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OPTIMALITY OF NESTED PARTITIONS AND ITS APPLICATION
TO CLUSTER ANALYSIS*

E. BOROSt AND F. K. HWANG$

Abstract. A partition of a set N of n distinct numbers is called nested if four numbers a < b <
c < d in N such that a and c are in one part while b and d in another do not exist. A partition is
called a p-partition if the number of parts is specified at p and a shape-partition if the sizes of the
p parts are also specified. There are exponentially many p-partitions but only polynomiMly many
nested p-partitions. In this paper we consider these notions in d-dimensional Euclidean spaces and
give a general condition on the cost structure for which an optimal shape-partition is always nested.
We illustrate applications of our results to some clustering problems, generalize some known results
in this way, and propose some open problems.

Key words, clustering, nested partitions

AMS subject classifications. 62H30, 05A18

1. Introduction. Consider the problem of partitioning a set N of n distinct
numbers into nonempty disjoint parts. The partition is called an open-partition if the
number of parts is not prespecified and called a p-partition if the number is specified
to be p If, furthermore a set {nl np} with P-.=1 n n is prespecified to be the
set of sizes of the p parts, then the partition is called a shape-partition, shape referring
to the set {ni}.

Often, one encounters the problem of finding an optimal partition given a cost (of
partition) function. However, the brute force approach of comparing the costs of all
partitions is too time-consuming due to the large number of partitions. For example,
using the principle of inclusion-exclusion, the number of p-partitions can be shown to
be

(1) e(n,p) E(-1)k (p- k).
k=0

The number of open-partitions

n

(2) #(n)
p=l

is represented by the Bell numbers whose first 10 terms are 1, 2, 5, 15, 52, 203, 877,
4140, 21147, 115975. Even for the shape-partition, the number is

(3) :(n,... ,np)=
n

P V[n-p+lHi--1 hi. 1 lj--1 PJ"

where pj is the number of parts of size j. This number is easily seen to be exponential
in n even for p 2.
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1154 E. BOROS AND F. K. HWANG

One way to deal with the combinatorial problem of huge partition spaces is to look
for small subspaces which, nevertheless, also contain optimal partitions. One well-
studied subspace consists of consecutive partitions [3,9] which are characterized by the
requirement that each part of a consecutive partition consists of numbers consecutive
in N. In this subspace each p-partition corresponds to a way of inserting p- 1 bars
into the n- 1 spaces between the n numbers. The number of p-partitions is thus

( -1/(4) #c(n,p)
1

a polynomial function of n for fixed p. For shape-partitions, the number is easily seen
to be

p
n--p+l

j=l PJ

When the "consecutive" subspace is not known to contain an optimal partition,
one has to search other subspaces. Boros and Hammer [2] raised the notion of nested
partitions, which is defined by the nonexistence of four numbers a b c d in N
such that a and c belong to one part, while b and d belong to another. Note that a
consecutive partition is always nested, but not vice versa. They demonstrated some
cost functions which guarantee that an optimal p-partition is nested. Hwang and
Mallows [I0] showed that the number of nested p-partitions is

(6) N(,p)-- \p-1]\p],

again, a polynomial function of n for fixed p.
The notions of "consecutiveness" and nestedness have been extended to vec-

tots (points in d-dimensional spaces). We now extend them further to d-dimensional
multisets. Let X {Xl,X2,... ,x} C ]d be a multiset of d-dimensional points, i.e.,
elements of X may coincide. Furthermore, let conv(X) denote the convex hull of X,
and let conv* (X) denote the relative interior of cony(X). A partition (1,..., p)
of the multiset X (identical points are treated as separated entities in a partition) is
called consecutive (see [1]) if cony* (i) g cony* (j) 0 for all 1 _< i, j _< p. It is called
nested (see [2]) if for all 1 _< i,j <_ p, either i N conv*(j) 0 or rj N conv*() 0.
Again, consecutiveness implies nestedness. In this paper we give a sufficient condi-
tion on the cost function such that an optimal shape-partition is always nested. A
by-product is a sufficient condition for the existence of a consecutive optimal shape-
partition. In particular, they lead to an extension of Fisher’s result [6] on a clustering
problem from one dimension to d dimensions which he long desired.

2. The main results. In this section we derive a general condition which guar-
antees that every optimal shape-partition is nested. We first consider a shape with
only two parts, and then we extend the result to general p.

Consider a multiset X of d-dimensional points, d

_
i, and a partition of it into

two parts, (7, r2). Let, furthermore, F(7) denote the cost of partition .
Let r be a partition obtained from r by interchanging two points, x and

Y 2. Clearly, has the same shape as . We will consider F() F() as a
function AF(x, y) of x and y, i.e., AF 7 72 ---* P. More precisely, let us consider
a continuous, real-valued mapping A over the space d d satisfying the following
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OPTIMALITY OF NESTED PARTITIONS 1155

conditions:

A(x, y)- As(x, y) for all x e 71"1 and y e 2,

A(z, z)- 0 for all z E ]d.

Such a mapping A exists and can naturally be considered as a continuous extension
of As, for if x E 1 and y s2 happen to coincide (X is a multiset), then As(x, y) 0
since the switch of identical elements does not change the partition. Let us remark
that in most cases, when F is given in an algebraic form, the formula for As will
automa/ically define such an extension.

For a fixed vector x sl let us introduce the notation g(y) A(x,y) and,
analogously, let gy(x) AF(x y), if we want to emphasize that y s2 is fixed now.

Let, furthermore, X+(g) {x Idlg(x) >_ 0}, and let Y+(g) {y ]dlg(y >_
0}.

We are ready now to state a sufficient condition for a shape-partition to be nested.
THEOREM 2.1. For a shape-partition problem let (l,r2) be an optimal

partition. Further let us suppose that either for every x 1, the set Y+(g) is a
convex set with x being a boundary point, or for every y 2, the set X+ (g) is a
convex set with y being a boundary point. Then 7- (1, r2) is nested.

Proof. Let us assume that for every y r2, the set X+ (gy) is a convex set with
y being a boundary point. Since is optimal, i.e., its cost F(r) is minimal among all
partitions of the same shape, gs(x) >_ 0 for all x s and all y E 2, implying

(8) 71 C X+ (gy)

for all y 2. Since for each y 2 the set X+ (g) is convex with y being a boundary
point, the intersection of all these sets

x+-
yETr2

is also convex and no point of 2 belongs to its interior. Since
conv*(l) follows,, which proves that is nested. The other case is
analogous.

Sometimes, it is easier to use Theorem 2.1 when the conditions are specified on
and *.the functions 9 9x

A reM-valued function f(x) is called quasi concave if over any interval [a, b]
{ca + (1 -c)bl0 _< a _< 1} it always attains its minimum over [a, b] at one of the
endpoints. The function f is called strictly quasi concave if no internal point of an
interval can be a minimum (over that interval). It is well known that a (strictly)
concave function is (strictly) quasi concave.

COROLLARY 2.2. Let X be a given multiset with F being the cost function of its
partitions, as before. If either g for any x X or g for any y X is strictly quasi
concave, then every optimal shape-partition is nested.

Proof. Let us assume that g for any y E X is strictly quasi concave. The other
case can be treated analogously.

Let us consider an optimal shape-partition (, 2). According to the previ-
ous theorem, if X+ (gy) is convex having y on its boundary for every y
is necessarily nested.

Let us observe first that for every y r2, the point y must be a boundary point
of X+ (g), since g is strictly quasi concave. This implies that if is not nested,
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1156 E. BOROS AND F. K. HWANG

then, by Theorem 2.1, there is a vector y E 7c2 for which the set X+ (gy) is not convex.
Then there must exist points u, v E X+ (g) and w cu + (1 -c)v X+ (g) for
some 0 < c < 1, i.e., for whichgy(u) >_ 0, g(v) > Owhilegv(w) < 0. Sincegv is
continuous, the interval In, v] has an internal minimum, contradicting the strict quasi
concavity of g.

THEOREM 2.3. Suppose that the cost function has the structure F(r) LIP__1 f(Tri)
i.e., F(Tc) is the sum of independent values associated with each of the parts. In this
case, if every optimal shape-partition is nested holds for p 2, then it holds for p > 2.

Proof. Let r be an optimal shape-partition. By Theorem 2.1, any two parts of
r must be a nested partition of their elements or we would be able to reduce F(r)
by making them nested, which contradicts the assumption that 7r is optimal. By
the definition of a nested partition, r is nested if any two parts of 7r are pairwise
nested.

Interestingly, the arguments used to establish nested optimal partitions are also
applicable for consecutive optimal partitions, for which more efficient algorithms exist.

THEOREM 2.4. Consider a shape-partition problem and let r be an optimal par-
tition. Suppose that for every pair (7c, 7cj) and for every x rj, Y+ (g) is a convex
set with x on its boundary, and for every y 7rj, X+ (g) is a convex set having y as
a boundary point. Then every optimal partition is consecutive.

Proof. First consider the case of two parts. Let 7r be an optimal partition. We
have argued in the proof of Theorem 2.1 that X+(g) being a convex set having y on
its boundary implies that no y r2 is in conv*(Trl). Similarly, Y+(g) being a convex
set with x being the boundary implies that no x 7rl is in conv*(r2). Hence 7r is
consecutive. The result is then extended to general p parts by an argument analogous
to the proof of Theorem 2.3.

COROLLARY 2.5. Suppose that both g and gv are strictly quasi concave for every
x and y, respectively. Then every optimal shape-partition is consecutive.

Since an open-partition must be a p-partition for some p, and a p-partition must
be a shape-partition for some shape, results in this section also apply to p-partitions
and open-partitions.

3. Applications to clustering. In a clustering problem, one partitions a given
set of points into clusters usually with points in the same cluster close to each other,
though closeness can be defined in various ways. It is very rare for a clustering
problem to have a polynomial-time algorithm for exact optimal clustering, due to
the usually large number of possible clusterings. One of the few exceptions is due to
Fisher who was one of the first to use consecutive partitions. Fisher [6] considered a
one-dimensional clustering problem where the goal is to minimize the sum of squares,
i.e., the cost of a partition r (7c1,..., 7rp) is

P

i=1 xj Tr

where 5i is the average of the numbers in 7ri. He proved that there exists a consecutive
optimal p-partition, even when there is a weight w. associated to each number xj.
Since every open-partition must be a p-partition for some p, this also implies the
existence of a consecutive optimal open-partition. Fisher wrote [6, pp. 796-797]: "It
would of course be most desirable to develop, both theoretically and computationally,
a distance criterion that is defined in more than one dimension. An example of
the need for such a formulation is shown, in a multivariate stratification problem
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OPTIMALITY OF NESTED PARTITIONS 1157

encountered in a sample survey by Hagood and Bernert [8]. Of course involved in
any such approach is a relevant system of weighing the different dimensions to reflect
their relative importance in determining distance." Gower [7] studied three criteria
commonly adopted in the literature of cluster analysis for multivariate data. One
of which, attributed to Edwards and Cavalli-Sforza [5], is to divide the data into
two disjoint subsets with a minimum sum of squares, a special case of Fisher’s d-
dimensional problem with p 2.

Unfortunately, Fisher’s proof technique of the one-dimensional case cannot handle
a weight function associated with the dimensions. Gower proved the existence of
consecutive optimal partitions for p 2 and without dimension weight. We now
consider the general case. Suppose that xj (Xjl,... ,Xjd) and uk is the positive
weight of dimension k, k 1,..., d. Consider the cost function

(10)

where yj (x/rXjl, v/Xj2,..., XflXjd) and --xj6, y/l  l is the mean (cen-
troid) of the vectors yj for xj E r (and where the product of the vectors denotes
their inner product).

In the following theorem we shall replace yj in (10) by xj for uniformity and also
generalize it by introducing a weight function w associated to part i.

THEOREM 3.1. Suppose that

p

(11) F(r) Ew E (xj )2,
i--1 xr

where w > 0 and-2 is the centroid (mean, in this case) of the d-dimensional points
in r. Then an optimal shape-partition must be nested.

Proof. By Theorem 2.3 it is enough to prove the above statement for the case of
p=2.

Let be an optimal shape-partition and let r be the partition obtained from r
by interchanging y E rl and z r2. Let and denote the centroids of r and r,
respectively. Then

0 <_ AF(y, z) wl Xl) E (Xj 51)2
XjTr XjTrl

Wl
nl

2 Xjfr Xj

E Xj--
xjer,

nl
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1158 E. BOROS AND F. K. HWANG

View the above expression as a function of real y and z (vectors) with the given
coefficient (1 and 52 are treated as fixed) and define g(y) and g(z) accordingly.
Since the sum of the coefficients of the z2 term and the y2 term is negative, at least
one of them is negative, say, the coefficient of the z2 term. Since g(y) is separable
in the dimension of y, it is easily verified that the negative coefficient of the z2 term
implies that the Hessian is negative-definite. Hence g is strictly concave. Since the
coefficients of y2 and z2 are independent of the particular selection of y and z, we
can conclude that g is strictly concave for all z E 2. By Corollary 2.2 an optimal
shape-partition thus must be nested. Cl

COROLLARY 3.2. If

(12) IWl W21 Wl W2

nl n2

then every optimal shape-partition is consecutive.

Proof. The proof of Corollary 3.2 follows immediately from Corollary 2.5.
In particular, if w 1 for all i, then the condition of Corollary 3.2 is satisfied.

Thus we have extended Fisher’s sum-of-squares result to d-dimensional points.
By setting w 0 for n 1 and w 1/(n- 1) for n >_ 2, F() in Theorem

3.1 represents the sum of variances (for multidimensional points, each variance is
weighted sum over the d dimensions). Therefore all shape-partitions to minimize the
sum of variances are nested. It is also easily verified that (12) holds if In1 n21 _< 1.
Hence we have the following result.

COROLLARY 3.3. Consider a partitioning problem where the part-sizes can dif-
fer by at most 1. Then every optimal partition minimizing the sum of variances is
consecutive.

One may feel that perhaps for an arbitrary shape there exists a consecutive opti-
mal partition. We now give a one-dimensional example to show that Corollary 3.3 is
tight, i.e., if the part-size can differ by 2, then no optimal partition is consecutive.

Let N {0, 13, 14, 14, 15, 28} and the shape be {2, 4}. Then {14, 14},
2 {0, 13, 15, 28} is the optimal shape-partition minimizing the sum of variances.
But {1, 2} is not a consecutive partition.

Another consequence of Corollary 2.2 is a strengthening of Theorem 1.2 of [2].
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OPTIMALITY OF NESTED PARTITIONS 1159

THEOREM 3.4. Suppose that

p

() F() (x x),
i=1 xj ,Xk

where wi > O. Then every optimal shape-partition is nested.
Proof. By Theorem 2 again, it is enough to consider p 2. Let y E 7rl and

z E r2. Then

(14)

/F(Y,Z)-- Wl E ((Z Xj)2 (y__ Xj)2)
xjErl

+ (( x) ( x))
xj r2

y[w2(n2 1) Wl (nl -- 1)] + z2[wl (nl 1) w2(n2 + 1)]-- 2(W --w2)yz " 2y [WlxGvIE Xj W2

xj r2 xr

where nl and n denote the cardinalities of 1 and r2, respectively. Since the sum
of the coefficients of y2 and z2 is -2(Wl + w2) < 0, at least one of them is negative,
implying that at least one of g or gv is strictly concave. Thus, by Corollary 2.2, we
can conclude that an optimal shape-partition must be nested.

If both y2 and z2 have nonpositive coefficients in the above proof, i.e., if

(15) [win1- w2n2[ Wl --w2,

then by Corollary 2.5 an optimal shape-partition must be consecutive. This observa-
tion yields the following interesting consequence.

COROLLARY 3.5. Consider a shape-partitioning problem where

p

(16) F(r) E E (xj xk) 2

i--1 xj ,Xk 7ri

and in which the part-sizes can differ by at most 2. Then every optimal shape-partition
is consecutive.

Boros and Hammer studied a one-dimensional clustering problem with

p

(17) F(Tr) E E
and proved that every optimal p-partition is nested. This, however, may not be true
for shape-partitions. In this paper, instead of the absolute difference between two
numbers, we consider the absolute difference between a number and the centroid of
the part, with a part-weight.

THEOREM3.6. Suppose that

p

(18) F(Tr) E wi E IxJ rnl’
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1160 E. BOROS AND F. K. HWANG

FIG. 1. The ordering of y’s and z’s when wl >_ w2.

where w > 0 and m is the median of the set 7r. Then every optimal shape-partition
is nested.

Proof. By Theorem 2.3 it is sufficient to consider p 2. Let y E 7rl and z E 7r2.
Let r’ (r, r) be obtained from 7r by interchanging y and z, and let m and m
be the medians of 7r and 7r. Without loss of generality, assume m <_ m2.

Case i. y, z >_ m2. Then m ml and m m2.

(19) 0 < (,)= (z .) + :( n:) ( n) :(z n:)
(1 )(z ).

So z-y has the same sign as w -w2.
Case ii. m _< y,z <_ m2. Then m m and m m2.

(20) 0 < a(, z)= (z .) +(n ) ( n) (n z)
( + )(z ).

Soz>_y.
Case iii. y, z < m. Then m m and m m2.

(21) 0< (,)= (n ) + .(. ) (. ) (n z)
( )( z).

So y z has the same sign as wl w2.
First consider w >_ w2, then the ordering of y 7r and z 7r2 in the three

intervals separated by ml and m2 is shown in Figure 1.
We will show that a y r, y >_ m2 and a z 7r2, m _< z < m2 cannot coexist.

This will imply that the partition is nested. Suppose to the contrary that such a pair
(y, z) exists. Then

0 (,z)= i + x

x x2

--Wl ]Xj--taXI- w2 Ixj
xj

l(Z ) +:( :) (u ) :( z)

< w2(2z- 2m2) < 0,

an absurdity.
Next consider w _< w2; then the possible ordering of the y’s and z’s is as shown

in Figure 2.
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OPTIMALITY OF NESTED PARTITIONS 1161

FIG. 2. The ordering of y’s and z’s when wl <_ w2.

We can show in a similar fashion that z < m and m < y _< m2 cannot coexist.
Thus the partition is nested.

One can also observe that if Wl w2, then the only order of the elements of rl
and r2 satisfying all conditions in the above proof is y Y z z, implying hence the
following corollary (for a different proof, see also [9]).

COROLLARY 3.7. If
P

i=1 x

where mi denotes the median of the set ri, then every optimal shape-partition is
consecutive.

4. Some concluding remarks. Boros and Hammer proved that if F(r)
-i=1 7rix,ye= x Yl for one-dimensional points or if E(r) -x,ye (- y)2

for d-dimensional points, then an optimal partition is nested. We generalized their
result by giving a broad sufficient condition derived from a novel geometric argument.
We applied this condition to obtain the d-dimensional version of Fisher’s clustering
problem which he proposed but couldn’t prove.

Since the concept of nested partition is fairly recent, there are still many unex-
plored issues. We raise the following questions.

(i) Clearly, a partition r (h,..., p) is nested if and only if for any i and j,
(, j) is a nested partition of the elements in r t3 rg. Does the existence of
a nested optimal 2-partition guarantee the existence of a nested optimal p-
partition for general p? An affirmative answer was recently given by Hwang,
Rothblum, and Yao [II] for one-dimensional points but the problem for gen-
eral dimension remains open.

(ii) For the subspace of consecutive partitions (in one dimension), there exist
an O(n2)-time dynamic programming algorithm to find an optimal open-
partition [9] and an O(pn2)-time algorithm to find an optimal p-partition.
From (6), there exists an O(n2p-2)-time algorithm to find an optimal nested
p-partition. Does there exist a better dynamic programming algorithm for
the subspace of nested p-partitions? Note that since any subset can be a part
in a nested open partition, for a general cost function, one must inspect at
least 2n cost terms to find an optimal nested open-partition.

For the one-dimensional case, it seems quite plausible to conjecture that there al-
ways exists a consecutive optimal partition. However, a counterexample was recently
given by Chang and Hwang [4] in which the optimal partition is nested but is not
consecutive.
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1162 E. BOROS AND F. K. HWANG
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