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ABSTRACT

 

Aim

 

To evaluate geostatistical approaches, namely kriging, co-kriging and
geostatistical simulation, and to develop an optimal sampling design for mapping
the spatial patterns of bird diversity, estimating their spatial autocorrelations and
selecting additional samples of bird diversity in a 2450 km

 

2

 

 basin.

 

Location

 

Taiwan.

 

Methods

 

Kriging, co-kriging and simulated annealing are applied to estimate and
simulate the spatial patterns of bird diversity. In addition, kriging and co-kriging
with a genetic algorithm are used to optimally select further samples to improve
the kriging and co-kriging estimations. The association between bird diversity and
elevation, and bird diversity and land cover, is analysed with estimated and simulated
maps.

 

Results

 

The Simpson index correlates spatially with the normalized difference
vegetation index (NDVI) within the micro-scale and the macro-scale in the study
basin, but the Shannon diversity index only correlates spatially with NDVI within
the micro-scale. Co-kriging and simulated annealing simulation accurately simulate
the statistical and spatial patterns of bird diversity. The mean estimated diversity and the
simulated diversity increase with elevation and decrease with increasing urbanization.
The proposed optimal sampling approach selects 43 additional sampling sites
with a high spatial estimation variance in bird diversity.

 

Main conclusions

 

Small-scale variations dominate the total spatial variation of
the observed diversity due to a lack of spatial information and insufficient sampling.
However, simulations of bird diversity consistently capture the sampling statistics
and spatial patterns of the observed bird diversity. The data thus accumulated can be
used to understand the spatial patterns of bird diversity associated with different types
of land cover and elevation, and to optimize sample selection. Co-kriging combined
with a genetic algorithm yields additional optimal sampling sites, which can be used
to augment existing sampling points in future studies of bird diversity.
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INTRODUCTION

 

Ecologists recognize that nearly all macroecological and bio-

diversity data show strong spatial patterns, driven by spatially

structured biological processes. Consequently, such data are

often spatially autocorrelated (Rangel 

 

et al

 

., 2006). Moreover,

the spatial structures of ecological and biogeographical data are

influenced by the spatial correlations of the observed variables,

such as their abundance and richness, as well as by the spatial

configuration of the sampling locations (Diniz-Filho 

 

et al

 

.,

2003; Fortin & Dale, 2005; Rangel 

 

et al

 

., 2006). However, when

estimating the mean density of individuals in a domain, the

magnitude of the sampling selection bias varies according to the

underlying spatial autocorrelation structure (Aubry & Debouzie,
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2000). Although improvements in estimation models and

software have increased the ability of mapping to represent the

complex behaviour of ecologically observed variables, a measurable

reduction in prediction errors cannot always be achieved by

increasing the complexity of those variables (Peters 

 

et al

 

., 2004).

Therefore, effective sampling and mapping approaches are

required to estimate the spatial autocorrelation structure, and to

produce reliable maps of spatial patterns with lower estimation

variance.

Geostatistical techniques, such as kriging and co-kriging, can

be used to improve a sampling strategy that considers spatial

autocorrelation (Aubry & Debouzie, 2000, 2001; Lin & Rouhani,

2001). By using sample data and geostatistical methods, biologists

can make optimal predictions about spatially dependent biological

variables (e.g. the richness of a species) at unsampled sites (Carroll

& Pearson, 2000). Kriging, is a linear interpolation procedure

that provides the best linear unbiased estimator (BLUE) of

quantities that vary spatially (Lin 

 

et al

 

., 2001). Co-kriging is an

estimation method that minimizes the variance in the estimation

error by exploiting the cross-correlations between several

variables; the estimates are obtained from both secondary

variables and primary variables (Isaaks & Srivastava, 1989). The

usefulness of secondary variables is often enhanced if the primary

variable of interest is under-sampled (Isaaks & Srivastava, 1989).

Moreover, geostatistical simulation techniques, such as

simulated annealing simulation, can be used to generate multiple

realizations, including an error component, which classical inter-

polation techniques do not consider (Lin 

 

et al

 

., 2001). These

realizations match the sample statistics, while the conditioning

data provide a visual and quantitative measure of spatial

uncertainty (Goovaerts, 1996). Recent examples of the use of

geostatistical methods to study bird distribution, species richness

and biodiversity include the work of Fisher 

 

et al

 

. (2001), Diniz-

Filho 

 

et al

 

. (2002), Maes 

 

et al

 

. (2003), Rempel & Kushneriuk

(2003), Foster 

 

et al

 

. (2004), Royle & Rubenstein (2004), Bayliss

 

et al

 

. (2005), Couteron & Ollier (2005), Ferrer-Castán & Vetaas

(2005), Fortin 

 

et al

 

. (2005), Tchouto 

 

et al

 

. (2005), Godet 

 

et al

 

.

(2006) and Jiguet & Julliard (2006). Numerous studies have also

used geostatistical approaches to design or adjust sampling

systems and quantify the information value of sampling data

and its variations to improve the accuracy of spatial mapping of

environmental or ecological data. Recent examples include the

work of Aubry & Debouzie (2001), Lin & Rouhani (2001), Ferreyra

 

et al

 

. (2002), Passarella 

 

et al

 

. (2003), Rempel & Kushneriuk

(2003) and Yeh 

 

et al

 

. (2006).

Birds are frequently used as indicator variables for ecological

monitoring and assessment because they constitute a well-

defined taxon that has been widely surveyed and it is relatively

easy to carry out censuses of them. Furthermore, they are con-

sidered to be some of the best surrogates for biodiversity in

conservation site planning (Saethersdal 

 

et al

 

., 1993; Reyers 

 

et al

 

.,

2000). Several studies have focused on avian diversity, as well as

its richness and abundance, and produced indices that reveal the

relationship between diversity and vegetation variables (Welsh &

Healy, 1993; Twedt 

 

et al

 

., 1999; Poulsen, 2002; Selmi & Boulinier,

2003; Crooks 

 

et al

 

., 2004; Sandström 

 

et al

 

., 2006). Diversity

indices, such as those of Shannon and Simpson, are normally

used to quantify the diversity of species in communities because

they combine evenness and richness to produce a single metric

(Payne 

 

et al

 

., 2005), and distil the information about the distribu-

tion of a species into a single statistic (Magurran, 2004). The

normalized difference vegetation index (NDVI) is a measure of

vegetation vigour (Oindo 

 

et al

 

., 2000) and represents vegetation

productivity (Chong 

 

et al

 

., 1993; Bailey 

 

et al

 

., 2004). Moreover,

remote sensing data may help identify a species-rich area with

NDVI providing an estimate of primary productivity (Bailey

 

et al

 

., 2004).

To delineate the spatial distribution of, and variations in, bird

diversity in the Taipei Basin, we used variograms to quantify the

spatial variability of Shannon and Simpson diversity indices of

the observed bird data. We then applied kriging and co-kriging

with NDVI to interpolate maps of bird diversity, and employed

simulated annealing to simulate multiple realizations of that

diversity. Furthermore, we designed a sampling system based on

optimal geostatistical sampling approaches that use a genetic

algorithm to reduce the estimation variance of kriging and co-

kriging (with NDVI). Optimal sampling sites provide valuable

information, and improve the identification and mapping of

the spatial distribution and variation in bird diversity because

they facilitate optimal selection of additional samples. Next, the

estimated and simulated maps of bird diversity and the additional

sampling points were superimposed on the geographical infor-

mation system. We then used the system as a reference to analyse

the spatial distribution, accuracy and variability of bird diversity

associated with elevation and urbanization in the study area.

 

MATERIALS AND METHODS

Study area and data

 

The Taipei Basin is located in northern Taiwan (longitude 121

 

°

 

 E

and latitude 25

 

° 

 

N) (Fig. 1). It has a total area of 2450.1 km

 

2

 

 and

includes Taipei City, Taipei County and Keelung City. Taipei City

(272.4 km

 

2

 

, the central part of the study area) is the capital of

Taiwan. The Taipei metropolitan area, which has a low elevation,

is bounded by Datu Mountain (maximum elevation 1092 m),

Chishin Mountain (maximum elevation 1120 m) and Siamou

Mountain (maximum elevation 643 m) to the north, the Linko

mesa (elevation varies from 50 to 240 m) to the west, and the

ridge of Syue Mountain to the south-east (maximum elevation

2100 m at the basin boundary). The highly urbanized area

includes some parts of Taipei City and Taipei County in the central

region of the Taipei Basin (Figs 1 & 2a). The basin is crossed by

the Xindian River in the south, the Danshui River in the west and

the Keelung River in the north (Fig. 1).

We used data on bird communities in northern Taiwan (total

number of species = 324) provided by the Taiwan Bird Record

data base of the Wild Bird Federation of Taiwan (WBFT). The

data base was compiled from reports made by the wild bird society

of each county in Taiwan during 1998. Each society affiliated

with the WBFT has its own volunteers who have been trained to

observe birds and report the results of their investigations. The
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Figure 1 Location of the study area and 
land use.

Figure 2 (a) Elevation, (b) existing 
observation points, (c) NDVI samples and 
(d) candidate sites for further sampling.
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observers recorded all birds seen or heard within a 200-m radius

of each observation point, together with the locations where the

data were collected. The observation points, shown in Fig. 2b,

were randomly selected by the volunteers. The Shannon and

Simpson reciprocal diversity indices were then used to calculate

the bird diversity.

A cloud-free SPOT (Satellite Pour l’Observation de la Terre)

image taken on 16 July 1998 was used to classify the land cover of

the Taipei Basin. Atmospheric and topographic corrections of

the SPOT image were made by the Center for Space and Remote

Sensing Research in Taiwan. The image was first classified using

supervised classification, together with maximum likelihood and

fuzzy methods. Specifically, the supervised classification and

fuzzy convolution procedures of the 

 

 

 

 software

program, based on 1/25,000 black-and-white aerial photographs

and ground-truth data, were used to obtain the land cover infor-

mation (total accuracy = 89.1% and overall kappa value = 0.87),

as illustrated in Fig. 1. The values of the NDVI were captured by

the SPOT image (Fig. 2c). The NDVI value was calculated as the

difference between the reflectance readings of the near-infrared

(NIR) spectrum and those of the visible red (Red) light spectrum

divided by the sum of both readings. The red and NIR light

reflected by plants is a function of the photosynthetically active

compounds they contain and is related to the total plant biomass

(Tucker 

 

et al

 

., 1985; Bailey 

 

et al

 

., 2004). Raw NDVI values range

from –1.0 to 1.0; higher positive values indicate high vegetation

areas, while lower negative values indicate non-vegetation

features or cloud-covered areas (Holben, 1986). In this study, we

assume that the NDVI values are linearly related within a 500-m

grid because such a grid is extremely small compared with the

size of the study area. The statistics of the annual bird diversity at 97

sampling sites and the NDVI at 420 sampling sites (mean NDVI

value within 500 m of each site) are shown in Table 1 and Fig. 2.

 

Kriging and co-kriging

 

To estimate the spatial distributions of the Shannon and Simpson

indices of bird diversity, we used kriging and co-kriging to produce

spatial maps of bird diversity in 500 m 

 

×

 

 500 m grid systems for

the entire study area. In geostatistics, variograms provide a

means of quantifying the commonly observed relationship

between the values of the samples and their proximity (Lin 

 

et al

 

.,

2001). An experimental variogram for an interval lag distance

class 

 

h

 

, 

 

γ

 

zz

 

(

 

h

 

), is represented by

, (1)

where 

 

h

 

 denotes the lag distance that separates pairs of points;

 

Z

 

(

 

x

 

) denotes the bird diversity at location 

 

x

 

; 

 

Z

 

(

 

x

 

 

 

+

 

 

 

h

 

) denotes the

bird diversity at location (

 

x

 

 

 

+

 

 

 

h

 

); and 

 

n

 

(

 

h

 

) represents the number

of pairs separated by the lag distance 

 

h

 

.

The experimental cross-variogram 

 

γ

 

xy

 

(

 

h

 

) of the second-order

stationary regionalized variables, 

 

Z

 

(

 

x

 

) and 

 

Y

 

(

 

x

 

) (NDVI), is

expressed as follows:

. (2)

Kriging is estimated using the weighted sums of the adjacent

sampled concentrations. The weights depend on the correlation

structure exhibited. The criterion used to determine the weights

is whether they minimize the estimation variance. In this con-

text, kriging estimates (BLUE) are considered the most accurate

of all linear estimators. Accordingly, we used kriging to estimate

the value of the random variable at an unsampled location 

 

x

 

0

 

based on the measured values in the linear form:

, (3)

where 

 

Z

 

*(

 

x

 

0

 

) is the estimated value at location 

 

x

 

0

 

, 

 

λ

 

i

 

0

 

 is the kriging

estimation weight of 

 

Z

 

(

 

x

 

i

 

), 

 

x

 

i

 

 is the location of the sampling point

for variable 

 

Z

 

, and 

 

N

 

 is the number of the variables 

 

Z

 

 involved in

the estimation.

Based on non-bias constraints and minimization of the estimation

variance, the kriging estimation variance is represented by

, (4)

where 

 

µ

 

 is the Lagrange multiplier.

Table 1  Variogram and cross-variogram models of bird diversity and NDVI.

Variables Variogram model C0 (nugget) C0 + C (sill) A range (m) R2 RSS MPE

Shannon diversity index Spherical 0.229 0.660 15,500 0.634 0.0500 0.0080

Simpson diversity index Spherical + Gaussian 7.220 1.780, 36.50 15,500, 37,572 0.947 595.763 –0.1200

NDVI Spherical 0.003 0.047 22,300 0.848 0.0004 –0.0007

Shannon diversity–NDVI Spherical 0.0001 0.077 15,400 0.661 0.0030 –0.0080

Simpson diversity–NDVI Spherical + Gaussian 0.000 0.340, 0.420 15,500, 37,572 0.955 0.1516 0.0100

Spherical model: C0 + C[1.5(h/A) − 0.5(h/A)3], h ≤ A

C0 + C, h > A

Gaussian model: 

C0 + C, h > A

RSS, model reduced sum of squares; MPE, mean prediction error = ; n, number of existing samples.
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Co-kriging estimates the value of the random variable at an

unsampled location x0 based on the measured values in the

linear form:

, (5)

where ωj0 is the estimation weight of Y(xj), xj is the location of

variable Y, and L is the number of the variable Y.

Based on non-bias constraints and minimization of the

estimation variance, the co-kriging estimation variance can be

written as:

. (6)

Simulation by simulated annealing

To obtain conditional simulated realizations of the spatial bird

diversity, we simulated 500 realizations (in 500 m × 500 m grid

systems) of the spatial distributions of the Shannon and Simpson

indices of bird diversity using the simulated annealing simulation

method developed for this study. The annealing algorithm

perturbs the image by simulating thermal perturbation (Deutsch

& Cockerham, 1994). Simulated annealing is an optimization

technique that generates an initial field by drawing random values

from a given histogram (Lin et al., 2001). Swapping the values in

pairs of grid nodes that do not contain conditioning data can

sequentially modify the initial field. Swaps are permitted when

the value of the objective function is lower than the previous

value of the objective function (Deutsch & Journel, 1992). The

objective function (O) is defined as:

, (7)

where γ(h) denotes the pre-specified variogram, and γ*(h)

represents the variogram of the simulated realization.

Optimal additional sampling

In this study, the kriging and co-kriging estimation variances

were minimized to obtain an accurate spatial estimation of bird

diversity via optimal selection of additional sampling sites using

the genetic algorithm. As a result, 23, 43, 63, 83, 103 and 123

additional sampling sites (total sampling size from 120 to 220)

were optimally selected from 596 pre-defined grid sampling

candidate sites (Fig. 2d). To reduce the kriging estimation

standard deviation of bird diversity, the objective function of the

optimization problem is defined as follows:

. (8)

subject to

, (9)

where σkriging is the kriging estimated standard deviation, and

n denotes the number of additional sampling sites. In addition,

Ω represents the index set that defines all the candidate sampling

locations in the study region, I denotes a subset of Ω and a pos-

sible alternative sampling design, D is the set of all grids in the

study region, NI denotes the number of possible alternative

sampling designs, I, and M represents the maximum number of

additional sampling sites.

To reduce the co-kriging estimated standard deviation of bird

diversity with NDVI, we define the objective function of the

optimization problem as follows:

, (10)

subject to

, (11)

where σco-kriging denotes the co-kriging estimated standard

deviation.

RESULTS

The spatial structure of bird diversity

We constructed an experimental variogram of bird diversity

and a cross-variogram of bird diversity using NDVI at the same

active lag (50 km) and lag interval (5000 m) with GS + (Gamma

Design Software, 2004). To fit the variogram and cross-variogram

models, a relatively consistent set of best-fit models was generated

using the least-squares fitting technique with minimum reduced

sum of squares (RSS), and maximum r 2 and minimum mean

prediction error (MPE) values (Table 1). The small-scale

variations (nugget effects) of the Shannon and Simpson bird

diversity indices represented, respectively, 34.7% and 18.6% of

the total variation of the diversity of the observed bird data. In

the variogram model, the nugget effect values were 34.70% and

18.86% of the Sill values of the observed Shannon and Simpson

reciprocal bird diversity indices, respectively. The Simpson

reciprocal diversity variogram represented nested structures

comprising the sum of a spherical model with a range of 15.5 km

and a Gaussian model with a range of 37.57 km. The variogram

nugget effect value was 5.80% of the Sill value of the observed

NDVI. Furthermore, in the cross-variogram model of observed

Shannon bird diversity–NDVI and Simpson diversity–NDVI, the

nugget effects were 0.1% and 0.0% of the Sill values, respectively.

The variography results show that the variogram models of bird

diversity have a high nugget effect and display a high degree of

small-scale variation. In contrast, the variogram of NDVI and

the cross-variogram of bird diversity and NDVI have considerably

lower levels of small-scale variation. The greater the range of the

variogram model, the better the continuity of the observed bird

diversity will be. The variogram range (22.3 km) of NDVI,

which represents the spatial structure of vegetation within the

geographical range, is approximately 1.44 and 0.59 times that of

the bird diversity variogram model and the bird–NDVI cross-

variogram model at short range (15.5 and 15.4 km) and long

range (37.6 km), respectively.
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Comparative statistical estimation and simulation

The ordinary kriging estimates, co-kriging estimates and simula-

tions were based on the above variogram models and 97 bird

diversity observations. Table 2 lists the descriptive statistics for

ordinary kriging and co-kriging, as well as the simulated annealing

results for the Shannon and Simpson bird diversity indices in the

study area. The descriptive statistics of the kriging and co-kriging

results did not capture the statistics of the investigated bird

diversity data well (Table 2). However, the descriptive statistics of

the bird diversity simulations using simulated annealing were

almost identical to those of the Shannon and Simpson reciprocal

indices of the investigated bird diversity data (Table 2).

Spatial structures, patterns of estimation and 
simulations

The experimental variograms of the measured, estimated and

simulated values were constructed using the same lag interval to

compare the spatial structures of the measured, estimated and

simulated bird diversity (Fig. 3). These experimental variograms

show that the estimations of ordinary kriging yielded a well-

structured (low nugget effect and long range) variogram with

low spatial variability, but they did not capture the spatial structure

and small-scale variation of the investigated values accurately, as

shown in Fig. 3. From the figure, we observe that the experimental

variograms of all the simulations fit the experimental variogram

of the observed bird diversity data.

Figure 4a,b shows, respectively, the kriged and co-kriged maps

of low bird diversity areas in the Taipei metropolitan area, where

the elevation is low. Significantly the co-kriged map shows that

the areas with low bird diversity closely match the patterns of

urbanization in Taipei City. The values of the Shannon and

Simpson diversity indices increased as urbanization decreased.

The estimated maps also show an area of higher bird diversity

surrounding the metropolitan area. Ordinary kriging estimate

maps of bird diversity confirmed that kriging tended to smooth

extreme values of the empirical bird diversity data set. The co-

kriging estimation variances were considerably lower than the

kriging estimated variances over the entire study area. However,

the kriging and co-kriging standard deviation maps also show

high estimation errors in areas that were not sampled or that

provided few samples. Figure 4c,f shows the simulation maps

of bird diversity in the study area. Like the kriging map, the

simulation maps indicate low bird diversity in the Taipei

metropolitan area. The simulation maps also demonstrate

the spatial discontinuity and variability of bird diversity in the

metropolitan area, and reveal areas of high discontinuity and

variability of bird diversity in the areas that were not sampled or

that had few sampling sites.

Optimal additional sampling

The multiple optimal additional sampling sites were also chosen

using the proposed optimal sampling approach to reduce both

the kriging and the co-kriging estimation of the variance of the

Shannon and Simpson (co-kriging only) bird diversity indices.

Adding 23, 43, 63, 83, 103 and 123 extra sampling sites reduced

the kriging estimation of the variance of the Simpson bird

diversity index in the study area by 12.7%, 17.7%, 21.5%, 24.2%,

26.2% and 27.5%, respectively. Meanwhile, adding 23, 43, 63, 83,

103 and 123 optimal sampling sites reduced the co-kriging

estimation variance of the Shannon bird diversity in the inves-

tigated area by 9.3%, 13.2%, 15.2%, 16.7%, 18.1% and 18.9%,

respectively. Note that the additional sampling locations for a

particular set were not included in other sets. By increasing the

number of sampling sites in increments of 20 from 23 to 123

additional sites (total sample size between 120 and 220), the

Table 2 Descriptive statistics of the estimations and simulations of bird diversity.

Mean Median Min. Max. SD 25th percentile 75th percentile

Shannon diversity index Investigated 2.28 2.39 0.35 5.85 0.78 1.85 2.71

Kriging 2.45 2.48 1.24 3.36 0.30 2.30 2.62

Co-kriging 2.49 2.54 0.64 5.15 0.40 2.28 2.74

Sim no. 1 2.29 2.40 0.35 5.85 0.77 1.85 2.70

Sim no. 10 2.29 2.39 0.35 5.85 0.77 1.85 2.70

Sim no. 50 2.27 2.39 0.35 5.85 0.77 1.84 2.70

Sim no. 100 2.27 2.39 0.35 5.85 0.76 1.85 2.70

Sim no. 500 2.29 2.39 0.35 5.85 0.77 1.85 2.71

Simpson diversity index Investigated 7.28 6.67 1.25 22.20 4.33 3.96 9.96

Kriging 9.27 8.98 2.74 17.06 2.35 7.77 10.60

Co-kriging 8.74 8.11 1.96 18.70 3.04 6.67 10.34

Sim no. 1 7.30 6.68 1.25 22.20 4.31 4.04 9.94

Sim no. 10 7.29 6.69 1.25 22.20 4.28 4.26 9.89

Sim no. 100 7.30 6.67 1.25 22.20 4.28 4.22 9.98

Sim no. 200 7.27 6.63 1.25 22.20 4.32 4.01 9.90

Sim no. 350 7.27 6.67 1.25 22.20 4.30 4.04 9.90

Sim no.: simulated realization no.
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difference in the percentage of kriging variance reduction tended

asymptotically towards a nearly constant percentage variance

reduction in the kriging standard deviation (less than 3.0%)

when the number of additional sampling sites exceeded 63.

Furthermore, by increasing the number of sampling sites in

increments of 20 from 23 to 123 additional sites (total sample

size between 120 and 220), the difference in the percentage of

co-kriging variance reduction tended asymptotically towards a

constant (less than 3.0%) when the number of additional sites

exceeded 43. The locations of the additional sampling sites are

shown in Fig. 5. The additional samples derived by reducing the

optimal co-kriging variance and the optimal kriging variance

were different. Moreover, nearly all the additional samples were

obtained from a few sampling areas with high discontinuity in

the simulated maps. Adding 23, 43, 63, 83, 103 and 123 sampling sites

reduced the kriging estimation variance of the Simpson reciprocal

bird diversity index by 16.9%, 20.2%, 22.3%, 23.0%, 25.0% and

25.6%, respectively. By increasing the number of sampling sites

in increments of 20 from 23 to 123 additional sites (total sample

size between 120 and 220), the difference in the percentage of

co-kriging variance reduction for the Simpson reciprocal index

tended asymptotically towards a constant (less than 3.0%) when

the number of additional sampling sites exceeded 43.

DISCUSSION

Consideration of the spatial variation in species richness and

community composition is important for understanding the

ecological patterns and underlying processes that produce them

(Rosenzweig, 1995; Nichols et al., 1998). The spatial pattern of

the richness of a bird species frequently involves a combination

of large-scale biogeographical variation and fine-scale ecological

variation (Wiens, 1989; Noss, 1992; Luoto et al., 2004). The field

of geostatistics has provided ecology with some novel tools for

interpreting the spatial patterns of organisms, the numerous

environmental components they interact with and the joint spatial

dependence between the organisms and their environment

(Rossi et al., 1992). In this study, the variogram of Shannon’s

bird diversity index with a high nugget effect ratio represents a

high level of small-scale variation or observation errors in bird

diversity. The small-scale variations might be due to a lack of

sampling and variations in environmental factors in the Taipei

metropolitan area. The higher the degree of spatial autocorrelation

among sites, the smoother the changes between places within

the geographical range (Maurer, 1994; Maurer & Taper, 2002).

However, the correlation within the range separating sampling

sites can be explained by the characteristic distribution of the

Figure 3 Experimental variograms of (a) the 
observed, estimated and simulated Shannon 
bird diversity index and (b) the observed, 
estimated and simulated Simpson bird 
diversity index (sim no.: simulated 
realization no.)
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abundance of a species within a geographical range (Villard &

Maurer, 1996). The variography results imply that the bird

diversity values at the sampling sites were spatially correlated

within a micro-scale (15.5 km) and a macro-scale (37.57 km).

These correlations can be explained by the characteristic

distribution of bird diversity within a geographical range.

The magnitude of the NDVI is related to the level of photo-

synthetic activity in the observed vegetation (Oindo et al., 2000).

Significantly, a positive correlation has been reported between

bird richness and the maximum values of NDVI (Oindo et al.,

2000; Bailey et al., 2004; Seto et al., 2004). In this study, the cross-

variograms of bird diversity and NDVI had spatial structures

(low nugget effect and large range) that indicated two spatial

correlations between bird diversity and NDVI within 15.4 km

and 37.75 km, respectively, in the Taipei Basin. The variography

results also demonstrate a spatial correlation between bird

diversity and primary productivity. The nested spatial structures

of the Simpson reciprocal diversity index confirm that it can

capture the variance of a species’ distribution, and demonstrate

that it is one of the most meaningful and robust diversity indices

available (Magurran, 2004). Although the Simpson reciprocal

index is the most widely used form of the Simpson index, Rosen-

zweig (1995) noted that it can exhibit a severe variance problem

(Magurran, 2004). Therefore, other forms of the Simpson index

should be considered in future studies. Moreover, the cross-

variogram results show that, within certain ranges, NDVI values

and bird diversity are highly correlated spatially. When the

distances between samples are greater than the ranges of the

cross-variogram models, NDVI values and bird diversity are not

correlated. The variogram results of this study extend those

Figure 4 Spatial patterns of (a) kriging, 
(b) co-kriging, (c) sim no. 100 for the 
Shannon bird diversity index, (d) kriging, 
(e) co-kriging, (f) sim no. 350 for the Simpson 
bird diversity index (sim no.: simulated 
realization no.).
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reported by other studies. Therefore, NDVI is an important

factor that should be considered in bird diversity studies within

particular ranges.

Statistical analysis of the estimates and simulations showed

that simulated annealing reproduced observed bird diversity

statistics and provided results that matched the global statistics of

bird diversity measurements more closely than those derived by

co-kriging and kriging. Additionally, the statistics of estimates

obtained by co-kriging with NDVI matched bird diversity better

than those obtained by kriging alone. Minimizing the variance

of the kriging prediction error involves smoothing the actual

variability. Furthermore, kriging produces smoothed data that

cannot capture the distribution or spatial changes of the observed

bird diversity data, however, it may capture the local distribution of

bird diversity because it yields the best unbiased linear estimation.

Scaling up is another important issue that should be considered

when dealing with spatial data in fine-resolution data sets. The

effect of scaling on NDVI values may depend on the characteristics

of the land cover and the size of the study area. Some studies have

found that the effect of scaling from individual bands to NDVI is

small and can be ignored; that is, lumped and distributed NDVI

can be considered as being the same (Aman et al., 1992; Hall et al.,

1992), but other studies have found that scaling is significant (Hu

& Islam, 1997). Van der Meer et al. (2001) found that vegetation

indices, including NDVI, were consistent with the spatial scale of

observations in their five study sites. When the sum of the red

and NIR reflectance of vegetation nearly equals that of soil, the

spatial scaling effect of NDVI can be ignored (Zhang et al., 2006).

For moderately heterogeneous surfaces, such as agricultural

land, the scaling differences in NDVI can be overlooked because

of the small changes in the types of land use (Tian et al., 2005).

A situation where the surface is heterogeneous implies that

NDVI should show more spatial scaling effects (Zhang et al.,

2006). In this study, we assume that NDVI values are linearly

Figure 5 Additional sampling sites (a) 23 
and (b) 63 for the Shannon diversity index 
(kriging), (c) 23 and (d) 43 for the Shannon 
diversity index (co-kriging), (e) 23 and (f) 43 
for the Simpson diversity index (co-kriging).
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related within a 500-m grid. Future research should investigate

the relationships between NDVI values in various scales in

related spatial bird diversity studies.

Species richness or diversity is generally lower in urban areas,

where the avian community is dominated by a few species, often

introduced ones (Beissinger & Osborne, 1982; Cam et al., 2000;

Marzluff et al., 2001; Chace & Walsh, 2006). Regional landscape

effects may be especially strong in urban areas and control the

diversity and community structure at the local scale (Gehrt &

Chelsvig, 2004). The richness of avian species is strongly

influenced by habitat diversity and land-use patterns, although

these effects appear to predominate at relatively small (local)

scales (Flather, 1996; Böhning-Gaese, 1997; Diniz-Filho et al.,

2002). In this study, we used kriging as well as co-kriging with

related variable NDVI to interpolate the spatial distribution of bird

diversity. Kriged, co-kriged and simulated maps of bird diversity

demonstrated low diversity in the Taipei metropolitan area,

which is highly urbanized and of low elevation. The means of the

estimated and simulated bird diversity in the urban vegetation

land cover were greater than those for roads and built-up areas, but

lower than for natural vegetation (Fig. 6). Lee et al. (2004) reported

that, for the range of NDVI > 0.5, bird species richness showed a

significant positive increase with increases in NVDI in Taiwan.

They also found that urbanization decreased with elevation, NDVI

decreased with urbanization, and bird species richness decreased

with urbanization and increased with increases in NVDI.

The mapping results of this study also confirm that bird

species richness decreases with increasing urbanization in

Taiwan. Moreover, the boundary of low values of bird diversity

estimates matches the shape of the Taipei metropolitan area. The

bird population in urban environments is influenced by complex

combinations of environmental factors (Germaine et al., 1998),

such as parks, open spaces and fragmented habitats. According to

the kriging, co-kriging and simulation maps, metropolitan areas

have low values and exhibit certain levels of spatial variability in

bird diversity. Confirming the variography results, the spatial

phenomena of bird diversity maps represent the small-scale

variations in bird diversity and the effects of urbanization on

bird diversity at the local scale in the study area. The mean bird

diversity of the co-kriging estimations and simulations (simulation

no. 1, simulation no. 10, simulation no. 50) increased with

elevation (Fig. 6b). These results confirm that bird species richness

increases with elevation, peaks at around 1600–2000 m and then

decreases with further increases in elevation reaching its

minimum at the highest elevation in Taiwan (Lee et al., 2004).

Our estimation results also demonstrate that distribution con-

straints imposed by continental boundaries, together with the

tendency of ranges to be continuous at larger scales of analysis,

Figure 6 Estimated and simulated Shannon 
bird diversity indices associated with (a) land 
cover, (b) elevation. (sim no.: simulated 
realization no.).
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can influence the geography of species richness, with higher

levels of species richness expected in the middle of bounded

domains (Jetz & Rahbek, 2002).

The quality of ecological and biological data is influenced by

how the data are collected, i.e. the configuration of spatial

sampling sites (Diniz-Filho et al., 2003; Fortin & Dale, 2005;

Rangel et al., 2006). Moreover, the magnitude of the sampling

selection bias varies according to the underlying spatial auto-

correlation structure (Aubry & Debouzie, 2000). The sampling

and mapping approaches used to estimate spatial autocorrelation

and produce reliable maps can reproduce spatial patterns with

lower estimation variance. We adopted an optimal sampling

approach that considered spatial autocorrelation in order to

obtain optimal additional sampling sites that substantially

improved the kriging and co-kriging estimation of the spatial

distribution of bird diversity. The marginal percentage reduction

in the kriging estimation variance was approximately 27.5%

when 123 extra sampling sites were added. Moreover, the co-

kriging estimation variance was reduced and became extremely

small when the number of additional sampling sites was

increased to a sufficient level (43 additional sites). It is noteworthy

that the additional sites located in areas of insufficient bird

sampling with NDVI samples and high variability not only

improved the co-kriging estimate but also reduced some of the

spatial variance in estimating the observed bird diversity due to

inadequate sampling. The optimal co-kriging variance reduction

approach, which considers bird diversity sampling and NDVI

values that represent vegetation biomass, is more cost-effective

than the kriging variance reduction approach.

The effects of grid size are important in spatial sampling

design. Based on the spatial structure (variogram), the grid’s

systematic sampling candidates were utilized to select additional

sampling sites. Therefore, an irregular original data set may not

significantly affect the selection of additional sampling sites

when the grid size is small or the number of additional sites is

large (i.e. the percentage of variance reduction is sufficiently

small). We estimated the spatial distributions of the Shannon

and Simpson bird diversity indices by using kriging, co-kriging

and simulations to produce spatial maps of bird diversity in

500 m × 500 m grid systems for the entire study area. However,

a very small grid size and/or an irregular sampling selection

typically consume significant amounts of computational

time and only marginally improve the efficiency of additional

sampling. To examine the effects of the grid size on the selection

of optimal samples, we selected 43 additional sampling sites for

co-kriging the Shannon diversity–NDVI and another 43 for co-

kriging the Simpson diversity–NDVI in cases of increasing and

decreasing grid size (151 grid sampling sites and 2384 sampling

sites). The optimal sampling results showed that the selected

sampling sites and the percentages of variance reduction were

identical for the 43 additional sites for co-kriging Shannon

and co-kriging Simpson diversity cases at 151, 596 and 2384

sampling sites. The results also indicate that 43 additional

sampling sites were sufficient for both the Shannon and Simpson

diversity indices, even when the sampling grid size was increased

or decreased by 0.25–4 times.

CONCLUSION

In studies of species richness, it is essential to use an optimal

sampling scheme to estimate spatial autocorrelations and

the best interpolation technique to reliably map patterns of dis-

tribution and abundance. This study demonstrated significant

multiscale variations in measured bird diversity data and

mapped the spatial distribution of bird diversity within the area

of interest using geostatistical approaches, such as kriging,

co-kriging with NDVI and conditional simulations. Although

kriging, co-kriging with NDVI and simulated annealing simulation

identified the patterns of bird diversity, the statistics and spatial

structure of bird diversity reproduced by kriging were not as

accurate as those derived by simulation techniques and co-kriging.

In addition to reproducing the spatial variation of the measured

bird diversity, simulated annealing simulation reflected the

spatial patterns of bird diversity. Compared with global statistics

and the spatial patterns of bird diversity measurements, the

simulated annealing method yielded more accurate results than

kriging or co-kriging. The simulated realizations were consistent

in presenting the spatial patterns of observed bird diversity.

Moreover, the proposed optimal sampling approach efficiently

obtained additional sampling sites for measuring the amount of

bird diversity, thereby improving the kriging and co-kriging

estimations. The additional sampling sites derived by reducing

the co-kriging variance were particularly effective. The condi-

tional simulated realization of bird diversity can be used to assess

discontinuity in an area and obtain optimal sampling selections

using the proposed optimal sampling approach. Hence, the

additional sampling sites should be used to augment existing

sampling points in future studies of bird diversity in the Taipei

Basin. Future studies should also analyse the temporal variation

and sampling frequency of bird diversity to improve spatio-

temporal mapping and sampling of investigated bird data.

Finally, multiscale variations in the spatial distribution of the

bird community as well as the anisotropic and spatial trends of

investigated bird data should also be considered.
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