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In this paper, we discuss many properties of graphs of Matching Composition Net-

works (MCN) [16]. A graph in MCN is obtained from the disjoint union of two graphs G0 
and G1 by adding a perfect matching between V(G0) and V(G1). We prove that any graph 
in MCN preserves the hamiltonian connectivity or hamiltonian laceability, and pancyc-
licity of G0 and G1 under simple conditions. In addition, if there exist three internally 
vertex-disjoint paths between any pair of distinct vertices in Gi for i ∈ {0, 1}, then so it 
is the case in any graph in MCN. Since MCN includes many well-known interconnection 
networks as special cases, such as the Hypercube Qn, the Crossed cube CQn, the Twisted 
cube TQn, the Möbius cube MQn, and the Hypbercube-like graphs HLn, our results apply 
to all of the above-mentioned networks.  
 
Keywords: hypercube-like graphs, perfect matching, hamiltonian-connected, pancyclic, 
3*-connected  
 
 

1. INTRODUCTION 
 

The hypercube Qn is one of the most popular network topologies due to its attractive 
properties such as regularity, edge and vertex symmetry, and strong connectivity. How-
ever, the hypercube does not have the smallest diameter for its resources. By twisting 
some pairs of edges in a hypercube, many hypercube variants are proposed to reduce the 
diameter [1, 7-9]. Cull and Larson [6] surveyed many hypercube variants and concluded 
that they are all hamiltonian. Vaidya et al. [24] further introduced the class of hypercube- 
like graphs HLn defined as follows: HL1 = K2, where K2 is the two-vertex complete graph. 
A graph in HLn is obtained from the disjoint union of two graphs G0 and G1 in HLn-1 by 
adding a perfect matching between V(G0) and V(G1). Obviously, the family HLn contains 
most of hypercube variants and preserves the recursive structure of the hypercube. 
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Instead of studying hypercube-like graphs in HLn, which require the number of ver-
tices being 2n, Lai et al. [16] proposed a class of Matching Composition Networks, de-
noted by MCN. Let G0 and G1 be two graphs with |V(G0)| = |V(G1)| = m, MCN0 = {G0, 
G1}, and MCN1 be the set of all graphs obtained by adding a perfect matching between 
V(G0) and V(G1). Obviously, |V(G)| = 2m for G ∈ MCN1. Similarly, MCNk denotes the set 
of all graphs obtained by adding a perfect matching between any two graphs in MCNk-1 
for k ≥ 2 and |V(G)| = 2k ⋅ m for G ∈ MCNk. We use the symbol MCN for the collection of 
graphs in MCNk for all k ≥ 0. It is obvious that MCN includes many well-known inter-
connection networks as special cases, such as the Hypercube Qn, the Crossed cube CQn, 
the Twisted cube TQn, the Möbius cube MQn, and the Hypbercube-like graphs HLn by 
recursively applying the construction [16]. The Folded Petersen Cube Networks FPQn,k 
[21], where FPQn,k = FPQn-1,k × K2 and |V(FPQn,k)| = 2n ⋅ 10k for n ≥ 0 and k ≥ 0, is also a 
family of graphs belonging to MCN. In this article, we prove that a graph G ∈ MCN 
composed by G0 and G1 preserves the hamiltonian connectivity and pancyclicity of G0 
and G1 under simple conditions. In addition, if there exist three internally vertex-disjoint 
paths between any pair of distinct vertices in Gi for i ∈ {0, 1}, then so it is the case in G. 
The results give a unified way of proving many properties of the hypercube variants. In 
fact, the study of these characters is shared by all networks with a recursive structure as 
of the hypercube-like graphs. 

2. PRELIMINARIES 

For the graph definitions and notations we follow [2]. G = (V, E) is a graph if V is a 
finite set and E is a subset of {(u, v) | (u, v) is an unordered pair of V}. We say that V is 
the vertex set and E is the edge set of G. Two vertices u and v are adjacent if (u, v) ∈ E. A 
path P between two vertices v0 and vk is represented by P = 〈v0, v1, v2, …, vk〉 where each 
pair of consecutive vertices are connected by an edge. We shall say that P joins v0 to vk. 
The length of a path P is the number of edges in P. We also write the path 〈v0, v1, v2, …, 
vk〉 as 〈v0, P1, vi, vi+1, …, vj, P2, vt, …, vk〉, where P1 is the path 〈v0, v1, …, vi-1, vi〉 and P2 is 
the path 〈vj, vj+1, …, vt-1, vt〉. Hence, it is possible to write a path 〈v0, v1, P, v1, v2, …, vk〉 if 
the length of P is zero. If a path Q = 〈v0, v1, v2, …, vk〉, then Q-1 denotes the path 〈vk, 
vk-1, …, v1, v0〉. A hamiltonian path between u and v, where u and v are two distinct verti-
ces of G, is a path joining u to v that visits every vertex of G exactly once. A cycle is a 
path of at least three vertices such that the first vertex is the same as the last vertex. A 
hamiltonian cycle of G is a cycle that traverses every vertex of G exactly once. A hamil-
tonian graph is a graph with a hamiltonian cycle.  

A graph G = (V, E) is connected if there is a path between any two distinct vertices 
in G. A graph G = (V, E) is hamiltonian connected if there is a hamiltonian path between 
any two distinct vertices in G. A graph G = (B ∪ W, E) is bipartite if V(G) = B ∪ W, B ∩ 
W = 0,/  and E(G) is a subset of {(u, v) | u ∈ B, v ∈ W}. A bipartite graph G = (B ∪ W, E) 
is balanced if |B| = |W|. Let G be a balanced bipartite graph. Since any hamiltonian path 
in G consists of the same number of vertices of the two partite sets, there exists no ham-
iltonian path between two vertices belonging to the same partite set of G. Thus G is not 
hamiltonian connected. We say that a bipartite graph G is hamiltonian laceable if there is 
a hamiltonian path between any pair of vertices {x, y | x ∈ B, y ∈ W}.   
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A graph is pancyclic if it contains a cycle of every length from 3 to |V(G)| inclusive. 
A graph is r-pancyclic if it contains a cycle of every length from r to |V(G)| inclusive. 
The concept of pancyclic graphs is proposed by Bondy [3]. It is known that there is no 
odd cycle in any bipartite graph. Hence, any bipartite graph is not pancyclic. For this 
reason, the concept of bipancyclicity is proposed [20]. A bipartite graph is bipancyclic if 
it contains a cycle of every even length from 4 to |V(G)| inclusive. It is proved that the 
hypercube is bipancyclic [17, 23]. 

An l-container C(u, v) in a graph G is a set of l internally vertex-disjoint paths be-
tween two distinct vertices u and v. An l-container C(u, v) in a graph G is an l-container 
such that every vertex of G is on some path in C(u, v). It follows from Menger’s Theorem 
[19] that in a k-connected graph, there exist k internally vertex-disjoint paths between 
any pair of distinct vertices. A graph G is 3*-connected if there exists a 3*-container be-
tween any two distinct vertices of G. A graph G is bi-3*-connected if G is a bipartite 
graph and there exists a 3*-container between any two distinct vertices from the opposite 
partite sets of G. It is shown in [14, 15] that if G = (B ∪ W, E) is a bi-3*-connected graph, 
then |B| = |W|. 

In this article, we always let G0 = (V0, E0) and G1 = (V1, E1) be two graphs such that 
|V0| = |V1| = t, where t ≥ 2 is an integer. Let M be an arbitrary perfect matching between 
V(G0) and V(G1). That is, M is a set of t edges with one endpoint in G0 and the other 
endpoint in G1. Define G = (G0, G1; M) such that V(G) = V0 ∪ V1 and E(G) = E0 ∪ E1 ∪ 
M. We use the notation ( , )x x  for any edge of M. Thus for i = 0 or 1, if x is a vertex of Gi, 
then x  denotes the corresponding vertex of x in G1-i under M. For i ∈ {0, 1}, if Gi is a 
bipartite graph, then Gi = (Bi ∪ Wi, Ei) where Bi and Wi denote the bipartite sets of Gi. G 
is obtained by connecting G0 and G1 with M = {(x, y) | x ∈ V0, y ∈ V1} and |M| = t. Thus 
G is bipartite if G contains no odd cycle, and G is nonbipartite if otherwise. If G is a bi-
partite graph, we let G = (B ∪ W, E) where B and W denote the bipartite sets of G. Here 
we only consider the cases where |Bi| = |Wi| for i ∈ {0, 1} and |B| = |W|. 
 
Definition 1  Let G = (B ∪ W, E). We say that G satisifies the two-path property if for 
given {u, u′} ⊂ B and {v, v′} ⊂ W, there exist two vertex disjoint paths P and Q such that 
P joins u to v, Q joins u′ to v′, and P ∪ Q covers all vertices of G.  

3. HAMILTONIAN CONNECTIVITY AND HAMILTONIAN LACEABILITY 

Chang et al. [4] proved that the hypercube Qn satisfies the two-path property for n ≥ 
2. Park and Chwa [22] proved that the hypercube-like graph HLn satisfies the two-path 
property for n ≥ 2, and that every HLn is hamiltonian laceable or hamiltonian connected 
depending on whether it is bipartite or not. By the similar deduction as in [22], we can 
prove the following lemma and theorems.  
 
Lemma 1  Let Gi be a bipartite hamiltonian laceable graph satisfying the two-path 
property for i ∈ {0, 1}. Let G = (G0, G1; M) be a bipartite graph. Then G satisfies the 
two-path property.   
 
Theorem 1  Let G0 and G1 be two bipartite hamiltonian laceable graphs. Then G = (G0, 
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G1; M) is hamiltonian laceable if G is a bipartite graph, or is hamiltonian connected if G 
is a nonbipartite graph. 
 
Theorem 2  Let G0 and G1 be two nonbipartite hamiltonian connected graphs. Then G 
= (G0, G1; M) is hamiltonian connected. 
 
Theorem 3  Let G0 be a bipartite hamiltonian laceable graph satisfying the two-path 
property and G1 be a nonbipartite hamiltonian connected graph. Then G = (G0, G1; M) is 
hamiltonian connected.  
 

By brute force, it is easy to check that FPQ1,1 is hamiltonian connected. Thus we 
know FPQn,1 is hamiltonian connected for all n ≥ 1 using Theorem 2 recursively. Conse-
quently, with Theorems 1-3, every graph G = (G0, G1; M) in MCN preserves the hamilto-
nian laceability or hamiltonian connectivity of G0 and G1 depending on it is bipartite or 
not.  

4. PANCYCLICITY AND BI-PANCYCLICITY 

Theorem 4  Let G0 and G1 be two graphs that are bipartite, hamiltonian laceable and 
suppose that both G0 and G1 are bipancyclic with |V(Gi)| = t ≥ 4 for i = 0, 1. Then G = 
(G0, G1; M) is bipancyclic if G is a bipartite graph. 
 
Proof: It is known that V(G) = B ∪ W, Vi = Bi ∪ Wi for i = 0, 1 and |Vi| = t for some even 
integer t ≥ 4. Obviously, |V(G)| = 2t. Since G is bipartite, we need to construct a cycle of 
length l for every even integer l with 4 ≤ l ≤ 2t. G1 is bipancyclic, so there is a cycle of 
length l for every even integer l with 4 ≤ l ≤ t. It suffices to construct cycles of length n 
for every even integer n with t + 2 ≤ n ≤ 2t. Let C be a hamiltonian cycle of G0 and C = 
〈u1, u2, …, ut, u1〉. Without loss of generality, suppose that u1 ∈ W0. Let l′ = n − t. Obvi-
ously, l′ is an even integer with 2 ≤ l′ ≤ t, thus ul′ ∈ B0. Since G is bipartite, 1,u lu ′  ∈ 

1( )V G  and they belong to the opposite partite sets of G1. Since G1 is hamiltonian lace-
able, there is a hamiltonian path Q between 1u  and lu ′  in G1. Thus 〈u1, 1, , ,lu Q u ′  ul′, ul′-1, 
ul′-2, …, u1〉 is cycle in G with length (l′ − 1) + 2 + (t − 1) = l′ + t = n. Thus we obtain the 
cycle with length n for every even integer n with t + 2 ≤ n ≤ 2t.                    
 

Recursively applying the results in section 3 and Theorem 4, we show that every 
bipartite graph G = (G0, G1; M) in MCN preserves the bipancyclicity of G0 and G1. In 
particular, the hypercube Qn and the hypercube-like graph HLn are bipancyclic for n ≥ 2 
[22, 23]. 
 
Lemma 2  For i ∈ {0, 1}, let Gi be a hamiltonian connected graph and Gi – {x} is ham-
iltonian connected for any x ∈ V(Gi). Suppose that |V(Gi)| = t ≥ 3. Let G = (G0, G1; M). 
Then G − {v} is hamiltonian connected for any v ∈ V(G). 
 
Proof: Given three distinct vertices x, y and z of G, we want to show that there is a ham-
iltonian path between x and y in G − {z}. There are three cases.  
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Case 1: {x, y, z} ⊂ V(G0). Since G0 − {z} is hamiltonian connected, there exists a hamil-
tonian path P in G0 − {z} between x and y. Let P = 〈x, x′, P1, y〉 with x ≠ x′. Since G1 is 
hamiltonian connected, there exists a hamiltonian path Q in G1 between x  and .x′  Thus 
〈x, , , ,x Q x′  x′, P1, y〉 is a hamiltonian path between x and y in G − {z}. 
 
Case 2: {x, y} ⊂ V(G0) and z ∈ V(G1). Since G0 is hamiltonian connected, there exists a 
hamiltonian path P in G0 between x and y. Let P = 〈x = x0, x1, x2, …, xt-2, xt-1 = y〉. Since t 
≥ 3, there exists an integer k with 0 ≤ k ≤ t − 2 such that 1{ , } { } 0.k kx x z+ ∩ = /  Since G1 − 
{z} is hamiltonian connected, there exists a hamiltonian path Q in G1 − {z} between kx  
and 1.kx +  Thus 〈x, x1, …, xk, 1, , ,k kx Q x +  xk+1, xk+2, …, y〉 is a hamiltonian path between x 
and y in G − {z}.  
 
Case 3: {x, z} ⊂ V(G0) and y ∈ V(G1). Since t ≥ 3, there is a vertex u in G0 − {x, z} with 

.u y≠  Since G0 − {z} is hamiltonian connected, there is a hamiltonian path P between x 
and u. Since G1 is hamiltonian connected, there is a hamiltonian path Q between 

 and .u y  Thus 〈x, P, u, ,u  Q, y〉 is a hamiltonian path between x and y in G − {z}.     
 
Theorem 5  Let G0 and G1 be two graphs that are hamiltonian connected and r-pan-    
cyclic for some integer r ≥ 3. For i ∈ {0, 1}, Gi − {x} is hamiltonian connected for any x 
∈ V(Gi). Suppose that |V(Gi)| = t ≥ 3. Let G = (G0, G1; M). Then G is r-pancyclic and G − 
{v} is hamiltonian connected for any v ∈ V(G). 
 
Proof: That G − {v} is hamiltonian connected for any v ∈ V(G) is proved in Lemma 2. 
Since |V(G)| = 2t, to prove the pancyclicity, we need to construct a cycle of length n for 
every integer n with r ≤ n ≤ 2t. Since G1 is r-pancyclic, there is a cycle of length n for 
every integer n with r ≤ n ≤ t. It suffices to construct cycles of length n for every integer 
n with t + 1 ≤ n ≤ 2t. Let C be a hamiltonian cycle of G0 and C = 〈u1, u2, …, ut, u1〉. Let l′ 
= n − t. Obviously, l′ is an integer with 1 ≤ l′ ≤ t.  
 
Case 1: 2 ≤ l′ ≤ t. Since G1 is hamiltonian connected, there is a hamiltonian path Q be-
tween 1u  and lu ′  in G1. Thus 〈u1, 1 1 2, , , , , ,l l l lu Q u u u u′ ′ ′ ′− − …, u1〉 is cycle in G with length 
(l′ − 1) + 2 + (t − 1) = l′ + t. Thus we obtain the cycle with length n for t + 2 ≤ n ≤ 2t.   
 
Case 2: l′ = 1. Let 1 1 2( ) { , }.v V G u u∈ −  Since G1 − {v} is hamiltonian connected, there is 
a hamiltonian path Q between 1u  and 2u  in G1 − {v}. Obviously, |Q| = t − 2. Thus 〈u1, 

1,u  Q, 2 ,u  u2, u1〉 is cycle in G with length 1 + 2 + (t − 2) = t + 1. Thus we obtain the 
cycle with length n for n = t + 1.                                            
 

Recursively applying the results in section 3, Lemma 2 and Theorem 5, we show 
that a graph G = (G0, G1; M) in MCN preserves the pancyclicity of G0 and G1. Suppose 
that n ≥ 4 and H is a graph in the class of CQn, TQn, and MQn. With the above theorem, it 
is easy to prove that H − {v} is hamiltonian connected for any v ∈ V(H) and H is 4-pan-     
cyclic, i.e., H contains cycles of any length at least four. The corresponding properties are 
studied in [5, 10-13, 25, 26]. Applying the results to hypercube-like graphs, we show the 
existence of cycles of any length at least four in HLn, as was mentioned in [22].   
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Theorem 6  Let G0 be a bipartite graph that is hamiltonian laceable and bipancyclic. Let 
G1 be a hamiltonian connected and r-pancyclic graph for some integer r ≥ 3. Suppose 
that G1 − {x} is hamiltonian connected for any x ∈ V(G1). Then G = (G0, G1; M) is r-pan-    
cyclic.  
 
Proof: Obviously, |Vi| = t for i = 0, 1 and |V(G)| = 2t. We need to construct a cycle of 
length n for every integer n with r ≤ n ≤ 2t. Since G1 is r-pancyclic, there is a cycle of 
length n for every integer n with r ≤ n ≤ t. It suffices to construct cycles of length n for t 
+ 1 ≤ n ≤ 2t. Let C be a hamiltonian cycle of G0 and C = 〈u1, u2, …, ut, u1〉. Without loss 
of generality, suppose that u1 ∈ W0. Let l′ = n − t. Obviously, l′ is an integer with 1 ≤ l′ ≤ t. 
The cycle construction follows the two cases as in Theorem 5.                   

 
By Theorem 6, we know that a graph G = (G0, G1; M) in MCN composed by letting 

G0 = Qn a hypercube and G1 = HLn some hypercube-like graph is 4-pancyclic, i.e. G con-
tains cycles of length l for any integer l satisfying 4 ≤ l ≤ 2n+1. 

5. 3*-CONNECTIVITY AND BI-3*-CONNECTIVITY 

Theorem 7  Let G0 and G1 be two graphs that are bipartite, hamiltonian laceable and 
satisfy the two-path property. Then G = (G0, G1; M) is bi-3*-connected if G is a bipartite 
graph and is 3*-connected if G is a nonbipartite graph. 
 
Proof: It is known that V(G) = B ∪ W, V(G0) = B0 ∪ W0, and V(G1) = B1 ∪ W1.  
 
Case 1: Suppose that G is a bipartite graph. Given u, v ∈ V(G) such that u and v belong 
to the opposite partite sets, we need to find a 3*-container of G between u and v. Let it be 
A = {P1, P2, P3}. We construct A as follows.   
 
Case 1.1: u, v ∈ G0. Without loss of generality, let u ∈ W0 and v ∈ B0. Obviously, u ∈  
B1 and 1.v W∈  Since G0 is hamiltonian laceable and hence it is hamiltonian, there is a 
2*-container {P1, P2} of G0 between u and v. Since G1 is hamiltonian laceable, there is a 
hamiltonian path P of G1 between u  and .v  We set P3 = 〈u, , , ,u P v  v〉. 
 
Case 1.2: u ∈ G0 and v ∈ G1 with u  = v. Without loss of generality, let u ∈ W0. Obvi-
ously, v ∈ B1. We can choose two distinct vertices x ∈ W0 − {u} and y ∈ B0. Obviously,  
x  ∈ B1 and y  ∈ W1. Since G0 is hamiltonian laceable, there is a hamiltonian path Q of 
G0 between x and y. Again, there is a hamiltonian path R of G1 between x  and .y  We 
write Q = 〈x, Q1, u, Q2, y〉 and R = ,x〈  R1, v, R2, .y〉  We set P1 = 〈u, Q1

-1, x, ,x  R1, v〉, P2 = 
〈u, Q2, y, 1

2, ,y R−
 v〉, and P3 = 〈u, v〉. 

 
Case 1.3: u ∈ G0 and v ∈ G1 with u  ≠ v. Without loss of generality, let u ∈ W0 and v ∈ 
B1. Obviously, v  ∈ W0. We can choose a vertex x ∈ B0. Since G0 is hamiltonian laceable, 
there is a hamiltonian path Q of G0 between x and .v  Again there is a hamiltonian path R 
of G1 between x  and .u  We write Q = 〈x, Q1, u, Q2, v 〉  and R = ,x〈  R1, v, R2, .u 〉  We 
set P1 = 〈u, 1

2, ,u R−
 v〉, P2 = 〈u, 1

1 ,Q−
 x, ,x  R1, v〉, and P3 = 〈u, Q2, ,v  v〉. 
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Case 2: Suppose that G is a nonbipartite graph. Let u and v be any two distinct vertices 
of G. Without loss of generality, we assume that u ∈ W0 and u  ∈ B1. We need to find a 
3*- container of G between u and v. Let A = {P1, P2, P3} be the 3*-container of G between 
u and v. A is constructed as follows.   
 
Case 2.1: v ∈ V0 and v ∈ W1. Since G0 is hamiltonian laceable and hence it is hamilto-
nian, there is a 2*-container {P1, P2} of G0 between u and v. Since G1 is hamiltonian  
laceable, there is a hamiltonian path P of G1 between u  and .v  We set P3 = 〈u, ,u P, ,v v〉.  
 
Case 2.2: v ∈ W0 and v  ∈ B1. We can choose a vertex x ∈ B0 such that x  ∈ W1 and 
choose a vertex y ∈ W0 such that y  ∈ W1. Since G0 is hamiltonian laceable, there is a 
hamiltonian path Q of G0 between x and y. Without loss of generality, we write Q = 〈x, Q1, 
p, Q2, q, Q3, y〉 where {p, q} = {u, v}. By the two-path property, there are two paths T1 
and T2 of G1 such that (1) T1 joins x  to ,q  (2) T2 joins p  to ,y  (3) T1 ∩ T2 = φ, and (4) 
T1 ∪ T2 covers all vertices of G1. We set P1 = 〈p, Q2, q〉, P2 = 〈p, 1

1 ,Q−
 x, ,x  T1, ,q  q〉, P3 

= 〈p, ,p  T2, ,y  y, 1
3 ,Q−

 q〉.  
 
Case 2.3: v ∈ B0 and v  ∈ B1. We can choose a vertex x ∈ B0 such that x  ∈ W1 and 
choose a vertex y ∈ W0 such that y  ∈ W1. Since G0 is hamiltonian laceable, there is a 
hamiltonian path Q of G0 between x and y. Without loss of generality, we write Q = 〈x, Q1, 
p, Q2, q, Q3, y〉 where {p, q} = {u, v}. By the two-path property, there are two paths T1 
and T2 of G1 such that (1) T1 joins x  to ,q  (2) T2 joins p  to ,y  (3) T1 ∩ T2 = φ, and (4) 
T1 ∪ T2 covers all vertices of G1. We set P1 = 〈p, Q2, q〉, P2 = 〈p, 1

1 ,Q−
 x, ,x  T1, ,q  q〉, P3 

= 〈p, ,p  T2, ,y  y, 1
3 ,Q−

 q〉.  
 
Case 2.4: v ∈ V1 and u  ≠ v. Obviously u ∈ W0, u  ∈ B1, and v  ∈ V0. We can choose a 
vertex x ∈ V0 such that (1) x and v  belong to the opposite bipartition of G0, and (2) x  ∈ 
W1. Since G0 is hamiltonian laceable, there is a hamiltonian path Q of G0 between x and 

.v  Similarly, since G1 is hamiltonian laceable, there is a hamiltonian path T of G1 be-
tween x  and .u  Write Q = 〈x, Q1, u, Q2, v 〉  and T = ,x〈 T1, v, T2, .u〉  We set P1 = 〈u, 

1
2, ,u T −  v〉, P2 = 〈u, Q2, ,v  v〉, and P3 = 〈u, 1

1 ,Q−
 x, ,x  T1, v〉.  

 
Case 2.5: v ∈ V1 and v = .u  Obviously, u ∈ W0 and u  ∈ B1, we can choose a vertex x ∈ 
W0 such that x  ∈ W1 and choose a vertex y ∈ B0 such that y  ∈ B1. Since G0 is hamilto-
nian laceable, there is a hamiltonian path Q of G0 between x and y. Again, there is a ham-
iltonian path T of G1 between x  and .y  Without loss of generality, we write that Q = 〈x, 
Q1, u, Q2, y〉 and T = ,x〈  T1, v, T2, .y〉  We set P1 = 〈u, v〉, P2 = 〈u, 1

1 ,Q−
 x, ,x  T1, v〉, and 

P3 = 〈u, Q2, y, 1
2, ,y T −

 v〉.                                                  
 
Theorem 8  Let G0 and G1 be two hamiltonian connected graphs. Then G = (G0, G1; M) 
is 3*-connected.   
 
Proof: Let u and v be any two distinct vertices of G. We need to find a 3*-container of G 
between u and v. Let A = {P1, P2, P3} be the 3*-container of G between u and v. A is con-
structed as follows.  
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Case 1: v ∈ G0. Since G0 is hamiltonian connected and hence it is hamiltonian, there is a 
2*-container {P1, P2} of G0 between u and v. Since G1 is hamiltonian connected, there is 
a hamiltonian path P of G1 between  u  and .v  We set P3 = 〈u, ,u  P, ,v  v〉.  

Case 2: u, v ∈ G0 and v ∈ G1 with u  = v. We can choose two distinct vertices x and y in 
G0 − {u}. Since G0 is hamiltonian connected, there is a hamiltonian path Q of G0 between 
x and y. Similarly, there is a hamiltonian path R of G1 between x  and .y  We write Q = 〈x, 
Q1, u, Q2, y〉 and R = ,x〈  R1, v, R2, .y〉  We set P1 = 〈u, 1

1 ,Q−
 x, ,x  R1, v〉, P2 = 〈u, Q2, y, 

1
2, ,y R−

 v〉, and P3 = 〈u, v〉. 

Case 3: u ∈ G0 and v ∈ G1 with u  ≠ v. We can choose a vertex x in G0 − {u, }.v  Since 
G0 is hamiltonian connected, there is a hamiltonian path Q of G0 between x and .v  Simi-
larly there is a hamiltonian path R of G1 between x  and .u  We write Q = 〈x, Q1, u, Q2, 
v 〉  and R = ,x〈  R1, v, R2, .u〉  We set P1 = 〈u, 1

2, ,u R−
 v〉, P2 = 〈u, 1

1 ,Q−
 x, ,x  R1, v〉, and P3 

= 〈u, Q2, ,v  v〉.                                                           

As was mentioned in section 3, FPQ1,1 is hamiltonian connected. Using Theorem 8 
recursively, we prove that FPQn,1 is 3*-connected for all n ≥ 1. 
 
Theorem 9  Let G0 be a bipartite hamiltonian laceable graph satisfying the two-path 
property and G1 be a nonbipartite hamiltonian connected graph. Then G = (G0, G1; M) is 
3*-connected. 

Proof: It is known that V(G0) = B0 ∪ W0. Let u and v be any two distinct vertices of G. 
We construct a 3*-container, A = {P1, P2, P3}, of G between u and v as follows.  

Case 1: u, v ∈ G0. Since G0 is hamiltonian laceable and hence it is hamiltonian, there is a 
2*-container {P1, P2} of G0 between u and v. Since G1 is hamiltonian connected, there is 
a hamiltonian path P of G1 between u  and .v  We set P3 = 〈u, ,u  P, ,v  v〉.  

Case 2: u, v ∈ G1. Without loss of generality, we assume that u  ∈ W0. 

Case 2.1: v  ∈ W0. We can choose two distinct vertices x, y ∈ B0. Since G1 is hamiltonian 
connected, there is a hamiltonian path Q of G1 between x  and .y  Without loss of gener-
ality, we write Q = ,x〈  Q1, u, Q2, v, Q3, .y〉  By the two-path property, there are two paths 
T1 and T2 of G0 such that (1) T1 joins u  to y, (2) T2 joins x to ,v  (3) T1 ∩ T2 = φ, and (4) 
T1 ∪ T2 covers all vertices of G0. We set P1 = 〈u, Q2, v〉, P2 = 〈u, 1

1 , ,Q x−
 x, T2, ,v  v〉, and 

P3 = 〈u, ,u  T1, y, 1
3, ,y Q−

 v〉.  

Case 2.2: v  ∈ B0. Since G1 is hamiltonian connected and hence it is hamiltonian, there is 
a 2*-container {P1, P2} of G1 between u and v. Since G0 is hamiltonian laceable, there is a 
hamiltonian path P of G0 between u and v . We set P3 = 〈u, ,u  P, ,v  v〉.   

Case 3: u ∈ G0 and v ∈ G1 with u  = v. Without loss of generality, we assume that u ∈ 
W0. We can choose a vertex x in W0 − {u} and a vertex y ∈ B0. Since G0 is hamiltonian 
laceable, there is a hamiltonian path Q of G0 between x and y. Since G1 is hamiltonian 
connected, there is a hamiltonian path T of G1 between x  and .y  Without loss of gener-
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ality, we write Q = 〈x, Q1, u, Q2, y〉 and T = ,x〈  T1, v, T2, .y〉  We set P1 = 〈u, v〉, P2 = 〈u, 
1

1 ,Q−
 x, ,x  T1, v〉, and P3 = 〈u, Q2, y, 1

2, ,y T −
 v〉.  

Case 4: u ∈ G0 and v ∈ G1 with u  ≠ v. Without loss of generality, we assume that u ∈ W0. 
We can choose a vertex x ∈ V0 belonging to the opposite partite set of .v  Since G0 is 
hamiltonian laceable, there is a hamiltonian path Q of G0 between x and .v  Since G1 is 
hamiltonian connected, there is a hamiltonian path T of G1 between x  and .u  Without 
loss of generality, we write Q = 〈x, Q1, u, Q2, v 〉  and T = ,x〈  T1, v, T2, .u〉  We set P1 = 〈u, 
Q2, ,v  v〉, P2 = 〈u, 1

2, ,u T −
 v〉, and P3 = 〈u, 1

1 , ,Q x−
 ,x  T1, v〉.                        

 
With section 3, Theorems 7-9, we show that every graph G = (G0, G1; M) in MCN 

preserves the 3*-connectivity of G0 and G1. In particular, every hypercube-like graph HLn 
is 3*-connected, which was studied by Lin [18]. 
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