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Various high-order modes in vertical-cavity
surface-emitting lasers with equilateral triangular
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Large-aperture vertical-cavity surface-emitting lasers with an equilateral triangular lateral confinement are
fabricated to investigate the formation of high-order resonant modes. The experimental lasing patterns are
composed of the superscar mode, honeycomb eigenstate, and chaotic mode. Experimental results confirm the
theoretical predictions that tiny symmetry breaking can cause the high-order modes to reveal miscellaneous
states of integrable and chaotic systems. © 2008 Optical Society of America
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Microdisk lasers with chaotic shapes permit high-
power directional emission and have potential appli-
cations in optical computations and communications
[1-3]. The lasing mechanism of directional emission
in chaotic microdisk lasers has been analogously in-
terpreted with the scar effect in chaotic billiards [4].
Specifically, scar modes have the wave patterns to be
localized on the isolated and unstable periodic orbits
(POs) in the chaotic quantum billiards [4]. In addi-
tion to scar modes, the other significant high-order
states are the so-called superscar modes [5] that are
localized on stable and nonisolated POs. Superscar
modes have been theoretically studied in square [6],
equilateral-triangular [7], and circular quantum bil-
liards [8]. Recently, two-dimensional (2D) microdisk
lasers have been experimentally employed to explore
the characteristics of resonant modes in square [9]
and equilateral-triangular [10,11] cavities. The lat-
eral radiation patterns of 2D microdisk lasers have
been found to be intimately related to the superscar
modes. Nevertheless, the whole morphology of super-
scar modes cannot be straightforwardly observed
from the lateral radiation of 2D microdisk lasers.

More recently, it has been shown that the trans-
verse modes of the oxide confined vertical-cavity
surface-emitting lasers (VCSELs) are equivalent to
the wave functions in the 2D quantum billiards with
the shapes the same as the lateral confinements
[12-14]. The superiority of oxide-confined VCSELs
consists in their longitudinal wave vector k,, which
can bring out the near-field patterns to be directly re-
imaged with simple optics. Although square-shaped
VCSELs have been manufactured to confirm the su-
perscar modes [13], equilateral-triangular-shaped
VCSELSs have not been implemented as yet. Since the
equilateral-triangular billiard is a classically non-
separable but integrable system, experimental real-
ization of the resonance modes in equilateral-
triangular VCSELs can provide important insight
into laser physics [15] as well as electron transport
phenomena in quantum dots [16].

In this work, we fabricate large-aperture
equilateral-triangular VCSELs to explore the near-
field transverse patterns of the VCSELs at lasing
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threshold. Various high-order coherent stationary
modes, including superscar modes, high-order eigen-
states, and chaotic modes are experimentally ob-
served via precise temperature control to detune the
transverse order. Experimental results revealed that
spontaneous imperfections cause the lasing modes of
large-aperture equilateral-triangular VCSELSs to ex-
hibit miscellaneous states of integrable and chaotic
systems. The fundamental operation of the large-
aperture VCSELs is discussed in [13].

The device structure of the present oxide-confined
VCSELs and the methods used to measure the far-
and near-field patterns are similar to those described
by [12], except that the lateral confinement is equi-
lateral triangular. Figure 1 shows the optical micro-
scope image of the device operated with an electric
current under threshold current at room tempera-
ture. The bright region indicates the equilateral-
triangular pattern of spontaneous emission. The edge
length of the oxide aperture was measured to be ap-
proximately 66.8 um. The VCSEL device was placed
in a cryogenic system with a temperature stability of

Fig. 1. Optical microscope image of the device with pat-
tern of spontaneous emission to display the equilateral-
triangular aperture.
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0.01 K in the range of 80-300 K. A current source
with a precision of 0.01 mA was utilized to drive the
VCSEL device. The near-field patterns were reim-
aged into a CCD camera (Coherent, Beam-Code) with
an objective lens (Mitsutoyo, numerical aperture 0.9).
The spectral information in the laser output was
measured by a Fourier optical spectrum analyzer
(Advantest Q8347) with a Michelson interferometer.

Figures 2(a)-2(f) depict the experimental near-field
patterns that are characteristically observed at dif-
ferent device temperatures. It is found that the las-
ing patterns are generally robust and reproducibly
observed under the same experimental circum-
stances. The lasing pattern shown in Fig. 2(a) is ob-
tained at the operating temperature of 295 K, and
the optical spectrum indicates it to be a multimode
emission. The lasing state at the operating tempera-
ture of 275 K is found to dramatically change to a su-
perscar mode that is similar to Fabry—Pérot modes
impinging on lateral sides vertically [17], as seen in
Fig. 2(b). When the operating temperature decreases
to 195 K, the lasing pattern shown in Fig. 2(c) exhib-
its a honeycomb structure. As discussed later, the
honeycomb morphology corresponds to the pattern of
a kind of eigenstate. When the operating tempera-
ture further decreases to 175K, the near-field pat-
tern shown in Fig. 2(d) behaves like a chaotic wave
state that can be described as a random superposi-
tion of plane waves [18]. For the operating tempera-
ture below 135 K, the experimental pattern shown in
Fig. 2(f) corresponds to another superscar mode that
is related to a geometrical PO [10]. This superscar
mode is found to be unchanged when the tempera-
ture decreases from 135 to 80 K. Intriguingly, the las-
ing pattern displays the transition and coexistence of
the chaotic and superscar modes for the operating
temperature within the range of 135—155 K, as seen
in Fig. 2(e).

The analogy between the electromagnetic wave
equation in paraxial approximation and the
Schrodinger equation enables us to make a detailed
connection between the quantum wave functions and
the experimental patterns. Setting the three vertices
to be at (0,0), (a/2, \,@a/2), and (-a/2, \s’ga/2), where
a is the side length, the quantum eigenstates of the
equilateral-triangular billiard are given by [7]

Fig. 2. Intensity patterns of transerse near-field patterns
at temperatures of (a) 295 (room temperature), (b) 275, (c)
195, (d) 175, (e) 155, and (f) 125 K.
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with 2n=m. The eigenstates @, ,(x,y) are the repre-
sentation of traveling waves. The wave functions for
standing waves can be expressed as S;, ,(x,y)
=¢>;’n,n(x )@, (x,y). The experimental honeycomb
pattern shown in Fig. 2(c) can be numerically con-
firmed to correspond to the wave intensity of
IS5 5s(x,¥)[%, as depicted in Fig. 3(a).

uperscar modes that are associated with classical
POs can be analytically expressed with the represen-
tation of quantum coherent states. The formation of
classical POs in the equilateral-triangular billiard
can be denoted by three parameters (p,q,¢), where
the parameters p and ¢ are nonnegative integers
with the restriction that p =q; the parameter ¢ is in
the range of —7 to 7 [7]. With the representation of
quantum coherent states, the wave functions related
to the classical POs with parameters (p,q, ¢) can be
given by [7]
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with m,=(p+2q)N and n,=(2p+q)N, where m, and
n, indicate the order of the coherent state and M
stands for the number of eigenstates that are in-
volved in the superposition. The relative phase factor
¢ between various parts of the coherent state has a
causal relationship with the localization on geometri-
cal trajectories [6,7]. Similarly, ¥y ,,(x,y;p,q, ¢) rep-
resents the traveling wave, and the expression for
the standing wave can be given by Cy /(x,y,p,q, )
=\I}]+\.]M(x’y P59 ¢)i\l,]_\7M(xyy P59 ¢) Based on thOI’-
ough numerical analysis, the experimental superscar
modes can be found to be well reconstructed with the
coherent states of Czg9(x,y;1,01,0.237) and
C§2’6(x,y; 1,1,0.357). Figures 3(b) and 3(c) depict the
numerical wave patterns of |Cjq(x,y;1,0,0.23m)|?
and |C}y 4(x,y;1,1,0.35m)|? corresponding to the ex-
perimental patterns shown in Figs. 2(b) and 2(f). The
excellent agreement between the experimental and
numerical patterns confirms that the quantum for-
mulism is of great importance in describing distinct
branches of physics because of the underlying struc-
tural similarity. Conversely, the present analysis also
provides a further indication that laser resonators
can be designed to demonstrate the quantum phe-
nomenon in mesoscopic physics.



Fig. 3. (a) Numerical wave pattern |Sj; sq(x,y)|? corre-
sponding to the experimental honeycomb pattern shown
in Fig. 2(c). (b), (¢) Numerical wave patterns of
|C360(x,y;1,0,0.23m)[2 and |Cjy4(x,y;1,1,0.357)|? corre-
sponding to the experimental patterns shown in Figs. 2(b)
and 2(f), respectively. The geometrical POs are shown in
the insets.

Although an ideal equilateral-triangular billiard is
integrable, some experimental patterns reveal the
property of quantum chaotic modes, as seen in Fig.
2(d). It is well known that the intensity statistics of
chaotic wave functions obey the Porter—Thomas dis-
tribution P(I)=(1/y2ml)e™"2 [19]. The intensity sta-
tistics for Fig. 2(d) can be derived by digitizing the
image file with the background removal of spontane-
ous emission. We evaluate the intensity statistics for
the experimental pattern to make a comparison with
the Porter-Thomas distribution, as shown in Fig. 4.
The good agreement validates that the wave pattern
corresponds to a chaotic wave function. The origin of
stationary chaotic modes is expected to arise from
spontaneous imperfections, such as boundary rough-
ness or inequality of the three internal angles. In
other words, spontaneous symmetry breaking may
cause the real devices with idealized integrable con-
finements to exhibit the characteristics of noninte-
grable systems. As discussed in [20], although a tri-
angular Dbilliard with internal angles slightly
different from /3 is intrinsically chaotic, the wave
functions can still be scarred by families of POs.
Briefly, tiny symmetry breaking can lead to the emer-
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Fig. 4. Histogram: intensity statistics of the experimental
pattern shown in Fig. 2(d); straight curve, Porter—Thomas
distribution.
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gence of superscar as well as chaotic modes in the al-
most integrable systems. Our experimental results
are consistent with the theoretical findings.

In conclusion, we have manufactured Ilarge-
aperture VCSEL devices with an equilateral-
triangular lateral confinement to explore the charac-
teristics of mesoscopic resonant modes via precise
temperature control. Experimental results generally
confirm the theoretical predictions that spontaneous
symmetry breaking can induce the appearance of su-
perscar modes and chaotic waves. We also observed
the honeycomb pattern that corresponds to the struc-
ture of a high-order eigenstate. More importantly, the
experimental lasing mode within a rather wide tem-
perature range is found to be the coexistence of su-
perscar and chaotic states. The present result can
provide useful insight into laser physics and wave
chaos.
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