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一、中文摘要

本計劃針對系統遭受緩慢變動週期之窄頻雜
訊，研究一套利用回授方式的控制方法，以
消除雜訊。對於固定週期之窄頻雜訊，反覆
控制(Repetitive Control)或學習控制(Learning 
Control)已經提供相當多的研究，然而面對雜
訊週期的變化，往往無法有效的產生相對應
的控制訊號。尤其是以數位控制實現時，常
常有雜訊週期非採樣週期整數倍的情況，導
致數位週期與實際週期無法匹配。有別於傳
統反覆控制對問題的解決方式，本計劃將提
出以遞迴式反向運算元 (Iterative Inverse 
Operator)為出發點的控制訊號合成機制，以
一般型延遲濾波器(general delay filter)取代較
為簡單的延遲運算元，進而探討以調整延遲
時間來因應週期變化的機制，而達到變週期
窄頻雜訊消除的結果。
關鍵詞：反覆控制、學習控制
Abstract

A constructive derivation of repetitive 
control is obtained, through attempting to 
derive a control law for asymptotic rejection of 
periodic disturbances. This derivation suggests 
a unified design method for a learning control 
algorithm. Also, based on the observation, 
digital repetitive control can be generalized to 
reject periodic disturbance whose period is not 
exactly an integer multiple of the sampling 
interval. This study introduces a delay filter in 
the digital repetitive control law, which 
optimally interpolates the signal between 
samples, thus effectively reconstructing the 
signal of the previous period and making the 
learning process of repetitive control successful. 
The simulations on active noise cancellation 
within a duct confirm the superiority of this 
tuning method.
Keywords: Repetitive Control, Delay Operator, 

Iterative Learning

二、緣由與目的

Repetitive control is effective in asymptotic 
tracking or rejection of periodic signals [1,2]. It 
consists of a wide variety of applications, such 
as noncircular cutting [3], disk drive tracking 
[4], and active noise cancellation [5]. 
Repetitive control was explained and proved by 
the internal model principle (see [1,2]). This 
work, however, proposes a constructive 
derivation based on the operator theory. First, 
the disturbance rejection problem is formulated 
as a question for solving an operator equation. 
The derivation begins with the iterative 
inversion of an operator by the Neumann series, 
which results in a Neumann series solution as 
well as a sufficient existence condition for an 
operator inversion problem. Additionally, this 
solution can be alternatively represented by 
successive iteration of an equation, which 
provides a good insight into deriving the 
learning algorithm for an operator equation. 
  Repetitive control repeatedly generates the 
present control force u(t) by learning from the 
previous period of the control force u(t-T) and 
the tracking or disturbance rejection error 

)( Ttå − . However, in a discrete-time system 
where only the sampled signals are given, u(t-T) 
and )( Ttå −  are unavailable unless that the 
signal period T is exactly an integer multiple of 
the sampling interval. When the signal period is 
precisely known and fixed, integer multiple 
condition can be easily achieved. However, it 
becomes a difficult task when the signal period 
varies. There are two types of methods for 
solving this problem. The first method (see 
[6,7]) uses u(t-NTs) and )( sNTtå −  to 
approximate u(t-T) and )( Ttå − , respectively, 
where NTs is the nearest integer multiple of 
sampling interval to the signal period T. The 
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second method (see [7,8]) alters the sampling 
rate on-line while maintaining a fixed controller. 
The disadvantage of the first tuning scheme is 
the inevitable period mismatch due to the 
roundoff of the actual signal period. This 
mismatch may result in undesirable remaining 
oscillating errors, thus deteriorating the 
steady-state performance. As for the second 
tuning scheme, the most serious problem is that 
changing the sampling rate without changing 
the controller can affect system robustness, and 
even cause instability. 
  Based on idea of the delay operator, this 
study attempts to provide an alternative method 
for a discrete-time repetitive controller. With 
the fixed sampling interval, a delay filter, which 
aims to optimally interpolate u(t-T) and 

)( Ttå −  between samples, is introduced to 
enhance the steady-state performance. 
According to distinct signal periods, this 
optimal filter can be updated via only a small 
amount of computations. This delay filter 
tuning method is applied to active noise 
cancellation within a duct. Simulations 
illustrate the effective enhancement of the 
steady-state performance.

三、結果與討論

Two main results are obtained in the following. 
Let H be a linear vector space of 
complex-valued functions x(t), ∞<≤ t0 , 
spanned by }  ,{ ù R∈ùe tj , with the norm
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and the inner product
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where )(ty  represents the complex conjugate 
of y(t). let M be a collection of all such signals:
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It is easy to show that M is a closed set. Thus, 
the union of H and M, denoted by MH ∪ , 
makes a new complete linear vector space, 
which includes both transient and almost 
periodic functions. Suppose that two functions 
x, y∈ MH ∪  are said to belong to the same 
class if the difference x-y belongs to M, then 

the set of all such classes is called the quotient 
space of MH ∪  relative to M, represented by 
E. This quotient space E is a Hilbert space with 
the inner product defined in the following way: 
Given two elements of E, i.e., two classes î
and ç , we choose a representative from each 
class, say x from î and y from ç , then

∫
∞→
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dttytxçî 0
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In a completely analogous manner, the norm 
can be defined as follows
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where x is any representative from the class î
in E. Let ùe  be the class containing the 

function tùje  in E, the set }  ,{ R∈ùeù
forms an orthonormal basis in E.
  Similarly, linear transformations on E can 
also form a normed space. Let L (E) be a space 
of all LTI stable systems P on E, with the 
operator norm 

îPP
îî E∈=

=
,1

sup                  (6)

The frequency-response function of an operator 
P∈L(E) is defined by

R∈>=< ùePeùP ùù              ,,)(   (7)
Proposition 1. (Solution to Asymptotic 
Rejection of Periodic Disturbances) For an 
operator P∈  L (E), if another operator C∈  L
(E) exists, such that 1|||| <− CPI , asymptotic 
rejection of periodic disturbances can be 
achieved for any periodic d with finite RMS 
norm, and the corresponding control signal 
class can be expressed in the following
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This is known as the repetitive control law, 
which automatically generates u belonging to 
the solution class presented in Proposition 1. 
This solution-generating algorithm can be 
proved in a straightforward manner by applying 
the fixed-point theorem.
Proposition 2. (Repetitive Control Law) For an 
operator P∈  L (E), if another operator C∈  L
(E) exists, such that 1|||| <− CPI , asymptotic 
rejection of any periodic disturbance d with 
finite RMS norm, can be achieved by the 
control signal u generated by the following 
control law
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[ ] [ ] )()()( tCDåtDutu −= , for [ )∞∈ ,0t
where D denotes an delay operator, which 
performs a T-second delay with zero initial 
states, i.e., )())(( TtutDu −= , and 

0)( =− Ttu  for 0<− Tt , and å  denotes the 
error vector Pu+d. Additionally, u is bounded 
in the RMS sense.
The results are applied to digital repetitive 
control for active noise cancellation in ducts. 
The plant P(z), which represents the acoustic 
dynamics in a m15.015.05.0 ××  duct as well 
as the dynamics of the cancellation speaker, 
amplifiers, and the microphone, is identified 
using time-domain least square algorithms with 
frequency weighting. In the low-frequency band, 
the plant has transmission zeros around 0 Hz 
and 700 Hz. The control bandwidth is set as 
600 Hz. To stabilize the overall system, the 
magnitude of )( ωjeD  is designed to roll off 
before the nodal frequency 700 Hz. The 
parameters 1.0,10 0 == ωn , 

01.0,1167.01 == λω  are selected. Thus, 
given the noise period, the filter D(z) can be 
determined via the formula given in the 
proposed result. Figure 1 displays the frequency 
response of the optimal D(z) with the desired 
delay of 50.4 (in the unit of sampling interval). 
Also, the FIR compensator C(z) with the tap 
length 20 is designed such that the 
multiplication P(z)C(z) has zero phase and is 
close to 1 in the least-squares sense. Figure 7 
illustrates the design result, where 

( ) 1)()(1)( <− ωωω jjj ePeCeD  for any ω , 

except when 0=ω . According to Nyquist 
stability criterion, the overall system is stable 
since the Nyquist locus does not encircle 
critical point –1+0j.
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Figure 1. Frequency response of the lowpass 

delay filter D(z) (the gray line in the phase 
diagram is the desired phases)

The noise period may alter as the motor or 
compressor is operated at different speeds. Two 
controller-tuning schemes are considered in the 
simulations. One is the integer delay tuning 
method proposed by Tsao and Nemani [7] and 
Hu [6], that is, adjusting the order of the 
repetitive controller according to the roundoff 
of the given noise period. The other is the 
fractional delay tuning method proposed herein. 
That is, as the noise period is altered, so too is 
the coefficient of the optimal delay filter. A 
periodic noise with five harmonic components 
is created. The noise period varied from 56.1 
samples, to 45.56 samples, and finally to 50.67 
samples. Figure 2 shows the simulation results 
for the assumption that the noise periods can be 
estimated, and that the repetitive controllers are 
updated for every 600 sampling intervals. As a 
steady-state noise-cancellation measure, 
cancellation-error to noise ratio (E/N) is 
defined by the RMS norm as follows











=

noiseuncanceled
erroron cancellati

log20E/N 10  dB

Table 1 indicates E/N values for the simulation 
results. Obviously, the fractional delay tuning 
method has superior performance over the 
integer delay tuning method. The remaining 
cancellation error for the integer delay tuning 
method is primarily attributed to the roundoff 
error of the noise period
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Figure 2. The cancellation error signals (above: 
the integer delay tuning method; below: the 

fractional delay tuning method)
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Noise period 56.1 45.56 50.67
E/N for the integer 

delay tuning 
-33.63 

dB
-10.20 

dB
-22.64 

dB
E/N for the 

fractional delay 
tuning 

-49.71 
dB

-46.27 
dB

-47.51 
dB

Table 1

四、計畫成果自評

項 目 完成情況
與原計畫相符程度 100%
達成預期目標 90%

研究成果學術價值 新型控制器設計
研究成果應用價值 具實用性
學術期刊發表合適否 已發表
申請專利合適否 否

主要發現或其他價值 學習控制理論
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