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1. INTRODUCTION

Multiresolution decomposition [1, 2, 3]
based on discrete wavelet transform [4, 5]
has significant applications in signal
representation and compression. Since
discrete wavelet transform is linear and the
construction of a scaling function required
Fourier transform, nonlinear approaches to
wavelet-like decompositions without using
Fourier transform have received many
attentions [6-12]. The well-known lifting
scheme [13, 14, 15] is one of the most
successful nonlinear approaches.

Recently, Goutsias and Heijmans [16,
17] have proposed an axiomatic framework
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to wunify the linear and nonlinear
multiresolution  analyses. Under  this

framework, wavelet decomposition based on
mathematical morphology [18] can be
constructed.

Mathematical morphology is known as
an efficient tool for image anaysis and
processing. Thus, it is the purpose of this
study to investigate the theory and
applications of morphological wavelet
decomposition.

2.WAVELET DECOMPOSITION

In a multi-resolution analysis, there are
nested vector spaces

A cV,cV,cV, cA
such that

(1) the closure of the union of all V, isthe

space L?(R) and the intersection of al V,
is{0};

(2 f(t)ev, ifandonlyif f(2t)eV,,;
(3) there exists a scaling function ¢(t)
such that { ¢(t — k) :k is an integer} form a
basisfor V,.

Suppose W, is the orthogonal complement
of V, in V,,. Then the vector space V,
can be written as

V., =W &W,_  &A &W,

j+k

®Vj+k

j+1

for any nonnegative k. It is known that there



exists a function y(t), the wavelet, such
that { w(t — k) :k is an integer} is a basis for
W,. Then any function f eL*(R) can be
represented as

f0=3 cw@ -1

—00 —00

where

k k
Ce, =jm f(t)2 2y (2 2t —1)dt

Is the discrete wavelet transform of f(t).
Note that the discrete wavelet transform is
linear and the sets V; and W, are required

to be vector spaces.

Recently, Goutsas and Heijmans
proposed an axiomatic framework to unify
linear and nonlinear approaches. Let V; and
W, be, respectively, the signal space and the

detail space at level j. Consider the following
analysis and synthesis operators:

(1) signal analysis operator
GV, -V,

(2) detail analysis operator
HY Vv, ->W,,

(3) signal synthesis operator
SV, xW; >V,

If the following conditions are satisfied:

(1) perfect reconstruction condition
l !
Sj (Gj (X), H j (X)) =X
foral xeV,;

(2) nonredundant decomposition
conditions
¢ y
G/S;(x,y)=x and H;S;(x,Yy)=X
foral xeV.

j+1

and yeW

j+17
then the recursive analysis scheme

Xo > {X0 Yu}t > {X;, Y2, Vi} = A

where
4
X =Gj (Xj)evj+1
and
Yia= H }L(Xj ) EVVj+1

is called a wavelet decomposition scheme.
Note that x, can be recursively

reconstructed from x, and vy,,Y,,A,Y,
by

X; =S (X1, Ya)s =k=1k=-2A0
Moreover, if there are operations * .

]
operators G| :V
—V, such that

on V j
and and

HI:w

j+1 _>Vj

j+1
S;(%Y)=G] ()* ., H ()

for al xeV,, and yeW,_,, then the

wavelet decomposition is called uncoupled.
For instances, the lazy wavelet is a
uncoupled wavelet decomposition in which

Vo=V, =W, =R%,j=1,2, ...

G* (x)(n) = x(2n)

H* (x)(n) = x(2n +1)

G (x)(2n)=x(n) and G’ (x)(2n+1) =0
H'(y)(2n)=0 and H'(y)(2n+1) = y(n)
* = the standard additionin R*.

The one-dimensional morphological Haar
wavelet is aso a uncoupled wavelet
decomposition in which

Vo=V, =W, =®?,j=1,2, ...
G (X)(n) = x(2n) A X(2n +1)

H* (x)(n) = x(2n) — x(2n + 1)

G (x)(2n) =G (x)(2n +1) = x(n)
H™(y)(2n) = y(n) v 0
H'(y)(2n+1)=—(y(n) A 0)



* = the standard additionin R*.
3. MORPHOLOGICAL WAVELETS

Under the framework alluded above,
wavelet decomposition based on
morphological operators can be constructed.
Indeed, the well-known morphological
skeletonization [19] is a uncoupled wavelet
decomposition in which

Vo=V, =W, =R%,j=1,2, ...
G' (%) =E, (X
HY(x)=x-D,E,(X)

G'(x) =D, ()

H'(y)=y

* = the standard additionin R*

where E, and D, are respectively the

erosion and dilation with respect to the
structuring element w.

In general, suppose there are operators
¢V, >V, and ¢ :V,,, -V, such that
(qﬁf,gb?) forms an adjunction between V,
and V., i.e, ¢/ (N)<yox<g (y) for
any xeV;, and yeV
analysis scheme

j+1 j+1

;11> then the recursive

Xo > {X0, Yu}t > {X;, Y2, i} = A

IS a uncoupled wavelet decomposition in
which

G/ (x;)=6;(x,)

Hf(xj)zxj _‘/’jT(i’ji(Xj)

G| (X)) =0/ (X.1)

H jT(yj+l) =Yia

S (Xu: Y1) =G (X)) + H ] (X.y)

4. APPLICATIONS

Wavelet decomposition has significant
applications in signal representation and

compression. Wavelets are  building
primitives for general signals on one hand
and have the power to decorrelate data on the
other hand. In order to quickly find a wavelet
decomposition, the lifting scheme has been
proposed by Sweldens to construct
biorthogona wavelets without employing the
Fourier transform. The lifting scheme
consists of three steps. split, predict, and
update. It has been shown that any discrete
wavelet transform can be factored into lifting
steps[20].

In order to possess better compression
properties, the lifting scheme can also be
applied to morphological wavelets. A genera
lifting scheme would then consist the
following steps: wavelet decomposition,
predict, and update. That is, given the
wavelet decomposition

Xo > {X,, Y1} =2 {X;, Y2, i} > A
if Pj :Vj —>Wj and Uj :Wj —>Vj

respectively the predict and update operators,
then the lifting scheme is given by

ae

)/£ =Y, _Pj(Xj)
Xj=X; +U; (X))

5. CONCLUSIONS

In this study we investigate the
morphological approach to wavelet transform.
This approach can be viewed as a
combination of multiresolution theory,
morphological skeletonization, and the lifting

scheme. It should have the potentia
applications in signal representation and
compression.

However, in theoretical point of view, it
is not clear that what structures should the
signal spaces and the detail spaces have in
order to satisfy the conditions required in
morphological wavelets. We will work on the
suitable structures in the future.
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