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Abstract

A constructive derivation of repetitive
control is obtained, through attempting to
derive a control law for asymptotic rejection of
periodic disturbances. This derivation suggests
a unified design method for a learning control
algorithm. Also, based on the observation,
digital repetitive control can be generalized to
reject periodic disturbance whose period is not
exactly an integer multiple of the sampling
interval. This study introduces a delay filter in
the digital repetitive control law, which
optimally interpolates the signal between
samples, thus effectively reconstructing the
signa of the previous period and making the
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learning process of repetitive control successful.

The simulations on active noise cancellation

within a duct confirm the superiority of this

tuning method.
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Repetitive control is effective in asymptotic
tracking or rejection of periodic signals[1,2]. It
consists of a wide variety of applications, such
as noncircular cutting [3], disk drive tracking
[4], and active noise cancellation [5].
Repetitive control was explained and proved by
the internal model principle (see [1,2]). This
work, however, proposes a constructive
derivation based on the operator theory. First,
the disturbance regjection problem is formulated
as a question for solving an operator equation.
The derivation begins with the iterative
inversion of an operator by the Neumann series,
which results in a Neumann series solution as
well as a sufficient existence condition for an
operator inversion problem. Additionaly, this
solution can be aternatively represented by
successive iteration of an equation, which
provides a good insight into deriving the
learning algorithm for an operator equation.
Repetitive control repeatedly generates the
present control force ((f) by learning from the
previous period of the control force u(t-7) and
the tracking or disturbance reection error
a(t- T). However, in a discretetime system
where only the sampled signals are given, u(t-T)
and 4(t- T) are unavailable unless that the

signa period Tis exactly an integer multiple of
the sampling interval. When the signal period is
precisely known and fixed, integer multiple
condition can be easily achieved. However, it
becomes a difficult task when the signal period
varies. There are two types of methods for
solving this problem. The first method (see
[6,7]) uses WtENT) and &(t- NT,) to
approximate U(t-T) and &(t- T), respectively,
where NT; is the nearest integer multiple of
sampling interval to the signal period 7. The



second method (see [7,8]) aters the sampling

rate on-line while maintaining a fixed controller.

The disadvantage of the first tuning scheme is
the inevitable period mismatch due to the
roundoff of the actual signal period. This
mismatch may result in undesirable remaining
oscillating errors, thus deteriorating the
steady-state performance. As for the second
tuning scheme, the most serious problem is that
changing the sampling rate without changing
the controller can affect system robustness, and
even cause instability.

Based on idea of the delay operator, this
study attempts to provide an alternative method
for a discrete-time repetitive controller. With
the fixed sampling interval, adelay filter, which
ams to optimaly interpolate «(t+7) and
a(t- T) between samples, is introduced to
enhance the steady-state  performance.
According to distinct signal periods, this
optimal filter can be updated via only a small
amount of computations. This delay filter
tuning method is applied to active noise
cancellation within a duct. Simulations
illustrate the effective enhancement of the
steady-state performance.
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Two main results are obtained in the following.
Let H be a linear vector space of
complex-valued functions X1, O£t<¥ ,
spanned by {€?, &1 R}, with the norm
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1/
=@im LJIxOP AH? <¥ 1
X =Elim QIO [ ot 1)
and the inner product
<X y>= lim %QTX(t)ﬁdt, "xyl H (2
T® ¥

where ﬁ represents the complex conjugate
of 7). let M be acollection of al such signals:

M =;x: Tlgr;%qﬂx(tﬂz dt=0§ (3

It is easy to show that M is a closed set. Thus,
the union of H and M, denoted by HE M,
makes a new complete linear vector space,
which includes both transient and amost
periodic functions. Suppose that two functions
X, ) HEM are said to belong to the same
class if the difference xy belongs to M, then

the set of all such classes is called the quotient
spaceof HE M relativeto M, represented by
E. This quotient space E is a Hilbert space with
the inner product defined in the following way:
Given two elements of E, i.e, two classes 7
and ¢, we choose a representative from each
class, say xfrom 7 and yfrom ¢, then

7.c>=lim Ll x(H) Dat 4
<i,c> ngrco)()y() (4)

In a completely analogous manner, the norm

can be defined as follows
2
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[l =8im 1 X0 F at (5)
where xis any representative from the class 7
in E. Let g, be the class containing the

function €Y' in E, the set {g, 0l R}
forms an orthonormal basisin E.

Similarly, linear transformations on E can
also form a normed space. Let L (E) be a space
of al LTI stable systems P on E, with the
operator norm
|Al= sup |Pr] (6)

IF|=17TE
The frequency-response function of an operator
Pl L(E) is defined by
PU) =< Pe,, g, >, ol R (7)
Proposition 1. (Solution to Asymptotic
Rejection of Periodic Disturbances) For an
operator Al L (E), if another operator CI L
(E) exists, such that || /- CP||<1, asymptotic
rgjection of periodic disturbances can be
achieved for any periodic d with finite RMS
norm, and the corresponding control signal
class can be expressed in the following

7 :iu: u=- g(/- cP)cd+ x, " x1 Mgl E (9
1 n=0

This is known as the repetitive control law,
which automatically generates v belonging to
the solution class presented in Proposition 1.
This solution-generating agorithm can be
proved in a straightforward manner by applying
the fixed-point theorem.

Proposition 2. (Repetitive Control Law) For an
operator Pl L (E), if another operator CI L
(E) exists, such that || /- CP||<1, asymptotic
regiection of any periodic disturbance d with
finite RMS norm, can be achieved by the
control signal v generated by the following
control law



u(t) = [Du(D) - [cD&](t), for T [0,¥)

where D denotes an delay operator, which
performs a T-second delay with zero initial
states, i.e, (Du)(t)=u-T) , and
u(t- T)=0 for t- T<0,and & denotesthe
error vector Pu+d. Additionally, u is bounded
inthe RMS sense.

The results are applied to digital repetitive
control for active noise cancellation in ducts.
The plant A2, which represents the acoustic
dynamicsina 0.5 0.15" 0.15m duct as well
as the dynamics of the cancellation speaker,
amplifiers, and the microphone, is identified
using time-domain least square algorithms with

frequency weighting. In the low-frequency band,

the plant has transmission zeros around 0 Hz
and 700 Hz. The control bandwidth is set as
600 Hz. To stabilize the overall system, the

magnitude of D(e/W) is designed to roll off

before the nodal frequency 700 Hz. The
parameters n=10,wy =0.1 ,

wy =0.1167,/ =0.01 are selected. Thus,

given the noise period, the filter D(2 can be
determined via the formula given in the
proposed result. Figure 1 displays the frequency
response of the optima D(2 with the desired
delay of 50.4 (in the unit of sampling interval).
Also, the FIR compensator ((2 with the tap
length 20 is designed such that the
multiplication A2 (2 has zero phase and is
close to 1 in the least-squares sense. Figure 7
illustrates the design result, where

‘D(e/W)(l- C(ejW)P(e/W)]<1 for any w,

except when w=0. According to Nyquist
stability criterion, the overall system is stable
since the Nyquist locus does not encircle
critical point —1+0j.
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Figure 1. Frequency response of the lowpass

delay filter D(2) (the gray line in the phase
diagram is the desired phases)

The noise period may ater as the motor or
compressor is operated at different speeds. Two
controller-tuning schemes are considered in the
simulations. One is the integer delay tuning
method proposed by Tsao and Nemani [7] and
Hu [6], that is, adjusting the order of the
repetitive controller according to the roundoff
of the given noise period. The other is the
fractional delay tuning method proposed herein.
That is, as the noise period is atered, so too is
the coefficient of the optimal delay filter. A
periodic noise with five harmonic components
is created. The noise period varied from 56.1
samples, to 45.56 samples, and finally to 50.67
samples. Figure 2 shows the simulation results
for the assumption that the noise periods can be
estimated, and that the repetitive controllers are
updated for every 600 sampling intervals. As a
steady-state  noise-cancellation measure,
cancellation-error to noise ratio (E/N) is
defined by the RM S norm as follows

agcancel | ation error| 9
é”uncanceled noisd|

Table 1 indicates E/N vaues for the ssmulation
results. Obviously, the fractional delay tuning
method has superior performance over the
integer delay tuning method. The remaining
cancellation error for the integer delay tuning
method is primarily attributed to the roundoff
error of the noise period

E/N = 20log;,,

Sec

Figure 2. The cancellation error signals (above:
the integer delay tuning method; below: the
fractional delay tuning method)



Noise period 56.1 | 45.56 |50.67
E/N for the integer|-33.63| -10.20 |-22.64
delay tuning dB dB dB
E/N forthe |-49.71| -46.27 |-47.51
fractional delay | dB daB dB

tuning
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