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Abstract

‘We propose an architecture to perform quantum computation, using ballistic electrons as qubits and coupled quantum rings as quantum gates.
In the proposed architecture two adjacent one-dimensional wires, creating a single qubit, are connected to two coupled quantum rings, where the
required magnetic flux is provided by enclosed nano-sized magnets. The phase modulation of the wave function of the ballistic electrons under
the Aharonov—Bohm effect is carefully designed to facilitate reprogrammable and dynamically controllable quantum gates. Arbitrary single-qubit
quantum gates with high fidelity can be constructed on the basis of this architecture.
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The physical implementation of a quantum computer
continues to pose a great challenge. Among the numerous
schemes to implement quantum computers, solid state micro-
and nano-systems draw special attention because of their
obvious advantages: scalability, miniaturizability and flexibility
in design. Quantum computation using ballistic electrons has
been proposed recently as an attractive candidate [1-3]. While
relying on the interference of quantum waves to implement
quantum gates, most previous proposals have not explored in
depth the use of a magnetic field to modulate the phases of
the ballistic electrons (the Aharonov—Bohm (AB) effect [4]).
So, we propose in this paper a system of one-dimensional
(1D) quantum wires incorporating an array of nano-rings and
nano-sized magnets [5] which can act as a new architecture
to perform quantum computation. Each quantum gate in
this architecture is controlled dynamically by flipping the
magnetization of the nano-sized magnets and changing the
chemical potential for the ballistic electrons. This provides the
opportunity to program dynamically a quantum computer the
same way as we do a classical one.

In our architecture we use ballistic electrons as flying
qubits in one-dimensional quantum wires within the dual rail
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representation [3,6]. The architecture is shown conceptually in
Fig. 1. A pair of adjacent quantum rings, which enclose nano-
sized magnets (represented in Fig. 1 as tablets with arrows),
stands for a single-qubit AB quantum gate (basic element).
Fig. 1 shows two single-qubit gates and a controlled phase
shifter [3]. The controlled phase shifter enables the entangling
of two single qubits and the formation of a two-qubit gate [3,
7]. During a quantum computation cycle, two input qubits enter
from the two pairs of parallel 1D quantum wires at the left-
hand side (the rails) of two AB quantum gates. Their wave
functions interfere and become modulated under the AB effect
in the quantum rings, then they leave and enter finally the
two pairs of parallel 1D quantum wires at the right-hand side.
Note that the two pairs of quantum wires at the left-hand side
are separated far enough to minimize the Coulomb interaction
between different qubits. After two single-qubit operations
(being performed in two separated pairs of quantum rings),
rails leaving the AB quantum gates enter path selectors, which
could either direct electrons to a position close enough to “turn
on” the Coulomb interaction between them (for instance, the
lightly shaded region in Fig. 1), or lead electrons away from
the interaction region (then “turn off” the interaction). Path
selectors can be realized by making the potential barrier on
a certain path high enough or by a quantum circulator [8].
With a carefully designed length of the interaction region,
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Fig. 1. Schematic diagram of the proposed architecture for quantum
computation. Two pairs of parallel 1D quantum wires represent two qubits
connected to two pairs of quantum rings, each of which stands for a single-
qubit quantum gate. The upper pair demonstrates segments of the 1D quantum
wave guides. The tablets in the rings are single-domain nano-sized magnets (the
arrows indicate their magnetization), and the cantilever (for clarity reasons only
one is shown) is used as a read-write head to monitor/control the magnetization.
Path selectors (abbreviated as p.s.) are used to lead electrons to/away from the
lightly shaded region (phase shifter), where the Coulomb interaction between
electrons is strong enough to entangle two qubits. The numbers in the upper-left
corner indicate the segments of the 1D quantum wires used in the calculation
of a single-qubit gate.

the two qubits together will undergo a controlled phase shift
transformation [3]. Since single- and two-qubit gates can be
implemented, our architecture is scalable and can be expanded
to perform arbitrary multi-qubit quantum computations [9].
From now on we focus on the construction of the single-qubit
AB quantum gate in our discussion.

To determine the operations that a single qubit undergoes
by passing the AB quantum gate, we evaluate the transmission
matrix T between the input and output of the gate (see the
upper-left corner of Fig. 1). Assuming singlemodedness in each
segment j of the 1D quantum wave guides, we adopt the
method proposed in [10], where the electron wave functions are
represented by 1D plane waves. In the input and output leads
(segments j = 1,2,9,10 in Fig. 1) the electron wave vector
is k = ~/2m*E /h, where E stands for the electron energy and
m* for the electron effective mass. The wave numbers of the
plane wave solutions in the jth segment of the quantum wire
(for j = 3, 6) are chosen to be kj+ = k £ w¢;/L. Here the
normalized flux ¢ is defined by ¢; = P;/ Py, where &; is the
magnetic flux through the upper (i = 1) or lower (i = 2)
ring. 2L stands for the circumference of a quantum ring and
“£” indicates whether the electron wave vector has the same
direction as the magnetic vector potential or not. &9 = #/e is
the universal flux quantum. In the segments j = 4, 5,7, 8, their
lengths are chosen to be L/8 and the electron wave number
is given by kj+ = kg & m¢;/L. The wave number k, can
differ from k and depends on changes in the chemical potential
or the shape of the segment. Imposing the Griffith boundary
conditions [10] at each intersection, one can determine the wave
function of the whole structure and obtain the matrix elements
T,m of the transmission matrix, which relates the input and
output electronic wave functions as

[0)out = T1110)in + T12]1)in
[Dout = T2110)in + T22|1)in.

Table 1

Error rate for the set of AB quantum gates

Gate 1 oy Ox T H
logyg & —5.810 —5.810 —5.179 —5.810 —8.442
kL/m 0.839 0.839 0.839 0.839 1.219
o1 0.748 0.748 0.252 0.748 0.933
053 —0.748 3.252 —0.252 0.252 —4.933

The last three rows define the dynamic working points for the gates,
logg(kg/k) = 0.685.

State |0) or |1) is the electronic wave propagating in the upper
or lower rail correspondingly.

The probabilities of transmission To = |77 |2 from the input
0-rail to the upper and T; = |T12|2 to the lower output rail
for a particular k,/k are shown in Fig. 2. The transmission
probabilities are periodic functions of kL /m and ¢ (¢ has
the opposite sign to ¢1), so the plot region is chosen to cover
exactly a period of ¢;. Our result shows that the quantum
gate represented by the transmission matrix T is in general
not unitary. With proper configurations of the AB quantum
gates, however, not only is the transmission rate sufficiently
high to perform a reasonably long quantum computation, but
the resulting gate functionality can be changed dynamically.
That Tp and T at kL/x =~ 0.839 attain their maximum for
different ¢; in Fig. 2 illustrates the dynamic change of the gate
functionality by tuning the magnetic flux.

Using the AB quantum gates we can control directly the
phase of the electronic wave function. Increasing the phase
¢1 by 1 changes the arguments of the matrix elements 771,
T2, Tr1, T2y by —%n, —%n, —%n, 27, without affecting their
moduli. Similarly, increasing the phase ¢, by 1 changes these
arguments by 2w, %7{, %n, é—ltn respectively. Such a phase
relationship is solely determined by the relative length of each
segment in a ring, and can be designed to give a particular value
of phase shift (e.g., a —4—1L7t phase shift for 771 in our design).
Therefore, with a proper choice of kL /m and k¢ L/, one can
obtain a set of quantum gates of different functionality simply
by varying ¢; and ¢, through the action of the cantilevers. It
has to be noted that the AB quantum gates constructed in this
way can only be symmetric. Asymmetric gates are achieved by
connecting two or more gates in series.

In order to compare the error-prone (non-unitary) 7'-gates
with ideal error-free (unitary) gates (U) we estimate the gate’s
error rate ¢, which is defined as ¢ = 1 — K, where K =
|Tr(TUT)|/Tr(UUT) is the gate fidelity [11]. We list a set of
most common quantum gates and the corresponding working
points in Table 1 for logy(kg/k) = 0.685.

Fig. 3 shows the rich behavior of the minimal error rate
& (when ¢; and kL/m are varied over the plot region in
Fig. 2) as a function on k;/k for o, and H, among other
gates, for example. Clearly, the proposed AB quantum gates
theoretically could demonstrate error rate ¢ — 0 for a few
kg /k, when the electron ballistic transport and readout process
are assumed to be ideal. Also, we take in the figure &, = 10~*
as a rough estimate of the threshold for quantum computation,
below which an arbitrarily large computation can be performed
efficiently [9].
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Fig. 2. Transmission probabilities from the 0-rail of the input to the 0-rail (left panel) and 1-rail (right panel) of the output. ¢y - ¢ < 0, [¢1| = |¢2], logyg(kg/k) =

0.685. The gray line in the top plane is drawn for kL /7 = 0.839.
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Fig. 3. Minimum error rate for the H and oy gates (dotted and solid line resp.).
The horizontal dashed line stands for &;, = 1074,

Moreover, due to the periodical behavior of the AB quantum
gates described above, we conclude that the optimal operating
points (kL /7, kgL /7, ¢1, ¢2) for a particular functionality can
always be found by tuning and a very high fidelity can be
achieved. In general, since the coupling between the two rings
is controllable by k¢ /k, any gate of the kind

o ip
i al’

a,B € R and a®> + B2 = 1, can be represented by the AB
quantum gates with high fidelity. With a general kind of gate
(general gate), an arbitrary single-qubit quantum gate can be
obtained by combining an AB quantum gate with additional
single-qubit phase shifters. The possibility to choose and
tune the gate dynamically makes our architecture particularly
promising.

The proposed architecture can be implemented using two-
dimensional electron gas structures and applying the split-gate
techniques to define the pattern of 1D quantum wires. Within
the dual rail representation for ballistic electron flying qubits,
initialization and measurement of the qubit states can be done as
was proposed in [3]. Nano-sized magnets can be electroplated
on the sample [5]. Lithographic techniques enable us to make
well-defined shapes and locations. The dynamic control of the
AB quantum gates is realized by flipping the magnetization
of the nano-magnets with read—write heads [12,13], possibly
similar to MFM (magnetic force microscopy), which are shown
in Fig. 1 as cantilevers. As a result we can manipulate the phase
of the electronic wave functions. Further, different magnitudes

of ¢ and ¢, are obtained by varying the size of the magnets
and the rings, or by enclosing many magnets in a single ring.
In addition, the application of the split-gate techniques to a
two-dimensional electron gas makes the values of kL /7w and
kgL /m tunable. Variation of the voltage applied to the gate
changes the lateral confinement of the electrons in the quantum
wires and modifies k and k. So, we can tune all four variables
separately to choose the working point k(L /7, kg L /7, ¢1, ¢2)
and to achieve the highest fidelity.

To be more concrete, the device size (i.e., the ring diameter)
and the width of the quantum wires can be assumed to
be 400 nm and 20 nm, respectively. Then about 20 nano-
magnets with diameters 60 nm and spaced by 80 nm can
be enclosed in a ring to provide up to several normalized
magnetic fluxes (parameters are chosen as in [14]). Within the
typically reported phase coherence length of 20 pum in the GaAs
heterostructure [15], about 50 devices can be incorporated to
perform a reasonably complex operation.

The approach proposed in [3] uses ballistic electrons.
The functionality of the gates in that design is defined at
the stage of fabricating the computer. This architecture will
seriously suffer from any fabrication defect because defects
cannot be compensated afterwards. In contrast, the dynamic
controllability in our proposition implies that the functionality
of each gate can be redefined after fabrication and even during
operation. For instance one can dynamically reassign an H-
gate into a T-gate during the calculation process. Since it is
possible to make a hybridization of quantum computers and
classical computers in solid state circuits, a classical computer
is used to operate the read—write head. Without this dynamic
re-programmability the architecture can only serve as special
purpose quantum circuits but not as quantum computers for
general purposes. We emphasize that the above advantages
are entirely due to the universality of the AB quantum gates
— multi-functionality is achieved by changing through & and
ke and the enclosed magnetic fluxes. The utilization of a
magnetic field, rather than an electric field like in [3], has other
benefits: low power, insensitivity to noise, and less stray field.
We should note that non-uniformity in magnetic properties
of the nano-magnets also can lead to certain decoherence
during the gate’s operation and re-assignation. Although a few
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techniques recently have been developed for the fabrication of
very uniform micro- and nano-scale arrays of low temperature
permanent magnets [16,17], certainly the dynamic performance
of such structures still needs to be improved.

In conclusion, we have proposed and analyzed an
architecture for quantum computation with ballistic electrons:
coupled ballistic Aharonov—Bohm quantum gates. On the
one hand, such quantum gates can be tuned, controlled and
reprogrammed dynamically. On the other hand, in properly
selected operation regimes, the error rate of the gates
approaches zero.

We would like to point out that our architecture can be
used as a starting point for the implementation of dynamically
reprogrammable quantum computers based on electrons as
qubits and coupled quantum rings as quantum gates. On the
other hand, the main idea to use an external magnetic flux
as a dynamic factor to reprogram quantum computers during
the calculation process is more general and potentially very
rich. The rapid progress in the fabrication of quantum magnetic
disks and the already elaborated high quality two-dimensional
electron systems make us claim that quantum computation with
ballistic Aharonov—Bohm quantum gates is not only promising
but also feasible in the near future.
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