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Distance-Preserving and Distance-Increasing Mappings
From Ternary Vectors to Permutations
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Abstract—Permutation arrays have found applications in powerline
communication. One construction method for permutation arrays is to
map good codes to permutations using a distance-preserving mappings
(DPM). DPMs are mappings from the set of all q-ary vectors of a fixed
length to the set of permutations of some fixed length (the same or longer)
such that every two distinct vectors are mapped to permutations with the
same or larger Hamming distance than that of the vectors. A DPM is called
distance increasing (DIM) if the distances are strictly increased (except
when the two vectors are equal). In this correspondence, we propose
constructions of DPMs and DIMs from ternary vectors. The constructed
DPMs and DIMs improve many lower bounds on the maximal size of
permutation arrays.

Index Terms—Distance-increasing mappings, distance-preserving map-
pings, permutation arrays, powerline communication.

I. INTRODUCTION

Permutation arrays as combinatorial objects have been studied
for many years. However, a few years ago, Ferreira and Vinck [6]

Manuscript received January 8, 2007; revised November 20, 2007. The work
of J.-S. Lin and R.-J. Chen was supported in part by Taiwan National Council
under Contracts NSC 96-2221-E-009-089 and NSC 96-2219-E-009-013 and in
part by TWISC@NCTU. The work of J.-C. Chang was supported by Taiwan Na-
tional Council under Contracts NSC 96-2221-E-305-006 and NSC 96-2628-E-
305-002-MY3. The work of T. Kløve was supported by The Norwegian Re-
search Council under Contract 160236/V30.

J.-S. Lin is with the Department of Computer Science, National Chiao Tung
University, Hsinchu, Taiwan (e-mail: linch@csie.nctu.edu.tw).

J.-C. Chang is with the Department of Computer Science and Information
Engineering, National Taipei University, Taipei, Taiwan (e-mail: jcchang@mail.
ntpu.edu.tw).

R.-J. Chen is with the Department of Computer Science, National Chiao Tung
University, Hsinchu, Taiwan (e-mail: rjchen@csie.nctu.edu.tw).

T. Kløve is with the Department of Informatics, University of Bergen, Bergen,
Norway (e-mail: Torleiv.Klove@ii.uuib.no).

Communicated by V. Vaishampayan, Associate Editor At Large.
Digital Object Identifier 10.1109/TIT.2007.915706

found applications in powerline communication: permutations ar-
rays can be used as error correcting codes. For a given length N , a
permutation array (of length N ) is a set of permutations of the set
FN = f1; 2; . . . ; Ng. The minimum distance D of the permutation
array is, as usual, the smallest Hamming distance between the per-
mutations. For the application, there is the usual trade off between
minimum distance and size of the code (permutation array).

Because of the application in powerline communication, there has
been a renewed interest in permutation arrays, and a substantial number
of papers with new and better constructions have appeared during the
last 6–7 years, see the list of references. One way to construct permu-
tation arrays, introduced by Ferreira and Vinck [6] is to use the image
of codes under a distance preserving mapping (DPM) from binary vec-
tors to permutations. A mapping from the set of all binary vectors of
length n to the set of all permutations of f1; 2; . . . ; Ng is called a
distance-preserving mapping (DPM) if every two distinct vectors are
mapped to permutations with the same or even larger Hamming mu-
tual distance than that of the vectors. A distance-increasing mapping
(DIM) is a special DPM such that the distances are strictly increased
(except when the two vectors are equal). Since the mapping is distance
preserving, the minimum distance of the image (which is a permutation
array) is lower bounded by the minimum distance of the code. A DIM
will increase the minimum distance. A number of papers have studied
various constructions of DPMs and DIMs, with variations: [2]–[15],
[17]. The permutation arrays constructed by this method are the best
known for many values of the parameters N and D.

Since the largest ternary codes of length n and minimum distance
d are (in most cases) larger (often substantially larger) than the binary
codes with the same parameters, it is clear that a DPM from ternary vec-
tors in many cases will give larger permutation arrays than the known
constructions. Existence of such DPM has therefore been an interesting
and important open question. The main result of this correspondence
is the construction of a DPM from ternary vectors of length n � 13 to
permutations of the same length. We also construct DIM from ternary
vectors of length n � 3 to permutations of length n + 2. We give a
few numerical examples to illustrate that this indeed gives much better
permutation arrays. We note that another construction of a DPM from
ternary vectors [15] has been submitted after our initial submission of
this correspondence. The construction method is quite different and
certainly of independent interest.

The correspondence is organized as follows. In the next section, we
introduce some notations and state our main results. In Section III, we
introduce a general recursive construction of DPMs and DIMs. In Sec-
tions IV and V, we introduce mappings that can be used to start the
recursion in the three cases we consider.

II. NOTATIONS AND MAIN RESULTS

Let SN denote the set of all N ! permutations of FN . A permutation
� : FN ! FN is represented by an N -tuple � = (�1; �2; . . . ; �N)
where �i = �(i). Let Zn

3 denote the set of all ternary vectors of length
n. The Hamming distance between two permutations �; � 2 SN is

dH(�; �) = jfj 2 FN : �j 6= �jgj:

Let Fn;N be the set of injective functions from Zn
3 to SN . Note that

Fn;N is empty if N ! < 3n.
For N � n, let Pn;N be the set of functions in Fn;N such that

dH(f(x); f(y)) � dH(x;y)

for all x; y 2 Zn
3 . These mappings are called distance-preserving map-

pings (DPM).

0018-9448/$25.00 © 2008 IEEE
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For N > n, let In;N be the set of functions in Fn;N such that

dH(f(x); f(y)) > dH(x;y) (1)

for all distinct x; y 2 Zn
3 . These mappings are called distance-in-

creasing mappings (DIM).
An (N;D) permutation array (PA) is a subset of SN such that the

Hamming distance between any two distinct permutations in the array
is at least D. An (n; d; q) code is a subset of vectors (codewords) of
length n over an alphabet of size q and with distance at least d between
distinct codewords. One construction method of PAs is to construct an
(N;D)-PA from an (n; d; q) code using DPMs or DIMs. More pre-
cisely, if C is an (n; d; q) code and there exists a DPM f from Zn

q

to SN , then f(C) is an (N; d)-PA. If f is a DIM, then f(C) is an
(N; d+1)-PA. This has been a main motivation for studying DPMs. Let
P (N;D) denote the largest possible size of an (N;D)-PA. The exact
value of P (N;D) is still an open problem in most cases, but we can
lower bound this value by the maximal size of a suitable code provided
a DPM (or DIM) is known. Let Aq(n; d) denote the largest possible
size of an (n; d) code over a code alphabet of size q. In [5], Chang et al.
used this approach to show that for N � 4 and 2 � D � N , we have
P (N;D) � A2(N;D� 1). In [4], Chang further improved the bound
to P (N;D) � A2(N;D��) for any � such that 3 � �+1 � D � N

and anyN � N� , whereN� is a positive integer determined by �, e.g.,
N2 = 16.

Our main result is the following theorem.

Theorem 1:
a) For N � 5 and 2 � D � N , we have

P (N;D) � A3(N � 2; D � 1):

b) For N � 10 and 2 � D � N , we have

P (N;D) � A3(N � 1; D):

c) For N � 13 and 2 � D � N , we have

P (N;D) � A3(N;D):

Bounds on A2(n; d) and A3(n; d) have been studied by many re-
searchers, see e.g., [16, Ch. 5], and [1]. In general, the lower bounds
on P (N;D) obtained from use of ternary codes are better than those
obtained from binary codes. For example, using Chang’s bound [4],
we get P (16; 5) � A2(16; 3) � 2720, whereas Theorem 1 gives
P (16; 5) � A3(16; 5) � 19683. Similarly, Chang’s bound gives
P (16; 9) � A2(16; 7) � 36 whereas the new bound gives P (16; 9) �
A3(16; 9) � 243.

The proof of the theorem is done by explicit construction of DPMs
and DIMs. More precisely, we give constructions that show the fol-
lowing lemma which in turn implies the theorem.

Lemma 1:
a) In;n+2 is nonempty for n � 3.
b) Pn;n+1 is nonempty for n � 9.
c) Pn;n is nonempty for n � 13.
A relatively simple recursive method is given (in the next section)

to construct a mapping of length n + 1 from a mapping of length n.
Explicit mappings that start the recursion in the three cases are given
in last part of the correspondence.

III. THE GENERAL RECURSIVE CONSTRUCTION

For any array u = (u1; u2; . . . ; un), we use the notation ui to de-
note the element ui in position i.

We start with a recursive definition of functions from Zn
3 to SN . For

f 2 Fn;N , define g = H(f) 2 Fn+1;N+1 as follows. Let

x = (x1; x2; . . . ; xn) 2 Z
n
3 and f(x) = ('1; '2; . . . ; 'N):

Suppose that the elementN�4 occurs in position r, that is'r = N�4.
Then

g(xj0)i =
N + 1; for i = N + 1

'i; for i 6= N + 1

g(xj1)i =

N � 4; for i = N + 1

N + 1; for i = r

'i; for i 62 fr;N + 1g:

If n is even and xn = 2, then

g(xj2)i =

N + 1; for i = N � 1

'N�1; for i = N + 1

'i; for i 62 fN � 1; N + 1g:

otherwise (n is odd or xn < 2), then

g(xj2)i =

N + 1; for i = N

'N ; for i = N + 1

'i; for i 62 fN;N + 1g:

We note that g(xja)i 6= f(x)i for at most one value of i � N .
For f 2 Fm;M , we define a sequence of functions fn 2

Fn;n+M�m, for all n � m, recursively by

fm = f and fn+1 = H(fn) for n � m:

Lemma 2: If fm 2 Pm;M where M � m, m is odd, and

fm(x)M 62 fM � 4;M � 3g for all x 2 Z
m
3

then fn 2 Pn;n+M�m for all n � m.

Lemma 3: If fm 2 Im;M , where M > m and m is odd, and

fm(x)M 62 fM � 4;M � 3g for all x 2 Z
m
3

then fn 2 In;n+M�m for all n � m.
Proof: We prove Lemma 3; the proof of Lemma 2 is similar (and

a little simpler). The proof is by induction. First we prove that g =
fm+1 2 Im+1;M+1. Let x; y 2 Zm

3 and

f(x) = ('1; '2; . . . ; 'M ); 'r =M � 4

f(y) = (
1; 
2; . . . ; 
M ); 
s =M � 4:
We want to show that

dH(g(xja); g(yjb)) > dH((xja); (yjb))
if (xja) 6= (yjb).

First, consider x = y and a 6= b. Since 'M 6= M � 4, it follows
immediately from the definition of g that

dH(g(xja); g(xjb)) � 2 > 1 = dH((xja); (xjb)):
For x 6= y, we want to show that

dH(g(xja); g(yjb))� dH(f(x); f(y)) � dH(a; b) (2)

for all a; b 2 Z3 since this implies

dH(g(xja); g(yjb)) � dH(f(x); f(y)) + dH(a; b)

>dH(x;y) + dH(a; b)

= dH((xja); (yjb)):
The condition (2) is equivalent to the following:

M+1

i=1

(�g;i ��f;i) � dH(a; b) (3)

where

�g;i = dH(g(xja)i; g(yjb)i) and �f;i = dH(f(x)i; f(y)i)

and where, for technical reasons, we define �f;M+1 = 0. The point
is that at most three of the terms �g;i ��f;i are nonzero. We look at
one combination of a and b in detail as an illustration, namely a = 1
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and b = 2. Then g(xja)i = f(x)i and g(yjb)i = f(y)i and so
�g;i = �f;i for all i �M + 1, except in the following three cases:

i f(x)i f(y)i g(xja)i g(yjb)i

r M � 4 
r M + 1 
r

M 'M 
M 'M M + 1

M + 1 � � M � 4 
M

i �f;i �g;i �g;i ��f;i

r 0 or 1 1 0 or 1
M 0 or 1 1 0 or 1

M + 1 0 1 1:
Note that we have used the fact that 
M 6= M � 4. We see that

(�g;i ��f;i) � 1 = dH(a; b).
The other combinations of a and b are similar. This proves that

fm+1 = g 2 Im+1;M+1.
Now, let h = H(g) = fm+2. A similar analysis will show that h 2

Im+2;M+2. We first give a table of the last three symbols in h(xja1a2)
as these three symbols are the most important in the proof. Let 's =
M � 3. By assumption, s < M

a1a2 h(xja1a2)M h(xja1a2)M+1 h(xja1a2)M+2

00 'M M + 1 M + 2

10 'M M � 4 M + 2

20 M + 1 'M M + 2

01 'M M + 1 M � 3

11 'M M � 4 M � 3

21 M + 1 'M M � 3

02 'M M + 2 M + 1

12 'M M + 2 M � 4

22 M + 2 'M M + 1:

In addition

h(xj1a2)r = M + 1 and h(xja11)s = M + 2:

Note that we have used the fact that 'M 6= M � 3 here, since if we
had 'M = M � 3, then we would for example have had h(xj01)M =
h(xj01)M+2. From the table, we first see that

dH(h(xja1a2); h(xjb1b2)) > dH(a1a2; b1b2)

if a1a2 6= b1b2. For example h(xj10) and h(xj21) differ in positions
r, s,M ,M+1 andM+2. As another example, h(xj02) and h(xj22)
differ in positions M and M + 1.

Next, consider dH(h(xja1a2); h(yjb1b2)) for x 6= y. We see that

dH(h(xja1a2)i; h(yjb1b2)i) � dH(f(x)i; f(y)i)

for i < M : from the table above, we can see that

dH(h(xja1a2)Mh(xja1a2)M+1h(xja1a2)M+2;

h(yjb1b2)Mh(yjb1b2)M+1h(yjb1b2)M+2)

� dH('M ; 
M ) + dH(a1a2; b1b2):

As an example, let a1a2 = 10 and b1b2 = 02. Then

h(xj10)M ; h(xj10)M+1; h(xj10)M+2 ='M ;M � 4;M + 2

and

h(yj02)M ; h(yj02)M+1; h(yj02)M+2 = 
M ;M + 2;M + 1:

The distance between the two is 2 (if 'M = 
M ) or 3 (otherwise).
The other combinations of a1a2 and b1b2 are similar. From this we
can conclude that h 2 Im+2;M+2 in a similar way we showed that
g 2 Im+1;M+1 above.

Further, we note that

h(xja1a2)M+2 62 f(M + 2)� 4; (M + 2)� 3g:

Therefore, we can repeat the argument and, by induction, obtain fn 2
In;n+M�m for all n � m.

A function F 2 I3;5 such that F (x)5 62 f1; 2g was found by com-
puter search. Here is a listing of the elements x 2 Z3

3 and the corre-
sponding values of F (x) 2 S5

(0; 0; 0)(1;2; 3; 4; 5); (0; 0; 1)(1;2; 5; 4; 3); (0; 0; 2)(1;2; 3; 5; 4)

(0; 1; 0)(4;2; 3; 1; 5); (0; 1; 1)(4;2; 5; 1; 3); (0; 1; 2)(5;2; 3; 1; 4)

(0; 2; 0)(1;4; 3; 2; 5); (0; 2; 1)(1;4; 5; 2; 3); (0; 2; 2)(1;5; 3; 2; 4)

(1; 0; 0)(2;3; 1; 4; 5); (1; 0; 1)(2;5; 1; 4; 3); (1; 0; 2)(2;3; 1; 5; 4)

(1; 1; 0)(2;3; 4; 1; 5); (1; 1; 1)(2;5; 4; 1; 3); (1; 1; 2)(2;3; 5; 1; 4)

(1; 2; 0)(4;3; 1; 2; 5); (1; 2; 1)(4;5; 1; 2; 3); (1; 2; 2)(5;3; 1; 2; 4)

(2; 0; 0)(3;1; 2; 4; 5); (2; 0; 1)(5;1; 2; 4; 3); (2; 0; 2)(3;1; 2; 5; 4)

(2; 1; 0)(3;4; 2; 1; 5); (2; 1; 1)(5;4; 2; 1; 3); (2; 1; 2)(3;5; 2; 1; 4)

(2; 2; 0)(3;1; 4; 2; 5); (2; 2; 1)(5;1; 4; 2; 3); (2; 2; 2)(3;1; 5; 2; 4):

This, combined with Lemma 3, proves Lemma 1 a).

Remark: The recursive construction can be generalized. In the con-
struction above we defined r by 'r = N � 4. The recursion would
work equally well if we defined r by 'r = N � t for some fixed t � 3
and changed the conditions in the lemmas to

fm(x)M 62 fM � t;M � t+ 1g: (4)

It is also possible to vary the t from one step to the next as long as, for
all x 2 Zn3

N � t 6= fn(x)N ; if n is odd
N � t 62 ffn(x)N�1; fn(x)Ng; if n is even.

(5)

One reason we chose a fixed t is that if the condition (4) is satisfied at
the start of the recursion, then (5) is satisfied for all n � m.

IV. CONSTRUCTION OF A MAPPING IN Pn;n+1 FOR n � 9

To prove Lemma 1 b), using Lemma 2, we need some f 2 P9;10

such that
f(x)10 62 f6; 7g for all x 2 Z

9
3 : (6)

An extensive computer search has been unsuccessful in coming up with
such a mapping. However, an indirect approach has been successful.
The approach is to construct f from two simpler mappings found by
computer search. We describe this construction.

For a vector � = (�1; �2; . . . ; �n) and a set

X � f1; 2; . . . ; ng

let �nX denote the vector obtained from � by removing the elements
with subscript in X . For example

(�1; �2; �3; �4; �5; �6)nf1;5g = (�2; �3; �4; �6):

By computer search we have found mappings G 2 F5;7 and H 2
F4;6 that satisfy the following conditions:

a) for every x 2 Z
5
3 ; 6 2 fG(x)1; G(x)2; G(x)3g;

b) for every x 2 Z
5
3 ; 7 2 fG(x)4; G(x)5; G(x)6g;

c) for every distinct x; y 2 Z
5
3 ;

dH(G(x)nf7g; G(y)nf7g) � dH(x;y);

d) for every u 2 Z
4
3 ; 1 2 fH(u)1;H(u)2;H(u)3g;

e) for every distinct u; v 2 Z
4
3 ;

dH(H(u)nf5;6g;H(v)nf5;6g) � dH(u;v):

Explicit listing of the mappingsG andH have been omitted for space
reasons (page limitation on correspondences), but it has been included
in an early version of the manuscript stored in arXiv, [14]. We will
now show how these mappings can be combined to produce a mapping
f 2 P9;10 satisfying (6).
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Let x 2 Z9

3 . Then x = (xL;xR), where xL 2 Z5

3 and xR 2 Z4

3 .
Let

('1; '2; '3; '4; '5; '6; '7) =G(xL)

(
1; 
2; 
3; 
4; 
5; 
6) =H(xR) + (4; 4; 4; 4; 4; 4):

We note that Condition d) implies that 
5 � 6 and 
6 � 6. Similarly,
Conditions a) and b) imply that '7 � 5.

Define � = (�1; �2; . . . ; �10) as follows:

�i = 
5; if 1 � i � 3 and 'i = 6

�i = 
6; if 4 � i � 6 and 'i = 7

�i ='i; if 1 � i � 6 and 'i � 5

�i ='7; if 7 � i � 9 and 
i�6 = 5

�i = 
i�6; if 7 � i � 10 and 
i�6 � 6:

In �, swap 1 and 6 and also swap 2 and 7, and let the resulting array
be denoted by �. More formally

�i =1; if �i = 6

�i =2; if �i = 7

�i =6; if �i = 1

�i =7; if �i = 2

�i = �i; otherwise:

Then define

f(x) = �:

We will show that f has the stated properties. We first show that � 2
S10. We have ' 2 S7 and 
 is a permutation of (5; 6; 7; 8; 9; 10). In
particular, 5; 6; and 7 appear both in ' and 
. The effect of the first line
in the definition of � is to move another element (
5) into the position
where ' has a 6. Similarly, the second line overwrites the 7 in �, and
the fourth line overwrites the 5 in 
. The definition of � is then the
concatenation of the six first (overwritten) elements of ' and the five
first (overwritten) elements of 
. Therefore, � contains no duplicate
elements, that is, � 2 S10.

The element 1 in � must be either in one of the first six positions,
coming from', or in one of the positions 7–9 (if'7 = 1). Similarly, the
element 2 must be in one of the first nine positions of �. Therefore, both
6 and 7 must be among the first nine elements of �, that is�10 62 f6; 7g.

Finally, we must show that f is distance-preserving. Let x 6= x
0, and

let the arrays corresponding to x0 be denoted by '0, 
0, �0 and �0. By
assumption

dH(x;x0) = dH(xL;x
0
L) + dH(xR;x

0
R)

� dH('nf7g; '
0
nf7g) + dH(
nf5;6g; 


0
nf5;6g): (7)

For 1 � i � 6 we have

dH('i; '
0
i) � dH(�i; �

0
i): (8)

If 'i = '0i this is obvious. Otherwise, we may assume without loss of
generality that '0i < 'i and we must show that �i 6= �0i. If 'i � 5,
then

�
0
i = '

0
i < 'i = �i:

If 'i = 6, then

�
0
i = '

0
i � 5 and �i = 
5 � 6:

If 'i = 7, then 4 � i � 6 and so '0i 6= 6. Hence

�
0
i = '

0
i � 5 and �i = 
6 � 6:

This completes that proof of (8). A similar arguments show that for
7 � i � 10 we have

dH(
i�6; 

0
i�6) � dH(�i; �

0
i) (9)

and that for 1 � i � 10 we have

dH(�i; �
0
i) � dH(�i; �

0
i): (10)

Combining (7)–(10), we get

dH(x;x0) � dH('nf7g; '
0
nf7g) + dH(
nf5;6g; 


0
nf5;6g)

� dH(�; �0) � dH(�; �0):

Hence, f is distance-preserving.

V. CONSTRUCTION OF A MAPPING IN Pn;n FOR n � 13

The construction of a mapping f 2 P13;13 which proves Lemma
1 c) is similar to the construction in the previous section. However,
the construction is more involved and contains several steps. We will
describe the constructions and properties of the intermediate mappings.
The details of proofs are similar to the proof in the previous section and
we omit these details.

We start with three mappings R; S 2 F3;5 and T 2 F4;6. These
were found by computer search and are listed explicitly below. These
mappings are used as building blocks similarly to what was done in the
previous section. They have the following properties:

� for every x 2 Z
3

3 ; 1 2 fR(x)1; R(x)2; R(x)3g;

� for every x 2 Z
3

3 ; R(x)5 6= 5;

� for every distinct x; y 2 Z
3

3 ;

dH(R(x)nf4;5g; R(y)nf4;5g) � dH(x; y);

� for every x 2 Z
3

3 ; 2 2 fS(x)1; S(x)2; S(x)3g;

� for every x 2 Z
3

3 ; S(x)5 6= 1;

� for every distinct x; y 2 Z
3

3

dH(S(x)nf4;5g; S(y)nf4;5g) � dH(x;y);

� for every x 2 Z
4

3 ; 2 2 fT (x)1; T (x)2; T (x)3g;

� for every x 2 Z
4

3 ; T (x)6 6= 1;

� for every distinct x; y 2 Z
4

3 ;

dH(T (x)nf5;6g; T (y)nf5;6g) � dH(x;y):

Listing of the elements x 2 Z3

3 and the corresponding values of
R(x) 2 S5

(0; 0; 0)(1;2; 3; 5; 4); (0; 0; 1)(1;4; 3; 5; 2); (0; 0; 2)(1;5; 3; 4; 2)

(0; 1; 0)(1;2; 4; 5; 3); (0; 1; 1)(1;4; 2; 5; 3); (0; 1; 2)(1;5; 4; 3; 2)

(0; 2; 0)(1;2; 5; 4; 3); (0; 2; 1)(1;4; 5; 3; 2); (0; 2; 2)(1;3; 5; 4; 2)

(1; 0; 0)(4;1; 3; 5; 2); (1; 0; 1)(5;1; 3; 4; 2); (1; 0; 2)(2;1; 3; 5; 4)

(1; 1; 0)(3;1; 4; 5; 2); (1; 1; 1)(5;1; 4; 3; 2); (1; 1; 2)(2;1; 4; 5; 3)

(1; 2; 0)(4;1; 5; 3; 2); (1; 2; 1)(5;1; 2; 4; 3); (1; 2; 2)(2;1; 5; 4; 3)

(2; 0; 0)(4;2; 1; 5; 3); (2; 0; 1)(5;4; 1; 3; 2); (2; 0; 2)(2;5; 1; 4; 3)

(2; 1; 0)(3;2; 1; 5; 4); (2; 1; 1)(3;4; 1; 5; 2); (2; 1; 2)(3;5; 1; 4; 2)

(2; 2; 0)(4;3; 1; 5; 2); (2; 2; 1)(5;3; 1; 4; 2); (2; 2; 2)(2;3; 1; 5; 4):

Listing of the elements x 2 Z3

3 and the corresponding values of
S(x) 2 S5

(0; 0; 0)(2;1; 3; 4; 5); (0; 0; 1)(2;4; 3; 1; 5); (0; 0; 2)(2;5; 3; 1; 4)

(0; 1; 0)(2;1; 4; 5; 3); (0; 1; 1)(2;4; 1; 5; 3); (0; 1; 2)(2;5; 4; 1; 3)

(0; 2; 0)(2;1; 5; 4; 3); (0; 2; 1)(2;4; 5; 1; 3); (0; 2; 2)(2;3; 5; 1; 4)

(1; 0; 0)(4;2; 3; 1; 5); (1; 0; 1)(5;2; 3; 1; 4); (1; 0; 2)(1;2; 3; 5; 4)

(1; 1; 0)(3;2; 4; 1; 5); (1; 1; 1)(5;2; 4; 1; 3); (1; 1; 2)(1;2; 4; 5; 3)

(1; 2; 0)(4;2; 5; 1; 3); (1; 2; 1)(5;2; 1; 4; 3); (1; 2; 2)(1;2; 5; 4; 3)

(2; 0; 0)(4;1; 2; 5; 3); (2; 0; 1)(5;4; 2; 1; 3); (2; 0; 2)(1;5; 2; 4; 3)

(2; 1; 0)(3;1; 2; 5; 4); (2; 1; 1)(3;4; 2; 1; 5); (2; 1; 2)(3;5; 2; 1; 4)

(2; 2; 0)(4;3; 2; 1; 5); (2; 2; 1)(5;3; 2; 1; 4); (2; 2; 2)(1;3; 2; 5; 4):
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Listing of the elements x 2 Z4
3 and the corresponding values of

T (x) 2 S6

(0; 0; 0; 0)(2; 4; 3; 1; 5; 6); (0; 0; 0; 1)(2;4; 3; 6; 1; 5)

(0; 0; 0; 2)(2;4; 3; 5; 1; 6); (0; 0; 1; 0)(2;1; 4; 6; 5; 3)

(0; 0; 1; 1)(2;1; 4; 3; 6; 5); (0; 0; 1; 2)(2;1; 4; 5; 6; 3)

(0; 0; 2; 0)(2;3; 1; 6; 5; 4); (0; 0; 2; 1)(2;3; 1; 5; 6; 4)

(0; 0; 2; 2)(2;3; 1; 4; 6; 5); (0; 1; 0; 0)(2;5; 3; 1; 6; 4)

(0; 1; 0; 1)(2;4; 5; 3; 1; 6); (0; 1; 0; 2)(2;5; 3; 4; 1; 6)

(0; 1; 1; 0)(2;5; 4; 1; 6; 3); (0; 1; 1; 1)(2;5; 4; 3; 1; 6)

(0; 1; 1; 2)(2;1; 5; 4; 6; 3); (0; 1; 2; 0)(2;3; 5; 1; 6; 4)

(0; 1; 2; 1)(2;5; 1; 3; 6; 4); (0; 1; 2; 2)(2;5; 1; 4; 6; 3)

(0; 2; 0; 0)(2;6; 3; 1; 5; 4); (0; 2; 0; 1)(2;4; 6; 3; 1; 5)

(0; 2; 0; 2)(2;6; 3; 4; 1; 5); (0; 2; 1; 0)(2;6; 4; 1; 5; 3)

(0; 2; 1; 1)(2;6; 4; 3; 1; 5); (0; 2; 1; 2)(2;1; 6; 4; 5; 3)

(0; 2; 2; 0)(2;3; 6; 1; 5; 4); (0; 2; 2; 1)(2;6; 1; 3; 5; 4)

(0; 2; 2; 2)(2;6; 1; 4; 5; 3); (1; 0; 0; 0)(1;2; 3; 5; 6; 4)

(1; 0; 0; 1)(1;2; 3; 6; 5; 4); (1; 0; 0; 2)(1;2; 3; 4; 6; 5)

(1; 0; 1; 0)(3;2; 4; 1; 6; 5); (1; 0; 1; 1)(3;2; 4; 6; 1; 5)

(1; 0; 1; 2)(3;2; 4; 5; 1; 6); (1; 0; 2; 0)(4;2; 1; 5; 6; 3)

(1; 0; 2; 1)(4;2; 1; 3; 6; 5); (1; 0; 2; 2)(4;2; 1; 6; 5; 3)

(1; 1; 0; 0)(6;2; 3; 1; 5; 4); (1; 1; 0; 1)(1;2; 5; 3; 6; 4)

(1; 1; 0; 2)(6;2; 3; 4; 1; 5); (1; 1; 1; 0)(3;2; 5; 1; 6; 4)

(1; 1; 1; 1)(6;2; 5; 3; 1; 4); (1; 1; 1; 2)(6;2; 5; 4; 1; 3)

(1; 1; 2; 0)(4;2; 5; 1; 6; 3); (1; 1; 2; 1)(6;2; 1; 3; 5; 4)

(1; 1; 2; 2)(6;2; 1; 4; 5; 3); (1; 2; 0; 0)(5;2; 3; 1; 6; 4)

(1; 2; 0; 1)(1;2; 6; 3; 5; 4); (1; 2; 0; 2)(5;2; 3; 4; 1; 6)

(1; 2; 1; 0)(5;2; 4; 1; 6; 3); (1; 2; 1; 1)(5;2; 6; 3; 1; 4)

(1; 2; 1; 2)(5;2; 6; 4; 1; 3); (1; 2; 2; 0)(4;2; 6; 1; 5; 3)

(1; 2; 2; 1)(5;2; 1; 3; 6; 4); (1; 2; 2; 2)(5;2; 1; 4; 6; 3)

(2; 0; 0; 0)(1;4; 2; 5; 6; 3); (2; 0; 0; 1)(1;4; 2; 3; 6; 5)

(2; 0; 0; 2)(1;4; 2; 6; 5; 3); (2; 0; 1; 0)(3;1; 2; 5; 6; 4)

(2; 0; 1; 1)(3;1; 2; 6; 5; 4); (2; 0; 1; 2)(3;1; 2; 4; 6; 5)

(2; 0; 2; 0)(4;3; 2; 1; 6; 5); (2; 0; 2; 1)(4;3; 2; 6; 1; 5)

(2; 0; 2; 2)(4;3; 2; 5; 1; 6); (2; 1; 0; 0)(6;4; 2; 1; 5; 3)

(2; 1; 0; 1)(6;4; 2; 3; 1; 5); (2; 1; 0; 2)(1;5; 2; 4; 6; 3)

(2; 1; 1; 0)(3;5; 2; 1; 6; 4); (2; 1; 1; 1)(6;1; 2; 3; 5; 4)

(2; 1; 1; 2)(6;5; 2; 4; 1; 3); (2; 1; 2; 0)(6;3; 2; 1; 5; 4)

(2; 1; 2; 1)(4;5; 2; 3; 1; 6); (2; 1; 2; 2)(6;3; 2; 4; 1; 5)

(2; 2; 0; 0)(5;4; 2; 1; 6; 3); (2; 2; 0; 1)(5;4; 2; 3; 1; 6)

(2; 2; 0; 2)(1;6; 2; 4; 5; 3); (2; 2; 1; 0)(3;6; 2; 1; 5; 4)

(2; 2; 1; 1)(5;1; 2; 3; 6; 4); (2; 2; 1; 2)(5;6; 2; 4; 1; 3)

(2; 2; 2; 0)(5;3; 2; 1; 6; 4); (2; 2; 2; 1)(4;6; 2; 3; 1; 5)

(2; 2; 2; 2)(5;3; 2; 4; 1; 6)

A. Construction of U 2 F6;8

Let x 2 Z6
3 and let

('1; '2; '3; '4; '5) =R(x1; x2; x3)

(
1; 
2; 
3; 
4; 
5) =S(x4; x5; x6) + (3; 3; 3; 3; 3):

Define � = (�1; �2; . . . ; �8) as follows:

�i = 
5; if 1 � i � 4 and 'i = 5

�i ='i; if 1 � i � 4 and 'i 6= 5

�i ='5; if 5 � i � 8 and 
i�4 = 4

�i = 
i�4; if 5 � i � 8 and 
i�4 6= 4:

In �, swap 1 and 7 and also swap 5 and 8, and let the resulting array
be U(x). It has the following properties:

� for every x 2 Z
6
3 ; 7 2 fU(x)1; U(x)2; U(x)3g

� for every x 2 Z
6
3 ; 8 2 fU(x)5; U(x)6; U(x)7g

� for every distinct x; y 2 Z
6
3

dH(U(x)nf4;8g; U(y)nf4;8g) � dH(x; y):

B. Construction of V 2 F7;9

Let x 2 Z7
3 and let

('1; '2; '3; '4; '5) =R(x1; x2; x3)

(
1; 
2; 
3; 
4; 
5; 
6) =T (x4; x5; x6; x7) + (3; 3; . . . ; 3):

Define � = (�1; �2; . . . ; �9) as follows:

�i = 
6; if 1 � i � 4 and 'i = 5

�i ='i; if 1 � i � 4 and 'i 6= 5

�i ='5; if 5 � i � 9 and 
i�4 = 4

�i = 
i�4; if 5 � i � 9 and 
i�4 6= 4:

In �, swap 2 and 5, and let the resulting array be V (x). It has the
following properties:

� for every x 2 Z
7
3 ; 1 2 fV (x)1; V (x)2; V (x)3g

� for every x 2 Z
7
3 ; 2 2 fV (x)5; V (x)6; V (x)7g

� for every distinct x; y 2 Z
7
3

dH(V (x)nf4;9g; V (y)nf4;9g) � dH(x;y):

C. Construction of f 2 P13;13

Let x 2 Z13
3 and let

('1; '2; . . . ; '8) =U(x1; x2; . . . ; x6)

(
1; 
2; . . . ; 
9) =V (x7; x8; . . . ; x13) + (4; 4; . . . ; 4):

Define � = (�1; �2; . . . ; �13) as follows:

�i = 
4; if 1 � i � 3 and 'i = 7

�i ='i; if 1 � i � 3 and 'i 6= 7

�i = 
9; if 4 � i � 6 and 'i+1 = 8

�i ='i+1; if 4 � i � 6 and 'i+1 6= 8

�i ='4; if 7 � i � 9 and 
i�6 = 5

�i = 
i�6; if 7 � i � 9 and 
i�6 6= 5

�i ='8; if 10 � i � 13 and 
i�5 = 6

�i = 
i�5; if 10 � i � 13 and 
i�5 6= 6:

In �, swap 1 and 9 and also swap 2 and 10, and let the resulting array
be f(x). Then

f 2 P13;13 and f(x)13 62 f9; 10g:

VI. CONCLUSION

We have given a recursive construction method for DPMs and DIMs
from ternary vectors. In three cases we have found DPMs that can be
used to start off the recursion, in one of the cases the DPMs are DIMs.
Hence, in one case we get an infinite class of DIMs and in the other
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two cases we get infinite classes of DPM. The most important result is
the construction of DPM from ternary vectors of lengths at least 13 to
permutations of the same length. Using the DPMs (or the DIMs) and
known ternary codes, we get new larger permutation arrays in many
cases; a couple of examples are gives as illustrations.
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Complete Mutually Orthogonal Golay Complementary
Sets From Reed–Muller Codes

Appuswamy Rathinakumar, Student Member, IEEE, and
Ajit Kumar Chaturvedi, Senior Member, IEEE

Abstract—Recently Golay complementary sets were shown to exist in the
subsets of second-order cosets of a q-ary generalization of the first-order
Reed–Muller (RM) code. We show that mutually orthogonal Golay com-
plementary sets can also be directly constructed from second-order cosets
of a q-ary generalization of the first-order RM code. This identification can
be used to construct zero correlation zone (ZCZ) sequences directly and it
also enables the construction of ZCZ sequences with special subsets.

Index Terms—Complementary sets, generalized Boolean function, mutu-
ally orthogonal Golay complementary sets, Reed–Muller (RM) codes, zero
correlation zone (ZCZ) sequences.

I. INTRODUCTION

Zero correlation zone (ZCZ) sequences are a generalization of
orthogonal sequences. Their superior correlation properties can be
utilized to improve the spectral efficiency of an approximately syn-
chronized1 CDMA system over a similar system that uses conventional
orthogonal sequences [3]. Further, CDMA systems employing ZCZ
sequences have been shown to be performing as well as OFDM sys-
tems in fast time-varying multipath channels at a considerably lower
computational complexity [14]. Recently, ZCZ sequences have found
applications in ternary direct sequence Ultra Wideband (TS-UWB)
systems [13]. It has been shown that the TS-UWB (also known as
multicode UWB) systems employing appropriate ZCZ sequences can
support different data rate requirements at a constant bit error rate
performance level [13]. They are also applicable in broadband satellite
IP networks, where sequence sets with small autocorrelation and cross
correlation within a detection aperture are needed [15], [16].

Mutually orthogonal Golay Complementary Sets (MOGCS) are
an integral part in the construction of ZCZ sequences. Traditionally,
ZCZ sequences have been constructed by iterative methods starting
from a pair of MOGCS. In [3], several constructions of ZCZ se-
quences starting from any set of MOGCS were given. Many recursive
constructions of MOGCS are known [9],2 [3], [6], [7], [5], [3]. In
[1] and [2], a long standing problem of directly constructing Golay
Complementary Sets (GCS) [6] was solved by constructing GCS from
Reed–Muller (RM) codes. Specifically, GCS were shown to be subsets
in second-order cosets of a q-ary generalization RMq(1;m) of the
first-order RM code. Size of the set was shown to be directly related to
a graph associated with the coset leader.

Manuscript received July 28, 2004; revised November 29, 2007.
A. Rathinakumar was with the Department of Electrical Engineering, Indian

Institute of Technology, Kanpur, UP 208016, India. He is now with the De-
partment of Electrical and Computer Engineering, University of California, San
Diego, La Jolla, CA 92093 USA (e-mail: rathnam@ucsd.edu).

A. K. Chaturvedi is with the Department of Electrical Engineering, Indian
Institute of Technology, Kanpur, UP 208016, India (e-mail: akc@iitk.ac.in).

Communicated by K. G. Paterson, Associate Editor for Sequences.
Digital Object Identifier 10.1109/TIT.2007.915980

1A DS CDMA system is said to be approximately synchronized if the modu-
lated sequences are synchronized up to a small fraction of the sequence length.

2The concept of zero correlation sequences first appears in [9] as semiperfect
sequences.
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