
行政院國家科學委員會補助專題研究計畫成果報告 
※※※※※※※※※※※※※※※※※※※※※※※※※ 
※                                              ※ 
※      ARM嵌入式系統低耗電匯流排設計    ※ 
※                       ※ 
※※※※※※※※※※※※※※※※※※※※※※※※※ 

 
計畫類別： 個別型計畫  □整合型計畫 

計畫編號：NSC 90－2213－E－009－135 

執行期間：90年 8月 1日至 91年 7月 31日 

 
計畫主持人：單智君 博士 

 

 

 
 
 
 
 

 
 
 
 
本成果報告包括以下應繳交之附件： 
□赴國外出差或研習心得報告一份 
□赴大陸地區出差或研習心得報告一份 
□出席國際學術會議心得報告及發表之論文各一份 
□國際合作研究計畫國外研究報告書一份 

 
 
執行單位：國立交通大學資訊工程學系 
 

 
中  華  民  國  91  年  10  月  20  日



行政院國家科學委員會專題研究計畫成果報告 
ARM嵌入式系統低耗電匯流排設計 

Design of Low Power Buses in ARM Embedded Systems 
計畫編號：NSC 90－2213－E－009－135 
執行期限：90年 8月 1日至 91年 7月 31日 
主持人：單智君 博士 
計畫參與人員：林光彬、林宗蔚、楊敦傑、蔡佳洲 
 

一、中文摘要 

近年來，對於減少處理器耗能的需求

越來越被重視。研究發現，系統在程式執

行中所耗能量，有 50% ~ 80% 是消耗在
處理器與外部記憶體的傳輸上，即匯流排

上。故想要設計出更省電的系統，必須先

從匯流排著手。匯流排上之耗能是與在其

上傳送的資料位元變化量成正比。本計畫

的研究重點，主要針對指令匯流排耗能的

減少，亦即減少處理器要求記憶體傳送的

指令間之位元變化。 
在這個計畫裡，我們提出了使用基本

區塊 (basic-block) 指令字典的方法來減
少指令匯流排的耗能。基本區塊是程式在

執行時的特性之一；一旦處理器開始執行

基本區塊內的指令，除非遇到中斷，否則

區塊內所有指令都會被執行。我們的方法

是把常用的基本區塊放入指令字典中。與

記憶體相比，這個字典有較小的耗能且更

接近處理器。而在原始程式中這些被放置

到字典內的基本區塊則會被字典索引編碼

取代。在執行到這些基本區塊時，只有字

典索引編碼會在指令匯流排上傳遞。藉著

將原本有多道指令在指令匯流排上傳送變

成只有一個編碼被傳送，我們可以減少許

多的耗能。此外，當遇到需要重複傳送相

同的索引編碼時，我們也藉著應用編碼暫

存機制進一步減少更多的耗能。 
實驗結果顯示，跟原始系統比較，此

法平均可以減少 91.2%的耗能，且抓取指
令的時間也會減少大約 83.6%。 

關鍵詞：ARM 處理器，嵌入式系統，低耗
電，匯流排，位元變化 
Abstract 

The requirement in reducing the power 
of a processor has grown dramatically over 
the past few years.  Researches have shown 
that 50%~80% power are dissipated on the 
transmission between CPU and Memory.  
Power consumed on buses is decided by 
numbers of bit toggles on the buses. In this 
project, we focus on instructions transmitted 
on buses to reduce the numbers of bit toggles 
at instruction buses. 

In this project, we propose a basic-block 
instruction dictionary to reduce power 
consumption on instruction bus.  
Basic-block is one of the characteristics of 
program execution behavior that once a 
processor step into a basic-block, the whole 
block will be executed except that interrupt 
occurs.  We place the most frequently used 
basic-blocks into the instruction dictionary, 
which has smaller power consumption and is 
closer to CPU.  Then, these basic-blocks at 
original programs are replaced by codewords 
indexing to the corresponding basic-blocks in 
the dictionary.  Thus, we can reduce the 
power consumption when repeatedly 
executing on these basic-blocks because only 
the codewords are transferred in the 
instruction bus.  A codeword lookaside 
buffer is also applied to provide more power 
reduction when accessing codeword 
repeatedly.   

Experimental results show that on 
average 91.2% power reduction can be 
achieved with comparing to the base system.  
By accessing instructions in the internal 
dictionary, we can also reduce the execution 
time by 83.6%. 



 
Keywords：ARM processor, embedded 
system, low power, bus, bit toggle 
 
二、緣由與目的 

For embedded systems, the major power 
dissipations of embedded systems come from 
the global communication on external buses. 
Many embedded systems are designed for 
multimedia and signal processing 
applications such as PDA (Personal Digital 
Assistants) and cellular phones. In such 
systems that involve multidimensional 
streams of signals such as images, video or 
voice sequences, it has been shown that the 
majority of the area and power cost is not due 
to the datapath or the controllers, but due to 
the global communication and memory 
interaction. 

In fact, 50% to 80% of the power cost in 
application-specific integrated circuits (ASIC) 
for real-time signal processing is due to 
memory traffic caused by the ASIC and the 
off-chip memories. It is because that the 
off-chip capacitances are three orders of 
magnitude larger than the typical on-chip 
capacitances. This implies that design 
techniques leading to decrease the power 
dissipation in this part will make a significant 
impact on the overall power dissipation of 
the application. 

In this project, we design some power 
reduction techniques to reduce the runtime 
power dissipated on the system buses. We 
focus on the instruction bus and the related 
address bus to exploit the repetitions of 
instructions for reducing power dissipations 
on the buses. To prevent the repeated 
instructions from transmitting on the buses, a 
pre-selected basic-block-based dictionary is 
applied. This basic-block dictionary is 
working as internal memory nearby the 
processor core. It includes codeword decoder 
and basic-block storages which works 
somewhat like an instruction cache but is 
demanded for lower power. 

 
三、結果與討論 

3.1 Architecture Model 

Our baseline architecture model is 

shown in Figure 1. In this baseline system, 
processor sends address request and receives 
instructions from main memory directly. We 
find that repeatedly executed instructions will 
continuous ly drive the same bus transactions 
and consume power. 

 
Figure 1. Architecture model of baseline 
system 

Figure 2 is our design model. In this 
model, we add a hardware mechanism, called 
basic-block dictionary, between the processor 
and the memory. Our design is focused on 
the instruction bus and the related address 
bus to exploit the repetitions of instructions 
for reducing power dissipations on buses. 
Transactions on these buses are influenced 
by program execution behaviors. Instructions 
are transmitted on buses repeatedly and are 
grouped by basic blocks. To prevent 
repeatedly instructions and address requests 
from transmitting on buses, we design a basic 
block dictionary. The basic block dictionary 
works as an intermediate between processor 
and main memory. It receives address 
requests from processor and returns 
instructions from main memory or its own 
instruction table. 

 
Figure 2. Architecture model of our design 

 

3.2 Basic Block Dictionary 

In our design, the basic-block dictionary 
is used to store the most frequently used 
basic-blocks and works like a read-only 
memory (ROM). The procedure for this 
power reduction method is divided into two 
phases: basic-block dictionary building 
phase and dictionary accessing phase. The 



phase of basic-block dictionary building is 
responsible for choosing the frequently used 
basic-blocks into dictionary to lower the 
numbers of bit toggles on buses. This phase 
is processed at software offline. The 
dictionary accessing phase includes decoding 
control logic to control the operations of 
fetching the codewords of dictionary entry 
and convert codewords into original 
instructions. 

 
3.2.1 Basic-block Dictionary Building  
Algorithm  

 Our building algorithm is applied to 
analyze program-execution behavior by 
calculating the number of bit toggles and 
execution count of each basic block. The key 
idea of the algorithm is to select the most 
frequently executed basic blocks to be added 
into the dictionary. The algorithm is divided 
into three parts as follows: 
1. Choosing basic-blocks for the dictionary, 
2. Replacing basic blocks with codewords 

for a program, and 
3. Modifying branch targets in the coded 

program. 
After all dictionary entries are chosen, we 
need to encode the original program by 
replacing each basic block that already in 
dictionary with its mapping index, called 
codeword. 

One obvious side effect of the 
basic-block dictionary scheme is that it alters 
the locations of instructions in the program. 
This presents a special problem for branch 
instructions since branch targets are changed 
as a result of program compression. To avoid 
this problem, the targets of branch 
instructions are patched to the new locations 
in the coded program. 

 
3.2.2 Dictionary accessing Phase 

 The hardware mechanism of dictionary 
accessing phase consists of two main 
modules: basic-block dictionary and 
decoding hardware. An additional mask can 
be place at the control circuits in memory 
side to gain more benefit in transmitting 
codewords. 

The block diagram of the proposed, 
basic-block dictionary is shown in Figure 3. 

The blocks inside the dotted line is our 
designed circuits, the decoding-control logic, 
that contain the basic-block dictionary and 
the decoding-control logic. The 
decoding-control logic is further divided into 
instruction fetcher, codeword detector, 
boundary detector and address synchronized 
unit. This hardware mechanism may be 
combined with the processor core into a 
single chip. 

 
Figure 3. System architecture with 
basic-block dictionary 

The basic-block dictionary stores the 
basic blocks selected by the basic-block 
dictionary building algorithm. It is like a 
read-only memory and each elemental line 
has 32-bit instruction and one boundary bit. 

The decoding-control logic is 
responsible for sending instruction to 
processor from memory or dictionary. It first 
fetches instructions from memory and then 
determines if the fetched instruction is a 
codeword. If the fetched instruction is a 
codeword, the original instructions will be 
gathered from dictionary. It is also designed 
to check if the dictionary entry is finished 
and to synchronize the address between 
processor and memory. 
 Based on the design of the basic-block 
dictionary, the power consumption can be 
further reduced by attaching a Codeword 
Lookaside Buffer (CLB). When a program is 
executed, the processor may often execute 
some sequences of instructions repeatedly. 
These sequences of instructions are known as 
loops. A loop contains either one or more 
basic blocks. The mapping relation is stored 
when a codeword is fetched and decoded 
with the CLB, we may eliminate some bus 
transaction for the codewords whose 
addresses have already been recorded in the 



buffer.  
The CLB is not available when the 

processor is in dictionary mode. It becomes 
available when the processor is out from the 
dictionary mode and the next 
program-counter address is sent to the 
decoding-control logic. The decoding-control 
logic will query this buffer to find if this 
address is already in CLB. If yes, the PC 
address points to a codeword in the external 
memory and we may use Dictionary Index 
field in buffer to index the dictionary.  
Otherwise, we still need to fetch this 
instruction from memory. 
 
3.3 Simulation Results and Analysis 

We adapt the MediaBench consisting of 
well-known multimedia and communication 
applications for our benchmark. The input 
data we used for this benchmark suite are the 
recommended input data included in the 
MediaBench. 

 
Figure 4. Power concumption  

 
Figure 5. Execution time 
 

The power consumption and execution 
time of a system with different size of 
basic-block dictionary and CLB are shown in 
Figure 4 and 5, respectively. A 2K byte 
dictionary with 64-entry codeword lookaside 
buffer achieves best power reduction as 

much as 91.2%. Moreover, it may achieve 
83.6% of execution time saving for the 
2-Kbyte dictionary with 64-entry CLB. 
 
四、計畫成果自評 

In this project, we have examined a 
basic-block dictionary to reduce power 
consumption on instruction bus and related 
address bus. A codeword lookaside buffer is 
also proposed to work with the dictionary to 
reduce more power consumption. The key 
idea of our method is to apply a dictionary 
which stores frequently executed basic 
blocks to make use of the repetitions of basic 
blocks at program execution time for 
reducing bit toggles on instruction bus. 
 

五、參考文獻 

[1] Wen-Tsong Shiue and Chaitali 
Chakrabarti, “Memory design and 
exploration for low power embedded 
systems ,” Signal Processing Systems, 
1999. SiPS 99. 1999 IEEE Workshop on, 
Page(s): 281 –290, 1999  

[2] Benini, L.; Macii, A.; Macii, E.; Poncino, 
M., “Selective instruction compression 
for memory energy reduction in 
embedded systems”, Low Power 
Electronics and Design, 1999. 
Proceedings, Page(s): 206 -211. 1999 
International Symposium on , 1999. 

[3] Lea Hwang Lee; Moyer, B.; Arends, J., 
“Instruction fetch energy reduction 
using loop caches for embedded 
applications with small tight loops,” 
Low Power Electronics and Design, 1999. 
Proceedings, Page(s): 267 –269. 1999 
International Symposium on , 1999 

[4] C. Lee, M. Potkonjak, and W. H. 
M.-Smith, “MediaBench: A Tool for 
Evaluating and Synthesizing 
Multimedia and Communications 
Systems”, 30th Annual ACM/IEEE 
International Symposium on 
Microarchitecture, 1997. 

[5] Wilton, S.J.E.; Jouppi, N.P. “CACTI: an 
enhanced cache access and cycle time 
model,” Solid-State Circuits, IEEE 
Journal of , Volume: 31 Issue: 5 , Page(s): 
677 –688, May 1996 


