max denotes
the maximal number of solutions in elite set E. The bound
W1(s), weighting function matrix W2(s), and the controller
structure C(s) are specified for a given plant P (s). The pro-
posed IMOSA-based design method is described as follows.

Step 1) Initialize an empty elite set E with capacity NE max,
the temperature T = T0, Count = 0, and cooling
rate α. Randomly generate a feasible solution X .
Compute f1(X), . . . , fn(X) and F (X).

Step 2) Remove dominated solutions from E.
Step 3) Perform the multiobjective generation mechanism

using X to generate a candidate solution Q.

Step 4) Accept Q as the new solution X with the proba-
bility P (Q) in (20). If X �= Q (not accepted), then
increase the value of Count by one; otherwise, reset
Count = 0. If Count = Nmax (i.e., X is not changed
in Nmax iterations), then randomly select a nondom-
inated individual from E as a new current solution
X and reset Count = 0.

Step 5) Set T = αT .
Step 6) If a prespecified stopping condition is satisfied, then

stop the algorithm. Otherwise, go to Step 2).
If a single solution, rather than a set of Pareto solutions, is

needed, then Q is a good suggested solution. The presented
IMOSA is a simple version for generalized optimization prob-
lems. Some problem-dependent learning strategies that work
for conventional simulated annealing may also be good for
IMOSA.

IV. EXPERIMENTAL RESULTS

A. Test Problem

Consider the design problem of a longitudinal control system
of a super maneuverable fighter aircraft in horizontal flight at
an altitude of 15 000 ft with Mach number 0.24, airspeed VT =
238.7 ft/s, attack angle α = 25◦, and pitch angle β = 25◦. The
trim value of the path angle is β − α = 0◦, and the trim pitch
rate is γ = 0◦/s. The longitudinal dynamics of the system can
be described as

ẋ = Ax + Bu
y = Cx

}
(21)

where A, B, and C are given as in (22), shown at the bottom
of the next page.

Moreover, x = [VT , α, γ, β]T, and u = [uTV, uAS, uSS,
uLE, uTE, uT ]T, where uTV, uAS, uSS, uLE, uTE, and uT are
the perturbations in symmetric thrust vectoring vane deflection,
symmetric aileron deflection, symmetric stabilator deflection,
symmetric leading edge flap deflection, symmetric trailing edge
flap deflection, and throttle position, respectively. Notably, the
rank of the matrix B is only 3. By employing the pseudo-
control technique, the system equation can be rewritten as

ẋ = Ax + Bvv (23)

where Bv and v are given as in (24), shown at the bottom of
the next page.
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TABLE IV
BEST PERFORMANCES FOR VARIOUS PI CONTROLLERS IN TERMS OF J = J∞ + J2

Assume that the reference input is r(t) = [0, 1 − e−3t, 1 −
e−6t]T and that the system encounters the external disturbance
d(t) = 0.01e−0.2t cos(3162.3t) [1, 1, 1]T. The bound W1(s) of
the plant perturbation ∆P (s) is given by

W1(s) =
0.0125s2 + 1.2025s + 1.25

s2 + 20s + 100
I3×3. (25)

To attenuate disturbance, the stable weighting function
W2(s) consisting of a low-pass filter is chosen as

W2(s) =
0.25s + 0.025

s2 + 0.4s + 10 000 000
I3×3. (26)

The three-objective Pareto front, rather than the single-
objection solution to the optimal controller design problem,
provides more degrees of freedom to the designers.

B. Results

For performance comparison, the design problem of PI
controllers was solved by IMOSA, with parameters set to

NE max = 30, T0 = 150, α = 0.97, and Nmax = 30. The de-
sign parameters were assigned to N = 13 groups, and an
orthogonal array L27(313) was used. Each multiobjective gen-
eration mechanism evaluated 31 individuals, including M = 27
orthogonal array combinations and four reasoned solutions.
The stopping condition uses 10 000 evaluations of individuals.
Fig. 4 shows the three-objective Pareto front of IMOSA by
merging the results of ten independent runs. Table III shows all
of the 24 obtained nondominated IMOSA solutions, revealing
that the values of f1, f2, and f3 for all nondominated solutions
were less than 1.0. All these solutions satisfy constraints (4) and
(5). All values of the tracing error f3 were less than 0.08, and
most of them are less than 0.05. If many final nondominated
solutions are needed, then an additional external set can be
utilized to store all the nondominated individuals found so far.
The simulation results reveal that the IMOSA-based controller
is accurate.

The design problem was also solved by SPEA2 through ten
independent runs. The chromosomes of SPEA2 were encoded
using a binary string of 30 bits. The stopping condition is the
same as that of IMOSA. The parameters J∞ = (f2

1 + f2
2 )1/2,

A =



−0.0750 −24.0500 0 −36.1600
−0.0009 −0.1959 0.9896 0
−0.0002 −0.1454 −0.1677 0

0 0 1 0




B =



−0.0230 0 −0.0729 0.0393 −0.0411 0.1600
−0.0002 −0.0001 −0.0004 0 −0.0003 −0.0003
−0.0067 −0.0007 −0.0120 0.0006 0.0007 0.0005

0 0 0 0 0 0




C =


 1 0 0 0

0 −1 0 1
0 0 0 1


 (22)

Bv =




1 0 0
0 1 0
0 0 1
0 0 0




v =


−0.0230 0 −0.0729 0.0393 −0.0411 0.1600
−0.0002 −0.0001 −0.0004 0 −0.0003 −0.0003
−0.0067 −0.0007 −0.0120 −0.0006 0.0007 0.0005


u (24)
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Fig. 6. System outputs y1(t), y2(t), and y3(t) of various PI controllers using
the reference inputs r1(t) = 0, r2(t) = 1 − e−3t, and r3(t) = 1 − e−6t,
respectively. (a) IMOSA with J∞ = 0.6300 and J2 = 0.0473, (b) SPEA2
with J∞ = 0.6738 and J2 = 0.0654, and (c) Chen [6] with J∞ = 0.8194.
[“- - -”: y1(t), “. . .”: y2(t), “—”: y3(t)].

J2 = f3, and J = J∞ + J2 were adopted to enable a conve-
nient comparison of the performance of the proposed method
with existing methods not based on the three-objective ap-

proach [6]–[9]. Fig. 5 shows the Pareto fronts of IMOSA
(obtained from Table III) and SPEA2 by merging the results
of ten independent runs and solutions of the single-objective
methods of Chen and Cheng [6], Kitsios et al. [7], and the
orthogonal simulated annealing algorithm [9], revealing that the
nondominated solutions of IMOSA dominate all the solutions
except for that of the orthogonal simulated-annealing-based
method [9]. Table IV shows the best performances of various PI
controllers in terms of J . The comparison results reveal that the
orthogonal simulated annealing method and IMOSA perform
well in designing controllers.

Table IV reveals that the robust stability and disturbance
attenuation performances of the single-objective orthogonal
simulated annealing method are similar to those of IMOSA.
However, the value J2 = 0.0473 from the IMOSA-based
method is larger than J2 = 0.0374 from the orthogonal simu-
lated annealing method because of the concentration of compu-
tation effort on the single objective J2.

The PI controller obtained from the IMOSA-based method
with J = 0.6773 is given as in (27), shown at the bottom of the
page. Fig. 6 shows the system outputs of the IMOSA, SPEA2,
and Chen [6] controllers with the best performance in terms
of J . The system outputs of a well-designed controller with
robust stability and disturbance attenuation should be the same
with reference inputs. The simulation results indicate that the
IMOSA-based method can provide a very good solution to the
problem of designing three-objective optimal controllers with
system uncertainty and disturbance.

V. CONCLUSION

This paper has proposed an IMOSA and evaluated its per-
formance by designing three-objective robust PID controllers
for systems with uncertainties and disturbance. The optimal
control design problem is formulated as an optimization prob-
lem with three minimization objectives: robust stability, dis-
turbance attenuation, and tracking error. The IMOSA-based
method without prior domain knowledge can efficiently solve
the design problems of optimal control systems. A practical de-
sign example of a super-maneuverable fighter aircraft system is
presented to illustrate the design procedure and to demonstrate
the high performance of the proposed method. Experimental
results show that the IMOSA-based method performs well in
designing multiobjective optimal controllers.

IMOSA efficiently obtains a set of Pareto solutions from an
initial solution, which can be used to solve various applications
of multiobjective optimization problems with few interactions
among parameters, particularly for obtaining a set of Pareto
solutions by improving the existing single-objective solution
treated as an initial solution of IMOSA. IMOSA also serves

C(s) =


 3180.544 341.574 −19910.276
−63.017 −258.445 −19009.826
321.732 33.341 20000.000


 s +


−1667.748 −1992.274 1759.722

19845.673 −19960.835 −16556.570
17802.369 16240.564 19783.378




s
(27)
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as an efficient local searcher exploiting the neighborhood of
the existing single-objective solution. A future work combines
IMOSA with single-objective evolutionary algorithms for in-
tractable multiobjective optimization problems.
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