Data broadcast on 3G mobile communication networ ks
NSC 90-2213-E-009-153

90 8

(tuning time)

Abstract

Data broadcast is an effective approach to
disseminate information to a massive number of users.
Indexing techniques for broadcasting data can reduce the
battery power consumptions of mobile terminas by
decreasing the tuning time. The organization of the indexes
affects the efficiency of searching data. We present
algorithms organizing the indexes to minimize the
bandwidth required for the broadcast indexes, and thus
minimize the tuning time. The analysis results show that the
proposed agorithms outperform the Hu-Tucker algorithm.
The numerical results also suggest the number of the
branches of the index be 3 when the access probabilities of
the data tend to be uniformly distributed so that the
expected tuning time is minima. When the access
distribution of the data items is skewer, the tuning time can
be reduced by setting the number of the branches in the
index items 2.

Keywords: Data broadcast, tuning time, access
time.

1

91 7 31

1. Introduction

ATA broadcast is an efficient technology to overcome

the limited bandwidth. Data broadcast over radio
channels allows users to access data simultaneously at a
cost independent of the number of users. It is a powerful
way to disseminate data to a massive number of users. A
centralized server periodically broadcasts the data to a
large number of mobile terminals through radio channels.
The mabile terminals receive the broadcasts and filter out
the data that is not desired. To evaluate the efficiency of the
wireless broadcasting, two criteria are often used: access
time and tuning time [1]. The access time is the average
time interval from the moment a client requests data to the
point when the requested data are received by the client.
The access time determines the response time of data
access. The tuning time is the time spent by a client
listening to the channel. The tuning time determines the
power consumed by the client to retrieve the requested data.
Indexing techniques insert auxiliary information indicating
when each data item will be broadcasted. After receiving
the index, a client waits for the requested data most of time
in the doze mode in which low power is consumed and only
wakes up to receive data when the requested data is coming.
Therefore, the tuning time can be reduced and the battery
power is conserved.

In this paper, we proposed k-ary aphabetic index tree
algorithms, as well as a precise tuning cost to evaluate the
performance. The improvement in tuning cost is presented
in this paper. The rest of the paper is organized as follows.
In section 2, the system architecture is described. Section 3
presents the alphabetic Huffman algorithms. Section 4
shows the numerical results. Section 5 concludes this paper.

2. The System Architecture
To provide efficient search of the requested data, an
alphabetic Huffman tree is used for the index tree. The
clients using this scheme should first tune to the root of the
index tree and traverse the tree to obtain the offset to the
reguested data.

Let n be the number of data nodes and the access
probabilities of data nodesi be f;. If the tuning time for data
node i is T;, the average tuning time can be expressed as

Zin:l f, xT, . The tuning time T; can be determined by the

depth of the data node in the index tree. Hu and Tucker
proposed an algorithm to optimize the alphabetic-ordered
Huffman code. Shivakumar and Venkatasubramanian
suggested a k-ary Hu-Tucker agorithm to minimize the
average tuning time, but didn’t describe the algorithm
clearly [2].

There is an open problem remained unsolved in the k-ary
Hu-Tucker algorithm. The k-ary Hu-Tucker algorithm
described by Shivakumar and Venkatasubramanian claims
to construct the index tree with 2 to k branches, but didn’t
specify exact rules or algorithms to construct the tree [2]. A
strategy to determine the degree of the internal nodes of an
index tree to obtain the minimal average tuning time is
needed.

If we increase the degree of an index, the depth of the
index tree is decreased and the tuning time seems to be
reduced. However, increasing the branches would increase
the size of the index. For the wireless broadcasting, the
indexes can be broadcasted on the index channels. The size
of the index represents the bandwidth requirement of the
radio channel. In wireless communications, a radio channel
is partitioned into slots of constant size. Therefore, the size
of the indexes should be the same to fit in a time slot. The
tuning time should count the number of indexes received
and the size of the index. Assume the depth of the data
nodei is d;, and the degree of the index isk. § represents
the length of the key and the offset. The average tuning
time can be expressed as:

T LIS] 2., -Df =kB> " (d -1, D
Zin:l fi -

3. Thek-ary Alphabetic Huffman
Algorithms

In this section, we propose an algorithm to construct the
k-ary alphabetic Huffman tree and minimize the average
tuning time. For n data nodes, it may not be possible to
congtruct an index tree where all indexes have exact k
downward branches. That is, there should be empty
branches for some indexes. We call this type of index
incomplete index. In our proposed agorithm, we first put
those empty links in one index of the index tree, i.e., there
is only one incomplete index in the tree. Under this
assumption, the number of the non-empty links of the
incomplete index can be determined from the number of
data nodes, n, and the degree, k. Let a % b represent the
remainder of a/b, and k; be the number of the non-empty
links of the incomplete index. k; can be expressed as:

K- b+(k-1), forn%(k-1)=bandb=0or1l)
o h, forn%(k—1)=bandb =01

Using the techniques of the binary Hu-Tucker tree, we

construct the k-ary index tree by merging k nodes with the

least access probability into an index node of the index tree.

The number of the non-empty links of the incomplete index
is calculated first. It is because that we reduce the average
tuning time by merging nodes with less access probability
into an index in the lower level of the tree. This algorithm
will be referred to as the k-ary Incomplete-index First
Alphabetic Huffman Algorithm (IFAH). The algorithm is
shown in the following.

The IFAH Algorithm

Step 1. Let S=(Ng, N, ..., N,), the ordered list consists of
al data nodes sorted by search key in increasing
order. Ni=D;.

Step 2. Calculate the number of the non-empty links k; of

Te 26 3¢ 4e 3¢ B¢
(@ C=562«

) G =449

Fig. 1. Theindexing trees with different alphabetic orders.

the incomplete index using Equation 2.
Step 3. Construct the incomplete index node.
® Find k; consecutive nodes in S whose sum of access
probabilities is minimum.
® Replace the k; consecutive nodes with an index node
in S. The access probability of the index node equals
to the sum of the access probabilities of the replaced
nodes.
Step 4. If |9=1, then go to Step 7.
Step 5. Construct the k-degree index nodes.
® Find the k “consecutive” nodes, but index nodes can
be bypassed, in S that have the minimum sum of
access probabilities.
® Replace the k “consecutive” nodes with a new index
nodein S
Step 6. If |[§=1, then go to Step 7. Else go to Step 5.
Step 7. Determine the level of each data node in the index
tree.
Step 8. Reconstruct the index tree according to the levels of
the data nodes.
® |nitialize the ordered list Sasin Step 1.
® Find k; consecutive data nodes whose levels are the
same. The levels of k; consecutive data nodes must
be the maximum among the remaining nodes.
® Combine the k; consecutive nodes to an index node.
Replace the k; consecutive nodes with the index
nodein S
® Find k consecutive nodes whose levels are the same
and the maximum among the remaining nodes, and
combine the k consecutive nodes at the highest level
first. Then, the nodes on the next-to-highest level are
combined.
® The process continues until there is only one node
left and its level must be 0.
However, the alphabetic order of a k-ary alphabetic tree

is not necessary fixed. Fig. 1 shows the index trees starting
from different data nodes. The numbers on the links under
the index nodes are the boundary key values of the index
nodes. Fig. 1 (b) shows an example of k-ary alphabetic tree
starting from D,; the data node before the D, is rotated to
the end of the ordered list. In the example of Fig. 1 (b), we
show how to retrieve data node D;. The boundary key
values of the root index are 2, 5, and 6. Therefore, we
chose the offset of boundary key value 6 to obtain the index
of the next level because key value 1 for D, is less than 2.
The aphabetic order of the data nodes in the index tree can
be treated as a cycle. The average tuning times are 5.62 in
Fig. 1 (a) and 4.49 in Fig. 1 (b), respectively. We apply can
the rotatability to improve the IFAH. The new algorithm
will be referred to as the k-ary Cyclic Incomplete-index
First Alphabetic Huffman Algorithm (CIFAH). In Step 3
and 5 of IFAH, we scan from the left to the right of the
ordered list to find consecutive nodes that have the
minimum sum of the access probabilities. In CIFAH, we
treat the ordered list as a cycle and find the minimum sum
of access probabilities.

4. The Numerical Analysis

Uniform Access Probabilities

First, consider a specia case where the access
probabilities of the data nodes are identical, and the
optimal index tree isafull k-ary tree that has no incomplete
index. Let d be the depth of the index tree. The number of

data nodes, n=k%' . The average tuning time,
T =k(d-1). If k could be any real number, the average
tuning time can be minimized.

B (klnn)
a7 _ ink” _ g k—e-271828..
dk dk

Since k is a natural number, the result suggests that the
average tuning time may be minimized when the degree of
the index is 3.

Release the limitation of full k-ary tree, we consider the
case that al data nodes are uniformly distributed. That is,

250

200

15.0 —=— hranches=2

—— hranches=3
—— hranches=4
—e— hranches=35
—=— hranches=6

100 |4

The average tuning cost

50 j

0.0

(s} []
§ 8§ 8§ & § 8 8 8 8 §
The number of data items

Fig. 2. The average tuning time for data with the uniform
distribution.

f=f,=f,=A =f,=1/n and d=[log, n]-
The average tuning time can be expressed as:

£
= 14 |
o
=12 I
=
w 10 Ll
fay)
£ 6 '
=
@ LI
s
10 20 30 40 S50 GO0 70 B0 @O0 100
The number of the data items
Fig. 3. The average tuning time of different number of the

branches with r=0.2, 1.0, and 2.0 with the IFAH.

k?—n
B k(n(d—l){ 1 J)
T=

©)
n

Fig. 2 shows the tuning time as functions of the number
of data nodes and the degree of the index node. The
average tuning time increases as the number of data nodes
increases due to the increasing height of the index tree. We
focus on the optimal degree that leads to the minimal
tuning time. The tuning time increases as the degree of the
index is larger than 3. Therefore, when the access
probabilities are uniformly distributed, the index nodes of
degree 3 tend to minimize the average tuning time.

Zipfian Distribution in the Access Probabilities

Consider the case where the access probabilities are
non-uniformly distributed. We assume the distribution of
the access probabilitiesis Zipfian [3]. For n data nodes, the
access probability of adata node D; is as follows

1
=T

i"xy =
I:lil'

wherer istherank of thedistribution.

Note that the larger the rank r is, the skewer the
probability distribution is. In addition, f; decreases as i
increases. Fig. 3 shows the results of the average tuning
time for different ranks of Zipfian distribution. For a small
rank (e.g., r=0.2) and a large number of data nodes, the
minimum average tuning time can be obtained when the
degree is 3. It is because that a smaller rank for Zipfian
distribution results in the less skew probabilities
distribution. For a large rank (e.g., r=2) in Zipfian
distribution, the minimal average tuning time is found when
the degree is 2. This is because the large number of
branches increases the tuning time of every data node in the

time

Sripalne o
i
o

[}

R S ik Bt b et

e tuning

=}

— IFaH E
== CIFAT—e—§

The average tuning time ,

= m o

The averal
o =

10 20 30 40 50 B0 70 80 90
The number of the data items (r=0.2)

Jua] 10 200 30 40 50 60 700 20 @0 100
The number of the data iterns (r=2)

Fig. 4. The average tuning time of the IFAH and CIFAH.

index tree. Consider the index trees of a given degree. The
skewer the access probability distribution is, the less the

tuning time is. This is because as the access distribution
gets skewer, fewer data nodes commands more access
probability. The data nodes of large access probabilities
trends to be placed at the lower levels of the index tree. As
aresult, the tuning time decreases.

Fig. 4 shows that the average tuning time of the CIFAH
is less than that of the IFAH. It is because we can find the
minimum tuning time from the selected nodes in the cycle
sequence to build low cost indexes in the index tree. The
improvement ratio of the CIFAH with large rank r is larger
than that with small rank. This is because there are data
nodes of larger access probabilities for the skewer access
probabilities distributions. The CIFAH has the capability to
find an ordered list for the data nodes to construct an index
tree that places those frequently accessed data nodes in the
lower level.

5. Conclusion

In this paper, we proposed indexing schemes to obtain
minimal tuning time. The IFAH is an algorithm similar to
the Hu-Tucker agorithm in organizing the indexes. To
reduce the tuning time, the CIFAH can further improve the
tuning time by rotating the sequence of the data nodes. The
analysis results show that when the access probabilities of
the data are uniformly distributed, the tuning time is
minimal when the degree of the index node is 3. For the
data nodes whose access probabilities are Zipfian
distributed, the tuning time increases as the number of the
data nodes increases. The CIFAH can effectively reduce
the tuning time when the access probabilities are of Zipfian
distribution, and the improvement becomes larger as rank r
increases, i.e., the distribution gets more distorted

REFERENCE

[1] T. Imielinski, S. Viswanathan, and B. R. Badrinath,
“Energy Efficiency Indexing on Air,” In Proceedings
of the International Conference on SGMOD, pp.
25-36, 1994.

[2] N. Shivakumar and S. Venkatasubramanian,
“Energy-Efficient Indexing For Information
Dissemination In Wireless Systems,” ACM-Baltzer
Journal of Mobile Networks and Nomadic
Applications, val.. 1, pp. 433-446, Dec. 1996.

[3] W. Li, “Random texts exhibit Zipf’s law-like word
frequency distribution,” IEEE Trans. Information
Theory, vol. 36, no. 6, pp. 1842, 1992.

O 0o g

[| [
NSC 90-2213-E-009-153
90 8 1 91

91 10

31

31

