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Abstract—Recently, modeling and simulation of hybrid dynamic
systems (HDSs) have attracted much attention. However, since simulta-
neously dealing with the discrete and continuous variables is very diffi-
cult, most of the models result in a unified but more complicated and
unnatural format. Moreover, design engineers cannot be allowed to use
their preferred domain models. Based on the multiparadigm modeling
concept, this correspondence proposes a Petri net framework with as-
sociated state equations to model the HDSs. In the presented approach,
modeling schemes of the hybrid systems are separated but combined in a
hierarchical way through specified interfaces. Designers can still work in
their familiar domain-specific modeling paradigms, and the heterogeneity
is hidden when composing large systems. An application to a rapid thermal
process in semiconductor manufacturing is provided to demonstrate the
practicability of the developed approach.

Index Terms—Automated manufacturing systems, hybrid dynamic
systems (HDSs), multiparadigm modeling (MPaM), Petri nets (PNs), semi-
conductor manufacturing.

I. INTRODUCTION

One of the topics in critical reliability is the modeling and simu-
lation of complex systems. In the past years, most work on system
modeling and simulation has been mainly focused on either continuous
variable systems (CVSs) or discrete-event systems (DESs). The former
are typically modeled by differential or difference equations to analyze
physical dynamic behavior, whereas the latter are described based on
various frameworks to capture logical and sequential behaviors, such
as finite-state automata, Petri nets (PNs), and max–min algebra [1]. As
a paradigm, modeling is a way of representing our knowledge about
the structure and behavior of systems to further answer questions about
them. Both of the CVS and DES models are developed to reduce
the complexity for presenting real systems. However, in practical
applications, most systems possess the behavior that combines both
the time-driven and event-driven dynamics together as the so-called
hybrid dynamic systems (HDSs) or hybrid systems [2]–[4].

During the past decades, modeling and simulation of the HDS have
attracted much attention. Integrating continuous and discrete models is
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common, and several approaches have been proposed. Liu and Lee [5]
proposed a component-based approach implemented in the Ptolemy II
software environment. Demongodin and Koussoulas [6] proposed a
differential PN to represent the continuous system part with the DES
part of a hybrid system in a collective PN model. Moreover, some
commercial software has been developed, such as Simulink with the
integration of Stateflow in the MATLAB platform [7] and VHDL-
AMS/Verilog-AMS with the extensions of hardware description lan-
guages to analog and mixed signals [8]. However, it is very difficult to
simultaneously deal with the discrete and continuous variables. Their
mathematical backgrounds are completely different: recurrence versus
differential equations. Moreover, most of the existing approaches mix
the continuous and discrete dynamics into a unified model, such as
piecewise linear systems, hybrid PNs (HPNs) [9], and differential
PNs. Hence, design engineers cannot be allowed to use their preferred
domain models.

Over the years, different engineering domains have come up with
various modeling abstractions that best suit the design of particular
kinds of systems. Multiparadigm modeling (MPaM) is based on the
premise of giving modelers the most appropriate modeling abstractions
for their particular problem domain and integrating heterogeneous
modeling techniques to achieve scalable designs. From an MPaM
point of view, Lee and Hsu [10] extended the statechart of the unified
modeling language to design a hybrid controller of automated vehicles
and a three-axis motion control system [11] resulting in a clear and
natural representation. Their proposed concept of the hybrid statechart
is similar to the hybrid automata [12]. Generally speaking, either the
statechart or automata mostly describes finite-state machines that are
restricted to finite-state systems, whereas PN is better for present-
ing infinite-state systems. Moreover, precise semantics and powerful
analysis are required to prevent system deadlock and to discover the
bottleneck in the present design [13]. PN provides powerful qualitative
analysis and quantitative analysis, and also provides both rich visual
formalism for specifying behavior and an executable notation [14].
Thus, based on the MPaM concept, this correspondence proposes a
modeling approach within a PN framework. With different views of
the system, it could be more efficient to work with separate inter-
acting models. When composing large systems, designers can still
work in their familiar domain-specific modeling paradigms so that
the heterogeneity is hidden in this way. Moreover, resultant models
are more natural than the HPN in [9] since the continuous part does
not depend on a PN analogy to a continuous system, which is quite
unnatural for continuous control systems. An example of a rapid
thermal process (RTP) in semiconductor manufacturing is illustrated
to show the feasibility of the proposed approach.

II. MPAM FOR HYBRID CONTROL

A. Multiple Models in Hybrid Control

The art of system modeling is to choose the right level of abstraction
to capture the aspects worth exploring, and to ignore the irrelevant
details. This correspondence presents an MPaM approach within a
PN-based framework for hybrid control systems. As shown in Fig. 1,
a high-level coordination controller (within discrete-event domain)
supervises the middle-level digital controller (within discrete-time
domain) through two interfaces: signal generator and event generator.
The signal generator is applied to transform the action commands
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Fig. 1. Multiple domains in hybrid control systems.

from the coordination controller to digital signals, whereas the event
generator is used to trigger events according to some critical thresholds
in digital signals. Then, the digital controller regulates the low-level
physical plant (within a continuous-time domain) via two interfacing
devices: sampler and holder. The sampler is used to generate the
digital signals by sampling the analog signals in the physical plant,
whereas the holder is applied to construct the piecewise-continuous
analog signals. Note that signal or event conversions through boundary
interfaces could be multiple signals or events with a vector or matrix
format. In practice, a coordination controller supervises more than one
digital device of physical plant, particularly in the fields of logical
control for an automated manufacturing system, traffic control of a
highway, and sequence control of a chemical process. Fig. 1 also
shows a typical centralized and hierarchical control scheme, in which
the coordination controller supervises several digital controllers in a
hierarchical way.

In the presented approach, the discrete-event, discrete-time, and
continuous-time models are connected together in a hierarchical way
to form the whole systems. Even though the proposed model presen-
tation is more compact and simpler in a natural way, it is noted that
conjunct interfaces of heterogeneous models are an important issue.
In this correspondence, the interfacing devices for the communication
among models have been described.

B. PN Framework for Discrete-Event and
Discrete-Time Domains

From the MPaM point of view, in the discrete-event domain, the
PN is employed to model and design the coordination controller. The
main motivation for using PN as hybrid models is the fact that all those
good features that make discrete PN a valuable discrete-event model
are still available to hybrid systems. Examples of these features are as
follows: PN does not require the exhaustive enumeration of the state
space and can finitely describe systems with an infinite-state space. In
addition, PN allows modular representation where the structure of each
module is kept in the composed model. Moreover, the discrete state of
PN is represented by a vector and not by a symbolic label; thus, linear
algebraic techniques may be used for analysis.

Fig. 2 shows the proposed PN framework for modeling the discrete-
event and discrete-time domains. Each operation is modeled with
a command transition to start the operation, a progressive working
place, a response transition to end the operation, and a completed
place. Note that the start transition (drawn with a dark symbol) is a
controllable event as “command” input, whereas the end transition
is an uncontrollable event as “response” output. The working place
is a hierarchical hybrid place (HHP, drawn with a triple circle), in
which the state equations under controlled systems are contained and
interacted through the boundary interface. The interaction between the
event-driven and time-driven domains is achieved in the following
way: a token put into the working place starts the integration of the

Fig. 2. Modeling the continuous dynamics within a PN via a hierarchical way.

Fig. 3. HPN (with a net structure to model continuous dynamics).

corresponding equations. Concurrently with the integration, a certain
number of thresholds are monitored. Each threshold is associated
with a transition, i.e., the response transitions. When the threshold is
crossed, it means that the corresponding event is occurring and that
the attached transition is fired. The new marking is computed, and the
integration of a new system starts.

C. State Equations for Discrete-Time and
Continuous-Time Domains

On the other hand, in the hybrid subsystem of discrete-time and
continuous-time domains, i.e., the so-called sampled-data system,
differential and difference equations or Laplace S and Z functions are
typically used to model and analyze such systems. This correspon-
dence is focused on the modeling of the hybrid system from the high-
level viewpoint. Design approaches of the coordination and digital
controllers will be briefly mentioned in the following sections.

D. Comparison With Other Modeling

HPN [9] contains both conventional discrete PN and continuous PN,
as shown in Fig. 3. In this model, the discrete part is represented by
the discrete places and transitions, and the continuous part is by the
continuous places (drawn with a double circle) and transitions. In the
continuous PN, the marking of a place is a real positive number, and
the firing is carried out like a continuous flow. The unique way of
describing interactions between the continuous part and the discrete
one is by means of self-loops. Basically, the discrete PN is applied
to trigger the continuous transitions. However, this approach can
only describe real and nonnegative continuous variables. Moreover, a
continuous place represents only one continuous variable, e.g., the x1,
x2, and y in Fig. 3. In basic HPN, only continuous variables that are
linear with respect to time could be represented as constant speeds. It
has been extended to represent other kinds of evolutions, but for each
kind of evolution, a new type of continuous place has to be introduced.

In this correspondence, instead of using the net structure (i.e.,
the continuous PN in HPN) to model the continuous part of the
system, the proposed framework, which is shown in Fig. 2, uses
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Fig. 4. Interfacing devices in high level. (a) Signal and (b) event generators.

the original state equations to represent the continuous system dy-
namics. In this way, it can be said that the PN (event-driven part of
the model) coordinates the system of difference-algebraic equations
whose structure changes each time a transition is fired. Also, the
system of equations (time-driven part of the model) regulates the
PN evolutions by enforcing the firing of its transition via the threshold-
crossing mechanism. The proposed approach allows the use of the
domain-specific primitive models, such as differential/difference equa-
tions, to capture low-level physical interactions and then be connected
with the high-level PN in a hierarchical way. Thus, the resultant
model with a natural description is more compact and simpler than
HPN. Although the framework we are presenting is general in nature,
in this correspondence, we will concentrate on the specific class of
semiconductor manufacturing systems that largely motivate this work.

Moreover, as compared with the sequential function chart (SFC),
modeling the discrete-event flow and distributing the continuous part
to embedded controllers that report back their state to the event-
driven logic controllers, the proposed approach based on a PN frame-
work is more formal. The SFC is derived from PN with some
simplifications; therefore, theoretical results of PN cannot be directly
applied to SFC [15]. In our PN framework, a formal analysis of some
important properties, including boundness (no capacity overflow),
liveness (freedom from deadlock), conservativeness (conservation of
nonconsumable resources), and reversibility (cyclic behavior), could
be easily performed. Their validation methods include reachability
analysis, invariant analysis, reduction method, siphons/traps-based
approach, or simulation [14].

III. DISCRETE-EVENT AND DISCRETE-TIME MODELS

The upper part in Fig. 1 shows a typical hybrid structure of the
discrete-event and discrete-time models. In this section, we briefly
review the DESs and then describe the interfaces and controller design
of such hybrid systems.

A. DESs

A DES is a dynamic asynchronous system, where the state transi-
tions are initiated by events that occur at discrete instants of time. The
state of a DES may change abruptly at the occurrence of an event, and
in between two events, the system remains in the same state.

B. Interfaces Between Discrete-Event and
Discrete-Time Models

Signals in discrete-event and discrete-time models are fundamen-
tally different. When combining these models, appropriate signal
conversion mechanisms need to be introduced. Most signal conver-
sion algorithms are application-specific and must be implemented as
separate components. As shown in Fig. 4(a), a signal generator is a
device that converts a discrete event into a digital signal. This device
typically uses an event as the input command (such as to push a button)

to trigger a process with discrete-time dynamics. On the other hand, an
event generator is the device that generates discrete events from digital
signals, as shown in Fig. 4(b). A critical job for the event generator is
to find the event timestamp, which depends on the values of the state
variables in the controlled system (such as a threshold-crossing event).

C. Coordination Controller Design

In this correspondence, we directly adopt the supervisor synthesis
method from the study in [16] to build the PN model of the coordina-
tion controller. The design procedure consists of the following steps.

Step 1) Construct the PN model of the plant.
Step 2) Construct the PN model of the specifications (e.g., the

sequence of processes, operation switching, and resource
constraints).

Step 3) Compose the plant and specification models to yield the
coordination controller.

Step 4) Verify and refine the coordination controller to obtain a live
bounded and reversible model.

In this present scheme, the designer of coordination controllers can
purely focus on the discrete-event and discrete-time domains without
considering the detailed complex dynamics of the low-level physical
systems.

IV. DISCRETE-TIME AND CONTINUOUS-TIME MODELS

The lower part in Fig. 1 shows a typical hybrid configuration of the
continuous-time plant with a discrete-time feedback controller, i.e., the
so-called sampled-data system. In this section, we briefly review such
a kind of system and discuss its controller design for hybrid systems.

A. Sampled-Data Systems

A sampled-data system combines both continuous- and discrete-
time dynamic subsystems. Because of this inherent mixture of time
domains, we shall also refer to a sampled-data system as a hybrid
system. Although the plant is usually a continuous-time (or analog)
system, in most practical applications, the controller is a discrete-time
(or digital) device. This is mainly due to the numerous advantages that
digital equipment offers over their analog counterparts. With the great
advances in computer technology, today, digital controllers are more
compact, reliable, flexible, and often less expensive than analog ones.

B. Interfaces Between Discrete-Time and
Continuous-Time Models

There is a fundamental operational difference between digital and
analog controllers, i.e., the digital system acts on samples of the
measured plant output rather than on the continuous-time signal. A
practical implication of this difference is that a digital controller
requires special interfaces that link it to the analog world.

A digital controller (i.e., a discrete-time controller) can be idealized
as one with three main elements: the analog-to-digital (A/D) interface,
digital computer, and digital-to-analog (D/A) interface. As shown in
Fig. 5(a), the A/D interface or sampler acts on a physical variable,
normally an electric voltage, and converts it into a sequence of binary
numbers, which represent the values of the variable at the sampling
instants. These numbers are then processed by the digital computer,
which generates a new sequence of binary numbers that correspond
to the discrete control signal. As shown in Fig. 5(b), this control
signal is finally converted into an analog voltage by the D/A interface,
also called the holder. The digital computer implements the control
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Fig. 5. Interfacing devices in low level. (a) Sampler and (b) holder.

algorithm as a set of difference equations, which represent a dynamic
system in the discrete-time domain.

C. Digital Controller Design

Basically, two classic approaches are taken in continuous-time and
discrete-time domains, respectively, for a digital controller design. The
first technique, which is referred to as emulation [17], is the most
widely applied in industries. Emulation consists in first designing an
analog controller such that the closed-loop system has satisfactory
properties and then translating the analog design into a discrete one
using a suitable discretization method. This technique has the advan-
tage that the synthesis is done in continuous time, where the design
goals are typically specified and where most of the designer’s experi-
ence and intuition reside. In addition, the system’s analog performance
will, in general, be recovered for fast sampling. The second traditional
technique consists in discretizing the plant and performing a controller
design in the discrete-time domain directly. The main benefit of this
approach is that the synthesis procedure is again simplified since the
discretized plant is linear time-invariant in the discrete-time domain. In
this presented MPaM scheme, both approaches are acceptable. Thus,
the designers of digital controllers can easily focus on the discrete-
time and continuous-time domains and use their preferable approaches
without considering the logical behaviors of the high-level system.

V. APPLICATION EXAMPLE

This section demonstrates a practical application of the hybrid
control for an RTP. The status of the hybrid RTP system at any time
instant involves the upper event-driven states and lower time-driven
states of all components in the system at that time.

A. Description of the RTP System

An RTP is a relatively new semiconductor manufacturing device
[18]. A schematic diagram of the RTP system is shown in Fig. 6, which
is composed of: 1) a reaction chamber with a door; 2) a robot arm for
wafer loading/unloading; 3) a gas supply module with a mass flow
controller and pressure controller-I; 4) a heating lamp module with a
temperature controller; and 5) a flush pumping system with a pressure
controller-II. Note that the initial state of the components in the RTP
is either closed or off, except that the door is open. A realistic “recipe”
of the hydrogen baking process is as follows.

Step 1) Load the raw wafer.
Step 2) Close the chamber door.
Step 3) Open the gas valve to supply gases with a desired gas

flow rate and pressure of 2.8 L/min (l pm) and 0.55 torr.,
respectively.

Step 4) Close the gas valve.
Step 5) Turn on the heating lamp to bake the wafer with a desired

baking temperature and duration of 1000 ◦C and 4 s,
respectively.

Fig. 6. Schematic diagram of the RTP system.

Step 6) Turn off the heating lamp to cool down the chamber to a
desired temperature of less than 20 ◦C.

Step 7) Turn on the flush pump with a desired pressure of less than
0.05 torr.

Step 8) Turn off the flush pump.
Step 9) Open the chamber door.

Step 10) Unload the processed wafer.

B. System Modeling and Simulation

By applying the design procedure in Section III-C, the PN model
of RTP is constructed as shown in Fig. 7, which consists of
26 places and 20 transitions, respectively. Corresponding notations are
described in Table I. After constructing the PN model, we can perform
the model validation of the dynamic behavior. Due to its graphical
representation, ease of manipulation, and ability to perform structural
analysis, the software package ARP [19] is adopted to verify the
behavioral properties of the developed PN model. Validation results
reveal that the present PN model is live and bounded.

By interacting with the time-driven dynamics, Fig. 8 shows the
pressure and temperature of one cycle (assume linear variation) for a
wafer processing in RTP, including the wafer loading, door closing, gas
supplying, chamber heating, wafer baking, chamber cooling, chamber
flushing, door opening, wafer unloading, and system resetting. In
Fig. 8(a), the controlled event t5 (start supplying gas) occurs at about
the 4th second and enables the HHP p6 for supplying gas. Then, t7
(start heating chamber) happens at about the 13th second, as shown
in Fig. 8(b), and makes the HHP p10 for heating the chamber. After
t9 (start baking wafer) occurs at about the 19th second, the wafer is
baking at HHP p12. For the period 19th to 23rd seconds, it could be
a PID steady state control of temperature at 1000 ◦C for 4 s. After
baking, t11 (start cooling chamber) happens to locate the token in
HHP p14 for cooling the chamber. At about the 36th second, t13 (start
flushing chamber) occurs to flush the chamber at HHP p17. Then, t15
(start opening chamber door) happens at the 53rd second to further
the followed wafer unloading. This simulation result indicates that the
corresponding discrete events are successfully triggered according to
the desired crossing thresholds of the continuous variables in the time
domain.

VI. CONCLUSION

This correspondence presents an MPaM approach within a
PN framework for HDSs. The presented approach allows the use of
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Fig. 7. PN model of the RTP system.

TABLE I
NOTATION FOR THE PN OF THE RTP IN FIG. 7

preferred domain models and leads to a more natural representation
of the continuous part using a hierarchical framework. Designers can
still work in their familiar domain-specific modeling paradigms, and
the heterogeneity is hidden when composing large systems. Multiple
models can then be hierarchically composed to build complex models.
Thus, through combining the use of well-established theories of PN
and differential/difference equations, each one being well suited for
an aspect of the problem, we emphasize on the interface between the
aspects.

Fig. 8. (a) Pressure and (b) temperature in the RTP system for one-cycle
processing.

In this correspondence, the interactions between discrete events and
continuous variables are transformed based on interfaces as described
in Sections III-B and IV-B, and some special conditions should be
further discussed, such as multiple threshold value crossings. Also, a
variable may be treated as either a discrete or continuous one depend-
ing on different operational contexts at different times. Basically, in the
operational context of the discrete-event domain, the coordination con-
troller treats the variable as a discrete state, whereas in the context of
the discrete-time domain, the digital controller handles the variable as
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a dynamic state. For example, the coordination controller manipulates
a discrete-state “heating chamber” in the RTP application, whereas
the digital controller regulates the continuous-state “temperature”
dynamically with regard to the implemented recipe. Future research
includes the application of the MPaM approaches to various industrial
systems that are of complex discrete-event and continuous dynamics
and must meet economical, environmental, and life-cycle engineering
requirements [20]–[25].
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