
 1

行政院國家科學委員會專題研究計畫成果報告
第三代行動通訊網路中資料廣播之設計

Data broadcast on 3G mobile communication networks
計畫編號：NSC 90-2213-E-009-153

執行期限：90 年 8 月 1 日至 91 年 7 月 31 日
主持人：張明峰 交通大學資工系

計畫參與人員：李隆盛、 楊偉儒、楊武桓 交通大學資工系

中文摘要
線廣播系統可很有效率將廣播資料送給

一大群使用者，採用資料索引技術將可減少手
機與基地台的聯繫次數(tuning time)進而降低
電池電力消耗，索引的結構會影響資料索引的
效率，我們提出演算法來組織索引並可減少手
機聯繫基地台的次數，進而節省手機的使用電
量。我們更提出一個評估原來手機聯繫基地台
次數的效能量測參數來分析我們提出的方
法。分析結果建議當資料的評存取機率的分配
趨向均一時，索引結構中的索引連結數最好是
3 可以得到較低的手機聯繫成本。若資料的存
取機率分布越不平均，即機率分配越偏斜，則
索引連結數則最好是採用 2 比較可得到較低的
手機聯繫成本。

關鍵詞：資料廣播，存取時間，接收時間。

Abstract
Data broadcast is an effective approach to

disseminate information to a massive number of users.
Indexing techniques for broadcasting data can reduce the
battery power consumptions of mobile terminals by
decreasing the tuning time. The organization of the indexes
affects the efficiency of searching data. We present
algorithms organizing the indexes to minimize the
bandwidth required for the broadcast indexes, and thus
minimize the tuning time. The analysis results show that the
proposed algorithms outperform the Hu-Tucker algorithm.
The numerical results also suggest the number of the
branches of the index be 3 when the access probabilities of
the data tend to be uniformly distributed so that the
expected tuning time is minimal. When the access
distribution of the data items is skewer, the tuning time can
be reduced by setting the number of the branches in the
index items 2.

Keywords: Data broadcast, tuning time, access

time.

1. Introduction
ATA broadcast is an efficient technology to overcome
the limited bandwidth. Data broadcast over radio

channels allows users to access data simultaneously at a
cost independent of the number of users. It is a powerful
way to disseminate data to a massive number of users. A
centralized server periodically broadcasts the data to a
large number of mobile terminals through radio channels.
The mobile terminals receive the broadcasts and filter out
the data that is not desired. To evaluate the efficiency of the
wireless broadcasting, two criteria are often used: access
time and tuning time [1]. The access time is the average
time interval from the moment a client requests data to the
point when the requested data are received by the client.
The access time determines the response time of data
access. The tuning time is the time spent by a client
listening to the channel. The tuning time determines the
power consumed by the client to retrieve the requested data.
Indexing techniques insert auxiliary information indicating
when each data item will be broadcasted. After receiving
the index, a client waits for the requested data most of time
in the doze mode in which low power is consumed and only
wakes up to receive data when the requested data is coming.
Therefore, the tuning time can be reduced and the battery
power is conserved.

In this paper, we proposed k-ary alphabetic index tree
algorithms, as well as a precise tuning cost to evaluate the
performance. The improvement in tuning cost is presented
in this paper. The rest of the paper is organized as follows.
In section 2, the system architecture is described. Section 3
presents the alphabetic Huffman algorithms. Section 4
shows the numerical results. Section 5 concludes this paper.

2. The System Architecture
To provide efficient search of the requested data, an

alphabetic Huffman tree is used for the index tree. The
clients using this scheme should first tune to the root of the
index tree and traverse the tree to obtain the offset to the
requested data.

D

 2

Let n be the number of data nodes and the access
probabilities of data nodes i be fi. If the tuning time for data
node i is Ti, the average tuning time can be expressed as

n

i ii Tf
1

. The tuning time Ti can be determined by the

depth of the data node in the index tree. Hu and Tucker
proposed an algorithm to optimize the alphabetic-ordered
Huffman code. Shivakumar and Venkatasubramanian
suggested a k-ary Hu-Tucker algorithm to minimize the
average tuning time, but didn’t describe the algorithm
clearly [2].

There is an open problem remained unsolved in the k-ary
Hu-Tucker algorithm. The k-ary Hu-Tucker algorithm
described by Shivakumar and Venkatasubramanian claims
to construct the index tree with 2 to k branches, but didn’t
specify exact rules or algorithms to construct the tree [2]. A
strategy to determine the degree of the internal nodes of an
index tree to obtain the minimal average tuning time is
needed.

If we increase the degree of an index, the depth of the
index tree is decreased and the tuning time seems to be
reduced. However, increasing the branches would increase
the size of the index. For the wireless broadcasting, the
indexes can be broadcasted on the index channels. The size
of the index represents the bandwidth requirement of the
radio channel. In wireless communications, a radio channel
is partitioned into slots of constant size. Therefore, the size
of the indexes should be the same to fit in a time slot. The
tuning time should count the number of indexes received
and the size of the index. Assume the depth of the data
node i is di, and the degree of the index is k. represents
the length of the key and the offset. The average tuning
time can be expressed as:

n

i iin

i i

n

i ii fdk
f

fdk
T

1

1

1)1(
)1(

 (1)

3. The k-ary Alphabetic Huffman
Algorithms

In this section, we propose an algorithm to construct the
k-ary alphabetic Huffman tree and minimize the average
tuning time. For n data nodes, it may not be possible to
construct an index tree where all indexes have exact k
downward branches. That is, there should be empty
branches for some indexes. We call this type of index
incomplete index. In our proposed algorithm, we first put
those empty links in one index of the index tree, i.e., there
is only one incomplete index in the tree. Under this
assumption, the number of the non-empty links of the
incomplete index can be determined from the number of
data nodes, n, and the degree, k. Let a % b represent the
remainder of a/b, and k1 be the number of the non-empty
links of the incomplete index. k1 can be expressed as:

1,0 and)1(% for ,

1or 0 and)1(% for),1(
1 bbknb

bbknkb
k (2)

Using the techniques of the binary Hu-Tucker tree, we
construct the k-ary index tree by merging k nodes with the
least access probability into an index node of the index tree.

The number of the non-empty links of the incomplete index
is calculated first. It is because that we reduce the average
tuning time by merging nodes with less access probability
into an index in the lower level of the tree. This algorithm
will be referred to as the k-ary Incomplete-index First
Alphabetic Huffman Algorithm (IFAH). The algorithm is
shown in the following.

The IFAH Algorithm
Step 1. Let S=(N1, N2, …, Nn), the ordered list consists of

all data nodes sorted by search key in increasing
order. Ni=Di.

Step 2. Calculate the number of the non-empty links k1 of

the incomplete index using Equation 2.
Step 3. Construct the incomplete index node.
Find k1 consecutive nodes in S whose sum of access

probabilities is minimum.
Replace the k1 consecutive nodes with an index node

in S. The access probability of the index node equals
to the sum of the access probabilities of the replaced
nodes.

Step 4. If |S|=1, then go to Step 7.
Step 5. Construct the k-degree index nodes.
Find the k “consecutive” nodes, but index nodes can

be bypassed, in S that have the minimum sum of
access probabilities.

Replace the k “consecutive” nodes with a new index
node in S.

Step 6. If |S|=1, then go to Step 7. Else go to Step 5.
Step 7. Determine the level of each data node in the index

tree.
Step 8. Reconstruct the index tree according to the levels of

the data nodes.
Initialize the ordered list S as in Step 1.
Find k1 consecutive data nodes whose levels are the

same. The levels of k1 consecutive data nodes must
be the maximum among the remaining nodes.

Combine the k1 consecutive nodes to an index node.
Replace the k1 consecutive nodes with the index
node in S.

Find k consecutive nodes whose levels are the same
and the maximum among the remaining nodes, and
combine the k consecutive nodes at the highest level
first. Then, the nodes on the next-to-highest level are
combined.

The process continues until there is only one node
left and its level must be 0.

However, the alphabetic order of a k-ary alphabetic tree

Fig. 1. The indexing trees with different alphabetic orders.

 3

is not necessary fixed. Fig. 1 shows the index trees starting
from different data nodes. The numbers on the links under
the index nodes are the boundary key values of the index
nodes. Fig. 1 (b) shows an example of k-ary alphabetic tree
starting from D2; the data node before the D2 is rotated to
the end of the ordered list. In the example of Fig. 1 (b), we
show how to retrieve data node D1. The boundary key
values of the root index are 2, 5, and 6. Therefore, we
chose the offset of boundary key value 6 to obtain the index
of the next level because key value 1 for D1 is less than 2.
The alphabetic order of the data nodes in the index tree can
be treated as a cycle. The average tuning times are 5.62 in
Fig. 1 (a) and 4.49 in Fig. 1 (b), respectively. We apply can
the rotatability to improve the IFAH. The new algorithm
will be referred to as the k-ary Cyclic Incomplete-index
First Alphabetic Huffman Algorithm (CIFAH). In Step 3
and 5 of IFAH, we scan from the left to the right of the
ordered list to find consecutive nodes that have the
minimum sum of the access probabilities. In CIFAH, we
treat the ordered list as a cycle and find the minimum sum
of access probabilities.

4. The Numerical Analysis
Uniform Access Probabilities

First, consider a special case where the access
probabilities of the data nodes are identical, and the
optimal index tree is a full k-ary tree that has no incomplete
index. Let d be the depth of the index tree. The number of
data nodes, 1 dkn . The average tuning time,

)1(dkT . If k could be any real number, the average
tuning time can be minimized.

...71828.20
)

ln
ln

(
 ek

dk
k
nk

d

dk
Td

Since k is a natural number, the result suggests that the
average tuning time may be minimized when the degree of
the index is 3.

Release the limitation of full k-ary tree, we consider the
case that all data nodes are uniformly distributed. That is,

nffff n /1321 and nd klog .

The average tuning time can be expressed as:

n

k
nk

dnk
T

d

)
1

)1((

 (3)

Fig. 2 shows the tuning time as functions of the number
of data nodes and the degree of the index node. The
average tuning time increases as the number of data nodes
increases due to the increasing height of the index tree. We
focus on the optimal degree that leads to the minimal
tuning time. The tuning time increases as the degree of the
index is larger than 3. Therefore, when the access
probabilities are uniformly distributed, the index nodes of
degree 3 tend to minimize the average tuning time.

Zipfian Distribution in the Access Probabilities
Consider the case where the access probabilities are

non-uniformly distributed. We assume the distribution of
the access probabilities is Zipfian [3]. For n data nodes, the
access probability of a data node Di is as follows

on.distributi theofrank theisr where,
1

1

1

n

i r
r

i

i
i

f

Note that the larger the rank r is, the skewer the
probability distribution is. In addition, fi decreases as i
increases. Fig. 3 shows the results of the average tuning
time for different ranks of Zipfian distribution. For a small
rank (e.g., r=0.2) and a large number of data nodes, the
minimum average tuning time can be obtained when the
degree is 3. It is because that a smaller rank for Zipfian
distribution results in the less skew probabilities
distribution. For a large rank (e.g., r=2) in Zipfian
distribution, the minimal average tuning time is found when
the degree is 2. This is because the large number of
branches increases the tuning time of every data node in the

index tree. Consider the index trees of a given degree. The
skewer the access probability distribution is, the less the

Fig. 2. The average tuning time for data with the uniform

distribution.

Fig. 3. The average tuning time of different number of the

branches with r=0.2, 1.0, and 2.0 with the IFAH.

Fig. 4. The average tuning time of the IFAH and CIFAH.

 4

tuning time is. This is because as the access distribution
gets skewer, fewer data nodes commands more access
probability. The data nodes of large access probabilities
trends to be placed at the lower levels of the index tree. As
a result, the tuning time decreases.

Fig. 4 shows that the average tuning time of the CIFAH
is less than that of the IFAH. It is because we can find the
minimum tuning time from the selected nodes in the cycle
sequence to build low cost indexes in the index tree. The
improvement ratio of the CIFAH with large rank r is larger
than that with small rank. This is because there are data
nodes of larger access probabilities for the skewer access
probabilities distributions. The CIFAH has the capability to
find an ordered list for the data nodes to construct an index
tree that places those frequently accessed data nodes in the
lower level.

5. Conclusion
In this paper, we proposed indexing schemes to obtain

minimal tuning time. The IFAH is an algorithm similar to
the Hu-Tucker algorithm in organizing the indexes. To
reduce the tuning time, the CIFAH can further improve the
tuning time by rotating the sequence of the data nodes. The
analysis results show that when the access probabilities of
the data are uniformly distributed, the tuning time is
minimal when the degree of the index node is 3. For the
data nodes whose access probabilities are Zipfian
distributed, the tuning time increases as the number of the
data nodes increases. The CIFAH can effectively reduce
the tuning time when the access probabilities are of Zipfian
distribution, and the improvement becomes larger as rank r
increases, i.e., the distribution gets more distorted

REFERENCE
[1] T. Imielinski, S. Viswanathan, and B. R. Badrinath,

“Energy Efficiency Indexing on Air,” In Proceedings
of the International Conference on SIGMOD, pp.
25-36, 1994.

[2] N. Shivakumar and S. Venkatasubramanian,
“Energy-Efficient Indexing For Information
Dissemination In Wireless Systems,” ACM-Baltzer
Journal of Mobile Networks and Nomadic
Applications, vol.. 1, pp. 433-446, Dec. 1996.

[3] W. Li, “Random texts exhibit Zipf’s law-like word
frequency distribution,” IEEE Trans. Information
Theory, vol. 36, no. 6, pp. 1842, 1992.

 5

附件：封面格式

行政院國家科學委員會補助專題研究計畫成果報告
※※※※※※※※※※※※※※※※※※※※※※※※※※
※ ※
※ 第三代行動通訊網路中資料廣播之設計 ※
※ ※
※※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：■個別型計畫 □整合型計畫

計畫編號：NSC 90-2213-E-009-153

執行期間： 90 年 8 月 1 日至 91 年 7 月 31 日

計畫主持人：張明峰 交通大學資工系

共同主持人：

計畫參與人員：李隆盛、 楊偉儒、楊武桓

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位： 交通大學 資訊工程系

中 華 民 國 91 年 10 月 31 日

