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Abstract—Since only a modest improvement in battery lifetime
is expected in the next few years, energy conservation is raised
as a key factor in the design of mobile devices. In view of this,
we propose in this paper an energy-conserving on-demand data
broadcasting system that employs the data indexing technique.
Different from prior work, the power consumption of turning on
and turning off the wireless network interfaces is considered. In
addition, we also employ a server cache to reduce the effect of the
time to retrieve data items from the corresponding data servers.
Specifically, we first analyze the access and tuning times of data
requests, and propose an Adaptive Index and Data Organizing
Algorithm (AIDOA) to adjust the degree of buckets according to
the system workload. Several experiments are then conducted to
evaluate the performance of algorithm AIDOA. The experimental
results show that algorithm AIDOA is able to greatly reduce
the power consumption at the cost of a slight increase in the
average access time and dynamically adjust the index and data
organization to adapt to the change of system workload.

Index Terms—Data indexing, energy conservation, mobile infor-
mation system, on-demand data broadcasting.

I. INTRODUCTION

OWING to the constraints resulting from power-limited
mobile devices and low-bandwidth wireless networks,

designing a power-conserving mobile information system with
high scalability and high bandwidth utilization becomes an im-
portant research issue and hence attracts a significant amount of
research attention. In recent years, data broadcasting has been
proposed to address such a challenge and has been recognized
as a promising data dissemination technique in mobile comput-
ing environments [1], [4], [5], [10], [11]. Most research works
on data broadcasting focus on generating a proper broadcast
program or designing scheduling algorithms to minimize the
average access time, which is defined as the average time
elapsed from the moment a client issues a query to the point
that the desired data item is read.

As shown in [17] and [19], only a modest improvement
(about 20% to 30%) in battery lifetime is expected in the
next few years. Hence, energy conservation is raised as a key
factor in the design of mobile devices. Consider a Nokia 5510
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Fig. 1. Index structure.

that supports Advanced Audio Coding and Moving Pictures
Experts Group Audio Layer 3 playing. Compared to the power
consumed on playing music, the wireless network interface
(WNI) consumes much more energy (as much as 70% of the
total power in Nokia 5510) [22]. Hence, reducing the power
consumption on WNIs is an effective means to reduce the
overall power consumption. Most devices can operate in two
modes, i.e., active mode and doze mode. Many studies show
that the power consumed in active mode is much higher than
that consumed in doze mode. For example, a typical wireless
personal computer card (e.g., ORiNOCO) consumes 60 mW
during the doze mode and 805–1400 mW during the active
mode [19]. As a consequence, to reduce the power consump-
tion, the mobile devices should stay in doze mode for as long
as possible.

To evaluate the effect of data indexing algorithms on energy
conservation, the tuning time, which is defined as the time
that a mobile device operates in active mode to retrieve a data
item, is introduced in [12]. Since employing data indexing will
unavoidably introduce some overhead in access time, the data
indexing algorithms should reduce the tuning time as much
as possible at the cost of producing an acceptable increase in
access time. Since the size of an index item is usually much
smaller than that of a data item, the increment in access time
is usually small. As a result, many research works study the
design of data indexing algorithms in push-based data broad-
casting environments [20], [21]. However, most studies on on-
demand data broadcasting focus on the design of scheduling
algorithms [2], [5] to reduce the average access time, and only
a few of them consider the employment of data indexing in
on-demand data broadcasting environments [13] to reduce the
average tuning time.

In [13], Lee et al. proposed an indexing algorithm for on-
demand data broadcast systems. As shown in Fig. 1, the pro-
posed broadcast program is made up of a series of buckets,
and each bucket consists of one index segment and one data
segment. A data segment contains a series of data items, while
an index segment consists of the index items of the data items
in the corresponding data segment. For a bucket, the number
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Fig. 2. Example organizations of index and data items. (a) Organization one.
(b) Organization two.

of data items in the corresponding data segment is called the
degree of the bucket. The information in an index item, for
example, Ii(1), consists of the identifier of the corresponding
data item Di(1), the data size of Di(1), and the time that
Di(1) in bucket i will be broadcast on the broadcast channel.
In addition, by the information in the current index segment,
a mobile device is able to determine the broadcast time of the
index segment of the next bucket.

Although inserting index items into the broadcast program
is able to significantly reduce the average tuning time at the
cost of a slight increase in average access time [13], however,
the proposed data indexing method proposed in [13] has the
following drawbacks.

• Does not consider the power consumption of turning on
and turning off the WNIs.

As pointed out in [18], turning on and turning off the
WNIs consume some time and energy, and the transition
times of a WNI from active mode to doze mode and
from doze mode to active mode are both on the order of
tens of milliseconds. Consider two organizations of index
and data items shown in Fig. 2.1 Suppose that a mobile
device tunes to the broadcast channel at time tStart and
finishes the retrieval of the desired data item at time tEnd.
Without considering the power consumption of turning
on and turning off the WNI, the power consumptions of
organization one and organization two are equal. However,
when the power consumption of turning on and turning
off the WNIs is considered, organization two outperforms
organization one.

Therefore, we argue that the design of an energy-
conserving data-indexing method should take the power
consumption of turning on and turning off the WNIs into
account to obtain a precise power consumption estimation.
To the best of our knowledge, there is no prior work
on data indexing in on-demand broadcast considering the
power consumption of turning on and turning off the
WNIs, which thereby distinguishes our paper from others.

• Does not consider the data fetch time.
Most studies on indexing in on-demand data broad-

casting are under the premise that all the data items are
immediately available for a data broadcasting system [13].
However, as pointed out in [6], the data fetch time cannot
be neglected since it is infeasible to store all the data items

1The descriptions of symbols “A,” “D,” “F,” or “N” will be given in Table I
in Section III-B.

in the local cache of the system. Hence, the traditional
data broadcasting systems [5] may not perform well. As a
consequence, we argue that the indexing algorithm in on-
demand data broadcasting should also consider the data
fetch time to attain a higher efficiency.

• Does not adapt to the change of system workload.
In mobile computing environments, schemes with a

static degree may not be able to adapt to the change of
system workload. Such a phenomenon shows the necessity
of designing an adaptive algorithm to dynamically adjust
the degree of buckets to adapt to the change of system
workload. To the best of our knowledge, all prior works
on data indexing in on-demand broadcast employ a static
degree, and none of them is able to adapt to the change of
system workload.

In view of this, we propose in this paper an energy-
conserving on-demand data broadcasting system by employing
the data indexing technique. Different from the prior work on
data indexing on on-demand data broadcasting, the power con-
sumption of turning on and turning off the WNIs is considered.
Specifically, we first analyze the access and tuning times of data
requests, and propose an Adaptive Index and Data Organizing
Algorithm (AIDOA) to adjust the degree of buckets according
to the system workload. In essence, algorithm AIDOA consists
of two phases, i.e., statistics collection phase and adjustment
phase, and periodically switches back and forth between these
two phases. The system collects some statistic information of
all the served data requests in the statistics collection phase, and
the collected information is used to adjust the degree of buckets
in the adjustment phase according to the derived analytical
results. In addition, we employ a server cache to eliminate the
performance degradation caused by the data fetch time. We
also propose a program generation algorithm and a cache re-
placement policy to cooperate with algorithm AIDOA. Several
experiments are then conducted to evaluate the performance of
algorithm AIDOA. The experimental results show that due to
the dynamic adjustment on the degree of buckets, the scheme
that uses algorithm AIDOA outperforms the other schemes with
a static degree in most cases.

The rest of this paper is organized as follows. Section II
describes the proposed system architecture and the power
consumption model used in this paper. Section III shows the
analytical model of the proposed system architecture. Based
on the analytical model, we propose algorithm AIDOA in
Section IV. In addition, the companion program generation
algorithm and the cache replacement policy are proposed in
Section V. The experimental results are shown in Section VI
to evaluate the performance of algorithm AIDOA, and finally,
Section VII concludes this paper.

II. PRELIMINARIES

A. System Architecture

We adopt the index structure proposed in [13], and the
adopted index structure is shown in Fig. 1. As shown in Fig. 3,
the proposed system architecture consists of the following
components.
Scheduler: The scheduler is in charge of receiving and

processing the data requests submitted by the mobile devices.
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Fig. 3. System architecture.

After receiving a data request, for example, Reqi, the scheduler
will sequentially search the ready queue, pending list, and
request queue to check whether there exists a data request,
for example, Reqj , with the same required data item as Reqi.
When Reqj is in the pending list, the scheduler merges Reqi

into Reqj . When Reqj is in the ready queue (respectively, the
request queue), the scheduler will merge Reqi into Reqj and
updates the priorities of all the data items in the ready queue
(respectively, the request queue) according to the employed
scheduling algorithm, such as First-In–First-Out, Longest Wait
First (LWF), RxW [5], and so on. Otherwise, when Reqj does
not exist, the scheduler will insert Reqi into the request queue
and update the priorities of all the data items in the request
queue according to the employed scheduling algorithm.
Fetcher: The fetcher repeatedly retrieves the data request

with the highest priority from the request queue and fetches
the required data item from the corresponding data server
via Internet. Cache is employed to reduce the performance
degradation caused by the data item fetch time. To fetch a data
item, the fetcher first checks whether the required data item
is cached in the local cache. If yes, the fetcher will mark the
cached data item as LOCKED and insert the data request into
the ready queue. Then, the fetcher will retrieve the data request
with the highest priority from the request queue and repeat the
above procedure.

Otherwise, when the desired data item is not cached, the
fetcher will submit a data request message to the data server
of the required data item and insert the data request into the
pending list. Then, the fetcher will check the number of pending
data requests and will stop if the number of pending data
requests is equal to a predetermined threshold. Otherwise, the
fetcher will repeat the above procedure until the number of
pending data requests is equal to a predetermined threshold or
the request queue is empty.

When a data server responds with a data item, the fetcher
will retrieve the corresponding data request from the pending
list and insert the data request into the ready queue. In addition,
the fetcher will insert the received data item into the cache.
Several cached data items may be replaced by the employed
replacement policy when the free space of the cache is not
enough to store the received data item.

Program Generator: The program generator employs a pro-
gram generation algorithm to compose all the buckets of the
broadcast programs. After a bucket is generated, the index and
data items in the current bucket are sequentially broadcast. The
program generator will start to compose another bucket after
all the index and data items in the current bucket have been
broadcast.

B. Power Consumption Model

Denote the time for a mobile device to switch the WNI from
active mode to doze mode as TOn and the time to switch the
WNI from doze mode to active mode as TOff . To evaluate the
power consumption of turning on and turning off the WNIs,
we assume that the power consumption of a mobile device
spending in time intervals TOn (respectively, TOff ) is equal to
that of a mobile device staying in the active mode for time
α1 × TOn (respectively, time α2 × TOff ). Similar to [22], the
values of α1 and α2 can be obtained by profiling.

Denote the traditional (i.e., without considering the turning-
on and turning-off time of WNIs) average tuning time of
a data request as TTuning. To evaluate the overall power
consumption, we define the effective tuning time of a data
request as TEff.

Tuning = TTuning + n1 × α1 × TOn + n2 × α2 ×
TOff , where n1 and n2 are the numbers of times of turning
on and turning off the WNI, respectively, and TTuning is the
traditional tuning time. To ease the presentation, we use the
term tuning time to represent the effective tuning time and
assume that α1 = α2 = 1 in the rest of this paper.

III. ANALYTICAL MODEL

A. Client Access Protocol

After submitting a data request, a mobile client will retrieve
the desired data item according to the employed client access
protocol. We adopt the client access protocol described in [20],
and the protocol consists of the following phases.

• Initial probe phase: After submitting a data request, the
mobile device tunes to the broadcast channel and listens
on the broadcast channel to wait for the appearance of an
index segment.

• Index search phase: The mobile device enters the index
search phase after retrieving an index segment. In the
index search phase, the mobile device determines whether
the desired data item will be broadcast in the correspond-
ing data segment. If not, the mobile device will switch to
doze mode and then switch back to active mode when the
next index segment is broadcast. Otherwise, the mobile
device will enter the data retrieval phase.

• Data retrieval phase: If the desired data item will be
broadcast in the current data segment, the mobile device
will retrieve the time that the desired data item will be
broadcast from the current index segment and switch to
doze mode. Then, when the desired data item is broadcast,
the mobile device will switch back to active mode and
retrieve the desired data item.

Consider the example shown in Fig. 4, where a mobile device
submits a data request. Let tStart be the time that the mobile
device starts to listen on the broadcast channel after submitting
the data request, and let tEnd be the time that the mobile device
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Fig. 4. Categories of buckets.

TABLE I
SYMBOLS OF TIME FRAMES

receives the desired data item. According to the employed
client access protocol, the buckets within the time interval
from tStart to tEnd can be divided into the following three
categories.

1) Probe bucket: The bucket that tStart lies on is called the
probe bucket. In Fig. 4, Bucket(i) is the probe bucket.
There is only one probe bucket for each data request.

2) Search bucket: The bucket whose index segment is
retrieved by the mobile device and whose data seg-
ment is skipped by the mobile device is called the
search bucket. In Fig. 4, Bucket(i + 1), Bucket(i +
2), . . . , Bucket(j − 1) are all search buckets. For a data
request, there may be zero, one, or multiple search
buckets.

3) Retrieval bucket: The bucket that tEnd lies on is called the
probe bucket. That is, the retrieval bucket is the bucket
where the mobile device retrieves the desired data item.
In Fig. 4, Bucket(j) is the retrieval bucket. For each data
request, there is only one probe bucket. In addition, the
probe bucket and the retrieval bucket of a data request
may be the same or different.

B. Derivations of Access Time and Tuning Time

To facilitate the following derivations, we have the following
assumptions. 1) All the data items are of equal size SD. 2) The
time to broadcast a data item (i.e., SD/B) is larger than TOn +
TOff . Note that both assumptions are not the limitations of
ADIOA and are made only to ease the derivations in Sections III
and IV. Hence, they will be relaxed in Sections V and VI.

In Bucket(i), denote the moment that the mobile device
starts to turn on and turn off the WNI as tWakeUp(i) and
tSleep(i), respectively. In addition, we also denote the start-
ing and ending times of Bucket(i) as Bucket(i).Start and
Bucket(i).End, respectively. For a data request, we also parti-
tion the time interval from tStart to tEnd into several segments,
and each segment is marked as “A,” “D,” “F,” or “N.” The
descriptions of these four symbols are given in Table I.

According to the relationship of the probe and retrieval
buckets, a data request may be belonging to one of the following
two types.
1) Type I: The Probe and Retrieval Buckets Are the Same:

As shown in Fig. 5, in a Type I data request, tStart and tEnd are

within the same bucket. In addition, according to the employed
client access protocol, tStart must be located in the index
segment. Otherwise, tStart and tEnd will not be in the same
bucket, and such a result conflicts with the definition of Type I
data requests. To minimize the power consumption, tSleep(i) is
determined as the moment that the mobile device has finished
the retrieval of the corresponding index item of the desired data
item, and tWakeUp(i) is determined as the moment that the
mobile device has to start to turn on the WNI to retrieve the
desired data item.

We observe from Fig. 5 that one Type I data request will
increase the aggregate access Qtime of all the data requests
by tEnd − tStart. On the other hand, the contribution of a
Type I data request on the aggregate tuning time of all the
data requests is determined by the length of the time interval
(tSleep(i), tWakeUp(i)). When tWakeUp(i) − tSleep(i) > TOff ,
the data request will increase the aggregate tuning time by

tSleep(i) − tStart + tEnd − tWakeUp(i) + TOn

= tSleep(i) − tStart +
SD

B
+ TOn + TOff .

Otherwise, when tWakeUp(i) − tSleep(i) ≤ TOff (i.e., the mo-
bile must start to turn on the WNI before the WNI has been
turned off), the time interval (tSleep(i), tWakeUp(i)) is too short
to turn on and then turn off the WNI. Hence, the data request
will increase the aggregate tuning time by tEnd − tStart.
2) Type II: The Probe and Retrieval Buckets Are Different:

The time interval (tStart, tEnd) of a Type II data request consists
of one probe bucket; zero, one, or multiple search buckets;
and one retrieval bucket. Next, we will separately derive the
contributions of the probe bucket, search buckets, and retrieval
bucket of a Type II data request on the aggregate access and
tuning times of all the data requests.

a) Probe bucket: Consider the example shown in Fig. 6.
According to the location of tStart, the Type II data requests can
be divided into the following two subtypes.

1) Type II.I: tStart is in the index segment. Consider a
Type II.I data request. Since the desired data item is not
in the probe bucket [i.e., Bucket(i)], the probe bucket
of a Type II.I data request will increase the aggregate
access time of all the data requests by Bucket(i + 1).
Start − tStart.

On the other hand, to maximize the power saving,
the mobile device should start to turn off the WNI after
retrieving the latest index item in ISi and must turn on the
WNI on Bucket(i + 1).Start to retrieve the first index
item in ISi+1. Hence, tWakeUp(i) is equal to Bucket(i +
1).Start − TOn. As a consequence, a Type II.I
data request will increase the aggregate tuning time of all
the data requests by tSleep(i) − tStart + TOff + TOn.

2) Type II.II: tStart is in the data segment. When tStart is in
the data segment, according to the employed client access
protocol, the mobile device has to listen on the broadcast
channel to wait for the appearance of the index segment
of the next bucket (i.e., ISi+1). Hence, in Bucket(i),
the mobile device is in the active mode from tStart to
Bucket(i + 1).Start, and the contributions of the probe
bucket of a Type II.II data request on the aggregate access
and tuning times are both Bucket(i + 1).Start − tStart.
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Fig. 5. Probe bucket in a Type I data request.

Fig. 6. Probe buckets in Type II.I and Type II.II data requests.

Fig. 7. Search bucket in a Type II data request.

Fig. 8. Retrieval bucket in a Type II data request.

b) Search bucket: Consider the example shown in Fig. 7.
In a search bucket, the mobile device operates in the active
mode to retrieve the index segment and starts to turn off the
WNI after retrieving all the index items in the index segment.
Then, the mobile device has to start to turn on the WNI to
ensure that the mobile device just enters the active mode on
Bucket(k + 1).Start. Hence, in a search bucket Bucket(k),
the respective contributions on the aggregate access and tuning
times of all the data requests are

Bucket(k + 1).Start − Bucket(k).Start = d × SI + SD

B

tSleep − Bucket(k).Start + TOn + TOff = d × SI

B
+ TOn

+ TOff .

c) Retrieval bucket: Consider the example shown in
Fig. 8. In the retrieval bucket, the mobile device sequentially
retrieves the index items in the index segment until the index
item of the desired data item has been retrieved. Then, the
mobile starts to turn off the WNI to wait for the appearance

of the desired data item. To retrieve the desired data item,
the mobile device has to start to turn on the WNI so that the
mobile device is able to enter the active mode in the moment
that the desired data item is just being broadcast. Hence, the
retrieval bucket of a Type II data request will increase the
aggregate access time by tEnd − Bucket(j).Start. In addition,
the retrieval bucket of a Type II data request will increase the
aggregate tuning time by

tSleep(j)−Bucket(j).Start+tEnd−tWakeUp(j)+TOn+TOff

= tSleep(i)−Bucket(k).Start+
SD

B
+TOn+TOff

when tWakeUp(j) − tSleep(j) > TOn. Otherwise, the data re-
quest increases the total tuning time by tEnd − Bucket(j).
Start.

With the above discussions, for a Type II data request, its
contributions on the aggregate access and tuning times are equal
to the summations of the access and tuning times, respectively,
of its probe bucket, search buckets, and retrieval bucket.
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IV. AIDOA

With the analysis in Section III, in this section, we propose
algorithm AIDOA to dynamically adjust the degree of buckets
according to the system workload. Basically, algorithm AIDOA
consists of two phases, i.e., statistics collection phase and
degree adjustment phase, and periodically switches between
the statistics collection phase and the degree adjustment phase.
In the statistics collection phase, the server will keep track
of the information of all the data requests, and the recorded
information will be used to guide the adaptation procedure in
the successive execution of the adjustment phase.

A. Statistics Collection Phase

In each execution of the statistics collection phase, the server
will collect the statistic information of all the data requests
served in the current execution of the statistics collection phase.
A data request is served when the desired data item has been
broadcasted.

Two data structures (StatI and StatII) are defined to store
the collected information of Type I and Type II (including
Type II.I and Type II.II) data requests, respectively. The details
of StatI and StatII are as follows.

Details of StatI

• ReqNo: The number of Type I data requests served in the
current statistics collection phase.

• AggAT: Aggregate Access Time of Type I data requests
served in the current statistics collection phase.

• AggTT: Aggregate Tuning Time of Type I data requests
served in the current statistics collection phase.

Details of StatII

• ReqNo: The number of Type II data requests served in the
current statistics collection phase.

• AggATP/AggTTP: Aggregate Access/Tuning Time of
Probe buckets of Type II data requests served in the current
statistics collection phase.

• AggATS/AggTTS: Aggregate Access/Tuning Time of
Search buckets of Type II data requests served in the
current statistics collection phase.

• AggATR/AggTTR: Aggregate Access/Tuning Time of Re-
trieval buckets of Type II data requests served in the
current statistics collection phase.

Each field, except ReqNo, of StatI and StatII has an average
version with new names by replacing the prefix Agg with Avg.
For example, the field AvgAT of StatI indicates the average
access time of all Type I data requests served in the current
statistics collection phase. We also define the structure Request
to indicate the data requests that are merged together. The
elements in the request queue, pending list, and ready queue are
all instance of the structure Request. An instance of the structure
Request is said to be in the server when it is in the request queue,
pending list, or ready queue. The details of structure Request are
as follows.

Details of structure Request

• ReqNo: The number of data requests that are merged
together and are represented by the instance of Request.

• AvgTIS: Average Time In Search buckets of the data
requests represented by the instance of Request.

After receiving a data request, the server first determines the
type of this data request. If the data request is belonging to
Type I, the server calculates the contributions of the data request
on the aggregate average and tuning times based on the analysis
in Section III-B1 and accordingly updates StatI. Since being
able to be served by the current bucket, a Type I data request
will neither be merged into a structure Request nor be inserted
into the request queue, ready queue, and pending list.

On the other hand, when the data request is belonging to
Type II, the server first checks whether it can be merged into
an instance of structure Request in the server. If yes, the server
accordingly updates the fields (i.e., ReqNo and AvgTIS) of
the instance of the structure Request. Otherwise, the server
creates a new instance of the structure Request and inserts the
instance into the request queue. Finally, the server calculates
the contribution on the aggregate access and tuning times of the
probe bucket of the data request according to the derivations in
Section III-B2 and accordingly updates StatII.

While an instance of Request, for example, r, is retrieved
from the ready requests,2 the server first calculates the average
number of search buckets that each data request in r has by

AvgSBNo ← Bucket(j).start − r.ATIS

d × (SD + SI)
.

The contributions of these search buckets on the aggregate
access and tuning times can be obtained from the derivations
in Section III-B2, and StatII.AggATS and StatII.AggTTS
are accordingly updated. The server calculates the time that
the desired data item of r can be retrieved (i.e., tEnd). Finally,
with tEnd, the server calculates the aggregate contributions
of the retrieval buckets of all the data requests in r on the
aggregate access and tuning times according to the derivations
in Section III-B2 and accordingly updates StatII.AggATR
and StatII.AggTTR. The algorithmic form of the procedure
to update StatII when an instance of the structure Request is
served is as follows.

Procedure RequestServed(Request r)

1: StatII.ReqNo ← StatII.ReqNo + r.ReqNo

2: AvgSNo ← (Bucket(j).start − r.ATIS) / (d ×
(SD + SI))

3: StatII.AggATS ← StatII.AggATS + (d × ((SI +

SD)/B)) × AvgSBNo × r.ReqNo

4: StatII.AggTTS ← StatII.AggTTS + (d × (SI/B)+

TOn + TOff) × AvgSBNo × r.ReqNo

5: Calculate tEnd of r

6: StatII.AggATR ← StatII.AggATR + (tEnd −
Bucket(j).Start) × r.ReqNo

7: Let TTR be the tuning time of r in the retrieval bucket
8: StatII.AggTTR ← StatII.AggTTR + TTR ×

r.ReqNo

B. Degree Adjustment Phase

In each execution of the degree adjustment phase, the
server will adjust the degree (i.e., the value of d) of buckets

2Readers can refer to Section V to see how the system retrieves instances of
Request from the ready queue.
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according to the statistic information collected in the precedent
execution of the statistics collection phase. Let TAccess(d)
and TTuning(d) be the average access and tuning times, re-
spectively, when the degree of broadcast programs is d. For
each field, the value of the average version is equal to the
value of the aggregate version divided by the number of data
requests. For example, the value of StatI.AvgTT is equal to
StatI.AggTT/StatI.ReqNo. Then, according to the analysis
in Section III, we have

TAccess(d) =WI × (StatI.AvgAT ) + WII

× (StatII.AvgATP + StatII.AvgATS

+ StatII.AvgATR)

TTuning(d) =WI × (StatI.AvgTT ) + WII

× (StatII.AvgTTP + StatII.AvgTTS

+ StatII.AvgTTR)

where WI and WII are the weights of the Type I and Type II data
requests, respectively. The values of WI and WII are defined as
the ratios of the numbers of Type I and Type II data requests.
Hence, we have

WI =
StatI.ReqNo

StatI.ReqNo + StatII.ReqNo

WII =
StatII.ReqNo

StatI.ReqNo + StatII.ReqNo
.

In addition, TOverAll(d) is employed as the metric of system
performance and is defined as

TOverAll(d) = β × TAccess(d) + (1 − β) × TTuning(d).

In the above equation, β is an administrator-specified parameter
to reflect the relative importance of the average access time
[i.e., TAccess(d)] and the average tuning time [i.e., TTuning(d)].
Hence, there is no optimal setting of β. The objective of the
degree adjustment phase is to determine the new value of d
to minimize TOverAll(d). However, since globally minimizing
TOverAll(d) is difficult, algorithm AIDOA is designed to find
the new value of d, for example, dNext, where TOverAll(dNext)
is the local minimum. That is, we will find a value of dNext

so that TOverAll(dNext) is smaller than TOverAll(dNext + 1) and
TOverAll(dNext − 1). Since the exact values of TAccess(dNext)
and TTuning(dNext) when dNext �= dCurr. cannot be obtained
from the collected statistic information, we adopt the fol-
lowing approximation method to estimate TAccess(dNext) and
TTuning(dNext).

Let StatdNext
I and StatdNext

II be the approximations of the
values of StatI and StatII when the degree of buckets is dNext.
Then, we have the following lemmas.
Lemma 1: StatdNext

I .AvgAT and StatdNext
I .AvgTT can,

respectively, be approximated by

StatdNext
I .AvgAT = StatI.AvgAT + (dNext − dCurr.) ×

SI

B

StatdNext
I .AvgTT = StatI.AvgTT.

Lemma 2: StatdNext
II .AvgATP and StatdNext

II .AvgTTP
can, respectively, be approximated by

StatdNext
II .AvgATP =

SI

SI + SD
× StatdNext

II.I .AvgATP

+
SD

SI + SD
× StatdNext

II.II .AvgATP

StatdNext
II .AvgTTP =

SI

SI + SD
× StatdNext

II.I .AvgTTP

+
SD

SI + SD
× StatdNext

II.II .AvgTTP

where

StatdNext
II.I .AvgATP = StatII.AvgATP

+ (dNext − dCurr.) ×
(

SI

B
+

SD

B

)

StatdNext
II.I .AvgTTP = StatII.AvgTTP

+ (dNext − dCurr.) ×
SI

B
StatdNext

II.II .AvgATP = StatII.AvgATP

+ (dNext − dCurr.) ×
SD

B
StatdNext

II.II .AvgTTP = StatII.AvgTTP

+ (dNext − dCurr.) ×
SD

B
.

As mentioned in Lemma 2, setting the degree of buckets
from dCurr. to dNext will increase the numbers of index and
data items in each probe bucket of the Type II data requests by
dNext − dCurr.. Suppose that these extra index and data items
are from the search buckets. Then, we have Lemma 3.
Lemma 3: StatdNext

II .AvgATS and StatdNext
II .AvgTTS

can, respectively, be approximated as

StatdNext
II .AvgATS = AvgSBNoNext

× dNext ×
(SI + SD)

B
StatdNext

II .AvgTTS = AvgSBNoNext

×
(

dNext ×
SI

B
+ TOff + TOn

)

where

AvgSBNoNext =
StatII.AvgATS × B

dNext × (SI + SD)
− dNext − dCurr.

dNext
.

Lemma 4: StatdNext
II .AvgATR and StatdNext

II .AvgTTR can
be approximated as

StatdNext
II .AvgATR =StatII.AvgATR

+ (dNext − dCurr.) ×
SI

B
StatdNext

II .AvgTTR =StatdNext
II .AvgTTR.

The approximations of TAccess(dNext) and TTuning(dNext)
can be calculated based on the above approximations. From the
above lemmas, we have the following observations.

1) Increasing the value of the degree will increase the av-
erage tuning time in probe buckets since the number of
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data items in a bucket increases. In addition, increasing
the value of the degree will also reduce the aggregate
tuning time of search buckets since the average number
of search buckets decreases. The increase of the average
tuning time in probe buckets and the decrease of the
aggregate tuning time of search buckets are, respectively,
the benefit and the cost of increasing the value of the
degree.

2) To minimize the average tuning time, decreasing the
value of the degree is encouraged when the average
access time is short. It is because that decreasing the
value of the degree will reduce the average tuning time
in probe buckets by slightly increasing the aggregate
tuning time of search buckets. Such an increase re-
sults from the increase in the average number of search
buckets.

We then devise the procedure DegreeAdjustment to find the
value of dNext, where TOverAll(dNext) is the local mini-
mum. In the procedure DegreeAdjustment, the server first
checks whether increasing or decreasing the value of the
degree will reduce the value of TOverAll(dNext). After that,
the server repeatedly increases or decreases the value of the
degree by one until TOverAll(dNext) is the local minimum.
Finally, the system sets the value of the degree (i.e., dCurr.)
to the return value of the procedure DegreeAdjustment. The
algorithmic form of the procedure DegreeAdjustment is as
follows.

Procedure DegreeAdjustment
Note: The new value of d (i.e., dNext) is returned

1: if (TOverAll(dCurr. + 1) < TOverAll(dCurr.)) then
2: δ ← 1

3: else if (TOverAll(dCurr. − 1) > TOverAll(dCurr.)) then
4: δ ← −1

5: else
6: return dCurr.

7: dNext ← dCurr.

8: while (TOverAll(dNext + δ)) < TOverAll(dNext)) do
9: dNext ← dNext + δ

10: return dNext

C. Complexity Analysis

To derive the worst time complexity of algorithm AIDOA,
we consider the case that no request merge occurs. Suppose
that the number of received requests in one execution of the
statistics collection phase is n. Then, the time complexity of
one execution of the statistics collection phase is O(n) since
the time complexity of one execution of the procedure Request-
Served is O(1). Suppose that the maximal value of the degree is
dMax. The time complexity of the procedure DegreeAdjustment
is O(dMax). Since algorithm AIDOA executes the procedure
DegreeAdjustment once in each execution of the degree ad-
justment phase, the time complexity of one execution of the
degree adjustment phase is O(dMax). To implement algorithm
AIDOA, we have to spend the storage space to store structures
StatI and StatII. Since the sizes of structures StatI and StatII
are fixed and are independent of n, the space complexity of
algorithm AIDOA is O(1).

V. DESIGN OF PROGRAM GENERATION ALGORITHM

AND CACHE REPLACEMENT POLICY

After determining the new value of the degree, the program
generator will accordingly generate the successive buckets.
Since the data items may be cached in the server cache, the
adopted program generation algorithm should cooperate with
the employed cache replacement policy. Each cached data item
is initially marked as LOCKED, and only the cached data
items in the UNLOCK state are candidates of replacement.
To facilitate the design of the cache replacement policy, the
system maintains a min heap Cand that stores all the data
items in the UNLOCKED state according to their priorities.
The definition of the priority of a data item will be given later
in this section. Note that in this and the following section, we
relax the assumption that all the data items are of the same size
and denote the size of Di as size(Di) and the average data
size as SD.

The server maintains a list bucket that contains the index
items and data items of the current bucket. Initially, bucket
is empty. Then, the server retrieves dCurr. data items from
the head of the ready queue, inserts them into bucket, and
marks them as LOCKED. In addition, the corresponding index
items of the data items in bucket are also inserted into bucket.
Then, the server sequentially broadcasts the index items and
data items in bucket. Once an item has been broadcast, it will
be removed from bucket. If the item is a data item, it will
be marked as UNLOCKED. Once bucket becomes empty, the
server retrieves dCurr. data items from the head of the ready
queue and repeats the above procedure. The algorithmic form
of the proposed program generation algorithm is as follows.

Algorithm ProgramGeneration
1: while (true) do
2: bucket ← BucketGeneration()
3: while (bucket is not empty) do
4: item ← the head of bucket

5: Remove the head of bucket

6: Broadcast item

7: if (item is a data item) then
8: Mark item as UNLOCKED
9: Calculate the priority of item and insert item

into Cand

Procedure BucketGeneration
1: bucket ← empty

2: for (i = 1 to dCurr.) do
3: if (ready queue is empty)} then
4: break
5: Fetch a data item (denoted as item) from the head of

ready queue
6: Mark item as LOCKED
7: Append item into bucket

8: Insert the corresponding index items of the data items
in bucket into the head of bucket

9: return bucket

We now consider the design of the server cache. Similar to
other cache replacement policies, we define an evict function
to determine the cache priorities of all the data items. The
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profit of caching a data item is defined as the overall data
fetch time saving when the data item is cached. The cost of
caching a data item is defined as the size of the data item.
The cache replacement policy is designed to maximize the
aggregate profit of all the cached data items under the limitation
on the aggregate cost (i.e., size) of all the cached data items.
Hence, the cache priority of a data item Di is defined as

priority(Di) =
fetch(Di) × rate(Di)

size(Di)

where fetch(Di) is the time for the server to fetch Di from
the data server of Di, and rate(Di) is the request rate of Di.
When retrieving Di from the corresponding data server, the
server calculates the value of fetch(Di) and stores it for further
uses. The server also stores the time of the previous cache hit
of Di, which is denoted as tPrevHit(Di). In addition, for each
cache hit of Di, rate(Di) is set to

1
tCurHit − tPrevHit(Di)

where tCurHit is the time of the current cache hit of Di. After
the calculation of the request rate of Di, tPrevHit(Di) is set to
tCurHit.

The proposed cache replacement policy is as follows. When
a data item, for example, Di, is retrieved from the data server,
it will be inserted into the cache. When inserting Di into the
cache, the server first checks whether the cache is of enough
free space for Di. If yes, the system stores Di into the cache,
calculates priority(Di), and marks Di as LOCKED. Other-
wise, the system repeatedly removes “the data item with the
smallest priority among all the data items in Cand” from Cand
until the free space of the cache becomes enough. Then, the
system stores Di into the cache, calculates priority(Di), and
marks Di as LOCKED. The algorithmic form of the proposed
cache replacement policy is as follows.

Algorithm CacheReplacement(Di)

1: while (FreeSpace < size(Di)) do
2: Let Dj be the data item with the smallest priority

among all other data items in Cand

3: Remove Dj from cache
4: FreeSpace ← FreeSpace + size(Dj)

5: Insert Di into cache
6: Calculate the priority(Di)

7: Mark Di as LOCKED

Suppose that the data items in Cand are organized as a min
heap. In addition, let nReplace be the number of data items to
be replaced. Therefore, the time complexity of one execution of
the algorithm CacheReplacement is O(nReplace × log |Cand|).

VI. PERFORMANCE EVALUATION

A. Simulation Model

We take the LWF as the underlying scheduling algorithm
to prioritize the data requests in the request queue and the
ready queue. The server provides one request channel and
one broadcast channel with network bandwidth of 38.4 and

TABLE II
DEFAULT SYSTEM PARAMETERS

384 kb/s, respectively. Analogous to [8], we assume that there
are 4000 data objects, and the sizes of the data objects follow
a lognormal distribution with a mean of 7 kB. The size of a
data request message and an index item is set to 128 bytes.
The times to turn on and turn off the WNIs are both set to
30 ms. The access probability of the data objects follows a
Zipf distribution, which is widely adopted as a model for real
Web traces [3], [7]. The parameter of the Zipf distribution is
set to 0.75 with reference to the analyses of real Web traces
[7], [15]. Since the small objects are much more frequently
accessed than the large ones [9], we assume that there is a
negative correlation between the object size and its access
probability. The default capacity of the cache is set to 0.01 ×

∑
object size, and the fetch delays of the data objects follow an
exponential distribution with a mean of 2.3 s [8]. Similar to
[16], the number of users in the network is set to 250. The
service holding time and the service reestablishing time for
each user are set to exponential distributions with means of
10 min and 1 h, respectively. The service reestablishing time
is defined as the time interval between the moment that a user
terminates the service and the moment that the user establishes
the service again. We also assume that the interarrival times of
data requests of each user follow an exponential distribution
with a mean 10 s [14]. The value of β is set to 0.5 to simulate
the environment that the average access time and the average
tuning time are of equal importance (Table II).

To evaluate the performance of the proposed degree adjust-
ment method in algorithm AIDOA, the algorithm proposed in
[13] (referred to as algorithm Static) is modified to cooperate
with the cache replacement policy and the program genera-
tion algorithm proposed in Section V. Hence, the difference
between algorithm AIDOA and algorithm Static is only on
the ability of adjusting the degree of buckets. Based on the
algorithm Static, we devise two schemes, i.e., Static-2 and
Static-8, which set the degree of buckets to 2 and 8, respectively,
and the values of the degree of buckets are fixed throughout
the simulation. In addition, scheme AIDOA employs algorithm
AIDOA and initializes the degree of buckets to 2. Hence,
scheme AIDOA will dynamically adjust the degree of buckets
according to the system workload. Note that all these three
schemes employ a server cache to eliminate the performance
degradation caused by the data fetch time.

B. Effect of Average Data Size

In this experiment, we investigate the effect of the average
data size on the average access and tuning times. The average
data size is set from 2 to 11 kB, and the experimental results are
shown in Fig. 9(a) and (b), respectively. Due to increasing the
load of the broadcast channel, it is intuitive that increasing the



340 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 2, MARCH 2008

Fig. 9. Effect of average data size. (a) Average access time. (b) Average tuning time.

average data size results in the increase in the average access
time. In addition, when the average data size is large enough,
the load of the broadcast channel is high, and hence, a slight
increase in the average data size will cause significant increases
in the average access time. Since the sizes of the index items
are much smaller than those of the data items, the effect of
the degrees of broadcast programs in the average access time
is quite small.

Although the values of the degrees of broadcast programs
only slightly affect the average access time of all the schemes,
they result in significant effects in the average tuning time.
As shown in Fig. 9(b), scheme Static-8 performs well only
when the average data size is small, and scheme Static-2
performs well only when the average data size is large. As
observed in Section IV-B, increasing the value of the degree
will increase the average tuning time in the probe bucket. In
addition, increasing the value of the degree also decreases
the number of search buckets and hence reduces the average
tuning time in the search buckets. When the average data size
is large, the average access time is also long. Employing a
large value of degree will reduce the average tuning time in
the search buckets by reducing the number of search buckets
(i.e., reducing the number of times of turning-on and turning-
off the WNIs) and increase the average tuning time in the probe
bucket. However, due to the tradeoff between the average tuning
times in the probe bucket and the search buckets, the value of
the degree cannot be set to be too large. In addition, we can
also observe from Section IV-B that decreasing the value of
the degree will decrease the average tuning time in the probe
bucket and increase the number of search buckets. Therefore,
the scheme with small values of degree outperforms schemes
with large values of degree in the case with a small average
data size. Hence, the value of the degree cannot be set to be
too small either. Different from schemes Static-2 and Static-8,
since scheme AIDOA is able to dynamically adjust the value of
the degree to a proper value according to the system workload,
scheme AIDOA outperforms schemes Static-2 and Static-8 in
most cases.

C. Effect of Turning-On and Turning-Off Times of WNIs

The effect of the turning-on and turning-off times of WNIs
is measured in this subsection, and the experimental results are
given in Fig. 10. In this experiment, we assume that TOn = TOff

and set the value of TOn and TOff from 5 to 60 ms. As shown
in Fig. 10(a), the values of TOn and TOff do not affect the
average access time of schemes Static-2 and Static-8. It is
because that in these two schemes, the degrees of broadcast

Fig. 10. Effect of turning-on and turning-off time. (a) Average access time.
(b) Average tuning time.

buckets are fixed, and the values of TOn and TOff do not affect
the organizations of broadcast programs. On the other hand,
although scheme AIDOA is able to dynamically adjust the
degree of buckets, the influence of TOn and TOff on the average
access time of scheme AIDOA is small since the size of the
index items is much smaller than that of the data items.

Consider the average tuning time of these schemes shown
in Fig. 10(b). According to the observations in Section IV-B,
increasing the value of the degree will increase the average
tuning time in the probe bucket and reduce the aggregate tuning
time in the search buckets. Since the benefit of increasing the
value of degree is in proportion to the values of TOn and TOff ,
scheme Static-2 performs well when TOn and TOff are small.
On the contrary, scheme Static-8 outperforms scheme Static-2
in the case with large TOn and TOff . Although producing more
power consumption in the probe bucket than scheme Static-2
does, scheme Static-8 is still able to reduce the overall power
consumption since being able to greatly reduce the power con-
sumption on turning-on and turning-off the WNIs by reducing
the average number of search buckets. On the other hand, with
dynamic adjustment in the degree, scheme AIDOA is able to
determine a suitable value of degree for the current system
workload and hence outperforms schemes Static-2 and Static-8
in most cases.

D. Effect of the Number of Users

In this subsection, we evaluate the scalability of these
schemes in the average access and tuning times by increasing
the number of users from 200 to 450. The experimental results
are shown in Fig. 11.

Due to the characteristics of data broadcasting, it is intuitive
that increasing the number of users results in a smoothly
increasing average access time. As shown in Fig. 11(a), when
the number of users is small, increasing the number of users
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Fig. 11. Effect of the number of users. (a) Average access time. (b) Average
tuning time.

Fig. 12. Effect of bandwidth of broadcast channel. (a) Average access time.
(b) Average tuning time.

produces a slight increase in the average access time since the
system load is still light. However, when the number of users
is large enough, the system load becomes high, and increasing
the number of users results in drastic increases in the average
access time. In addition, since the size of the index items is
much smaller than that of the data items, the average access
time of these schemes is close.

Fig. 11(b) shows the average tuning time of these schemes
with the number of users varied. We observe that when the
number of users is not large, scheme Static-2 outperforms
scheme Static-8. In addition, when the number of users is large,
the average tuning time of scheme Static-2 becomes longer
than that of scheme Static-8. This phenomenon agrees with the
observations in Section IV-B, where in the average tuning time
the cases with short average access time favor schemes with
small values of degree and the cases with long average access
time favor schemes with large values of degree. Therefore,
when the number of users is large enough, the average tuning
time of scheme Static-2 becomes much longer than that of
scheme Static-8 since the average access time of these schemes
both becomes drastically increasing. Since being able to adjust
the values of degree according to the system workload, scheme
AIDOA outperforms schemes Static-2 and Static-8 when the
number of users is not large. In addition, the average tuning
time of scheme AIDOA is close to that of scheme Static-8 when
the number of users is large.

E. Effect of Bandwidth of the Broadcast Channel

In this experiment, we investigate the effect of the bandwidth
of the broadcast channel on the average access and tuning times
by setting the bandwidth from 32 to 128 kb/s. The experimental
results are shown in Fig. 12.

It is intuitive that increasing the bandwidth of the broadcast
channel decreases the average access time. However, as shown

Fig. 13. Effect of skewness of data requests. (a) Average access time.
(b) Average tuning time.

Fig. 14. Effect of cache size ratio. (a) Average access time. (b) Average
tuning time.

in Fig. 12(a), the effect of increasing the bandwidth of the
broadcast channel on the average access time diminishes when
the bandwidth is large enough. It is because that the average
access time comprises several components, such as the fetch
time and the broadcast time of data items, the waiting time of
data requests spending in queues, and the transmission time
of data requests on the request channel. Since increasing the
bandwidth of the broadcast channel only reduces the broadcast
time of data items, the effect of increasing the bandwidth of the
broadcast channel on the average access time is limited. Similar
to the precedent experiments, the average access time of these
schemes is close.

Now consider the experimental results on the average tuning
time shown in Fig. 12(b). As observed in Fig. 12(b), scheme
Static-8 performs well only when the bandwidth of the broad-
cast channel is high. Similarly, scheme Static-2 performs well
only when the bandwidth of the broadcast channel is low.
Consider the scenario of increasing the value of degree. As
observed in Section IV-B, with the same increment in the
value of degree, increasing the bandwidth of the broadcast
channel will reduce the cost of increasing the value of degree
by reducing the average tuning time in the probe bucket.
Since most average tuning time in the search buckets comes
from turning-on and turning-off the WNIs, the average tuning
time in the search buckets does not affect by the increase of
the bandwidth of the broadcast channel. Therefore, increasing
the bandwidth of the broadcast channel favors increasing the
value of degree. Similarly, decreasing the bandwidth of the
broadcast channel makes increasing the value of degree more
costly. On the other hand, scheme AIDOA is able to adjust the
value of degree according to the system workload and hence
outperforms schemes Static-2 and Static-8 in most cases. This
phenomenon shows the advantage of scheme AIDOA due to its
adaptability to the system workload.
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F. Effect of Skewness of the Access Probabilities of
Data Requests

We evaluate in this experiment the effect of skewness of the
access probabilities of data requests by setting the value of the
Zipf parameter from 0 to 1.25. The larger the value of the Zipf
parameter, the more skewed are the access probabilities of data
requests. In addition, the value of the Zipf parameter is set to 0
to indicate the case that the access probabilities of data requests
are equal. It is intuitive that when the access probabilities
become more skewed, more data requests are merged together,
and the average access time becomes shorter. The result shown
in Fig. 13(a) agrees with this intuition.

Fig. 13(b) shows the average access time of all the schemes
with the value of the Zipf parameter varied. As observed in
Fig. 13(b), the average tuning time decreases as the value of
the Zipf parameter increases. It can be explained by the obser-
vations in Section IV-B that in the average tuning time, cases
with short average access time favor schemes with small values
of degree. Therefore, scheme Static-2 outperforms scheme
Static-8 particularly in cases with a high value of the Zipf pa-
rameter. With the change of skewness of the access probabili-
ties, scheme AIDOA is able to adjust the value of the degree to
adapt to such a change and hence attains a better performance.

G. Effect of Cache Size

This experiment evaluates the effect of cache size on the
average access and tuning times. The experimental results are
shown in Fig. 14. Similar to [8], the cache size is determined
as “cache size ratio × the summation of the sizes of all data
items.” The case that the value of the cache size ratio is set to 0
indicates the case that the server does not employ cache.

As shown in Fig. 14(a), the average access time decreases as
the value of the cache size ratio increases. When the cache size
is large, many data items are cached and can be obtained by the
server without being fetched from the data servers. In addition,
when the cache size is large enough, the benefit of increasing
the cache size diminishes since data items with high access rates
are cached in the server cache. We also observe from Fig. 14(a)
that employing the server cache, which is neglected in prior
studies on data indexing for on-demand data broadcasting [13],
is able to effectively reduce the average access time.

As the observations in Section IV-B show, when it comes
to the average tuning time, cases with a short average access
time favor schemes with small values of degree. Hence, scheme
Static-2 outperforms scheme Static-8 particularly when the
value of the cache size ratio is large. This observation agrees
with the results shown in Fig. 14(b). When the value of the
cache size ratio is small, both schemes do not perform well
since the value of the degree in scheme Static-2 is too small
and the value of the degree in scheme Static-8 is too large. On
the other hand, scheme AIDOA is able to dynamically adjust
the value of the degree to attain a better performance, which
shows the advantage of scheme AIDOA.

VII. CONCLUSION

In this paper, we have proposed an energy-conserving
on-demand data broadcasting system that employs the data
indexing technique. Different from prior work, the power

consumption of turning on and turning off the WNIs was
considered. In addition, we also employed the server cache to
reduce the effect of the data fetch time. Specifically, we first
analyzed the access and tuning times of data requests, and
proposed algorithm AIDOA to adjust the degree of buckets
according to the system workload. We also devised an ap-
proximation method to estimate the effect of increasing and
decreasing the values of degree, and employed the approxi-
mation method to guide the adjustment of algorithm AIDOA.
In addition, the companion program generation algorithm and
the cache replacement policy were proposed to cooperate with
algorithm AIDOA. Several experiments were then conducted
to evaluate the performance of algorithm AIDOA. The ex-
perimental results showed that algorithm AIDOA is able to
greatly reduce the power consumption at the cost of a slight
increase in the average access time and dynamically adjust the
index and data organization to adapt to the change of system
workload.

APPENDIX

Proof of Lemma 1: Consider the cases that dNext >
dCurr.. Fig. 15 shows an example of Type I data requests. When
the degree of buckets is set from dCurr. to dNext, dNext −
dCurr. index item(s) and dNext − dCurr. data item(s) will be
appended to each index segment and data segment, respectively.
As observed from Fig. 15, setting the degree of buckets from
dCurr. to dNext increases the average access time of Type I data
requests by ((dNext − dCurr.) × SI)/B. In addition, we also
observe that appending dNext − dCurr. index items into each
index segment does not affect the average tuning time of Type I
requests. Hence, from the above observations, we have

StatdNext
I .AvgAT = StatI.AvgAT + (dNext − dCurr.) ×

SI

B

StatdNext
I .AvgTT = StatI.AvgTT.

We then apply the above equations as the approximations
of StatdNext

I .AvgAT and StatdNext
I .AvgTT in the cases that

dNext < dCurr., and hence prove Lemma 1. �
Proof of Lemma 2: Consider the example probe bucket

of Type II data requests shown in Fig. 16. Suppose that tStart

follows a uniform distribution between Bucketi.Start and
Bucketi.End. Therefore, as observed from Fig. 16, the proba-
bilities of a Type II data request to be Type II.I and Type II.II are
SI/(SI + SD) and SD/(SI + SD), respectively. Therefore, by
the definition of StatdNext

II .AvgATP and StatdNext
II .AvgTTP ,

we have

StatdNext
II .AvgATP =

SI

SI+SD
×StatdNext

II.I .AvgATP

+
SD

SI+SD
×StatdNext

II.II .AvgATP

StatdNext
II .AvgTTP =

SI

SI+SD
×StatdNext

II.I .AvgTTP

+
SD

SI+SD
×StatdNext

II.II .AvgTTP.
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Fig. 15. Example scenario of Type I data requests that dCurr. = 3 and dNext = 4.

Fig. 16. Example scenario of Type II data requests that dCurr. = 3 and dNext = 4 on the probe bucket.

We now consider the cases that dNext > dCurr. and derive the
approximations of StatdNext

II.I .AvgATP , StatdNext
II.I .AvgTTP ,

StatdNext
II.II .AvgATP , and StatdNext

II.II .AvgTTP . When the de-
gree of buckets is set from dCurr. to dNext, dNext − dCurr.

index item(s) and dNext − dCurr. data item(s) will be ap-
pended to each index segment and data segment, respectively.
As observed from Fig. 16, setting the degree of buckets
from dCurr. to dNext increases the average access and tuning
times of the probe buckets of Type II.I data requests (i.e.,
StatdNext

II.I .AvgATP and StatdNext
II.I .AvgTTP ) by ((dNext −

dCurr.) × (SI + SD))/B and ((dNext − dCurr.) × SI)/B, re-
spectively. Hence, we have

StatdNext
II.I .AvgATP =StatII.AvgATP

+ (dNext − dCurr.) ×
(

SI

B
+

SD

B

)

StatdNext
II.I .AvgTTP =StatII.AvgTTP

+ (dNext − dCurr.) ×
SI

B
.

In addition, we also observe that increasing the degree of
buckets from dCurr. to dNext increases the average access

and tuning times of the probe buckets of Type II.II data re-
quests (i.e., StatdNext

II.II .AvgATP and StatdNext
II.II .AvgTTP ) by

((dNext − dCurr.) × (SI + SD))/B. Therefore, we have

StatdNext
II.II .AvgATP =StatII.AvgATP

+ (dNext − dCurr.) ×
SD

B

StatdNext
II.II .AvgTTP =StatII.AvgTTP

+ (dNext − dCurr.) ×
SD

B
.

We then apply the above equations to the approximations
of StatdNext

II.I .AvgATP , StatdNext
II.I .AvgTTP , StatdNext

II.II .

AvgATP , and StatdNext
II.II .AvgTTP in the cases that dNext <

dCurr., and hence prove Lemma 2. �
Proof of Lemma 3: In the cases that the degree of buck-

ets is dCurr., since one data item and the corresponding in-
dex item contribute StatII.AvgATS by (SI + SD)/B, the
average number of data items in Type II data requests is
StatII.AvgATS × (B/(SI + SD)).
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Fig. 17. Example scenario of Type II data requests that dCurr. = 3 and dNext = 4 on the retrieval bucket.

Consider the cases that set the degree of buckets to dNext.
For each Type II data request, on average, dNext − dCurr. index
items and dNext − dCurr. data items move from the search
buckets to the probe bucket. Therefore, the average number
of index and data items in Type II data requests both become
StatII.AvgATS × (B/(SI + SD)) − (dNext − dCurr.). Since
each search bucket contains dNext index items and dNext data
items, the average number of search buckets of Type II data
requests is

AvgSBNoNext = StatII.AvgATS

× B

SI + SD
− (dNext − dCurr.).

Finally, according to the derivations in Section III-B2, since
each Type II data request contains AvgSBNoNext search buck-
ets on average, we have

StatdNext
II .AvgATS =AvgSBNoNext × dNext×

(SI + SD)
B

StatdNext
II .AvgTTS =AvgSBNoNext

×
(

dNext ×
SI

B
+ TOff + TOn

)
. �

Proof of Lemma 4: Consider the cases that dNext > dCurr.

and the example Type II data request shown in Fig. 17. When
the degree of buckets is set to from dCurr. to dNext, dNext −
dCurr. index item(s) and dNext − dCurr. data item(s) will be
appended to each index segment and data segment, respectively.
As observed from Fig. 17, setting the degree of buckets from
dCurr. to dNext increases the average access time of each Type II
data request on the retrieval bucket by ((dNext − dCurr.) ×
SI)/B. In addition, we also observe that appending dNext −
dCurr. index items into each index segment does not affect the
average tuning time of each Type II request on the retrieval
bucket. Hence, from the above observations, we have

StatdNext
II .AvgATR =StatII.AvgATR

+ (dNext − dCurr.) ×
SI

B

StatdNext
II .AvgTTR =StatII.AvgTTR.

We then apply the above equations as the approximations of
StatdNext

II .AvgATR and StatdNext
II .AvgTTR in the cases that

dNext < dCurr., and hence prove Lemma 4. �
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